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Abstract

Algorithms for learning database queries from examples and
unique characterisations of queries by examples are promi-
nent starting points for developing automated support for
query construction and explanation. We investigate how far
recent results and techniques on learning and unique charac-
terisations of atemporal queries mediated by an ontology can
be extended to temporal data and queries. Based on a system-
atic review of the relevant approaches in the atemporal case,
we obtain general transfer results identifying conditions un-
der which temporal queries composed of atemporal ones are
(polynomially) learnable and uniquely characterisable.

1 Introduction
Providing automated support for constructing database
queries from data examples has been an important re-
search topic in database management, knowledge represen-
tation and computational logic, often subsumed under the
query-by-example paradigm (Martins 2019). One promi-
nent approach is based on exact learning using member-
ship queries (Angluin 1987b), where one aims to identify
a database query by repeatedly asking an oracle (e.g., do-
main expert) whether certain data examples are answers or
non-answers to the query. Recently, the ability to uniquely
characterise a database query by a finite set of positive
and negative examples has been identified and investigated
as a ‘non-procedural’ necessary condition for learnability
via membership queries (Staworko and Wieczorek 2015;
ten Cate and Dalmau 2022; Fortin et al. 2022). More pre-
cisely, a query q(x) is said to fit a pair E = (E+, E−) of
sets E+ and E− of pointed databases (D, a) if D |= q(a)
for all (D, a) ∈ E+, and D ̸|= q(a) for all (D, a) ∈ E−.
The example set E uniquely characterises q within a class Q
of queries if q is the only one (up to equivalence) in Q that
fits E. The existence of (polynomial-size) unique character-
isations is a necessary pre-condition for (polynomial) learn-
ability via membership queries. Such characterisations can
also be employed for explaining and synthesising queries.

Extending results on characterising and learning conjunc-
tive queries (CQs) under the standard closed-world seman-
tics (ten Cate and Dalmau 2022), there has recently been
significant progress towards CQs mediated by a description
logic (DL) ontology under the open-world semantics (Funk,

Jung, and Lutz 2021; 2022b). The focus has been on on-
tologies in the tractable DL-Lite and EL families and tree-
shaped CQs such as ELQs (EL-concepts) and ELIQs (ELI-
concepts). In fact, even under the closed-world seman-
tics, only acyclic queries can be uniquely characterised and,
equivalently, learned using membership queries in polyno-
mial time (ten Cate and Dalmau 2022).

In this paper, we aim to understand how far these char-
acterisability and learnability results for atemporal queries
mediated by an ontology can be expanded to the tempo-
ral case. Temporal ontology-mediated query answering
provides a framework for accessing temporal data using a
background ontology. It has been investigated for about
a decade—see, e.g., (Artale et al. 2017) for a survey—
resulting in different settings and a variety of query and on-
tology languages (Baader, Borgwardt, and Lippmann 2015;
Borgwardt and Thost 2015; Artale et al. 2022; Gutiérrez-
Basulto, Jung, and Kontchakov 2016; Artale et al. 2014;
Wałęga et al. 2020). As a natural starting point, we assume
that the background ontology holds at all times and does not
admit temporal operators in its axioms. As a query language
we consider a combination of ELIQs with linear temporal
logic (LTL ) operators. First observations on unique char-
acterisability and learnability of plain LTL queries (Fortin
et al. 2022) showed that, even without ontologies, a restric-
tion to so-called path queries (defined below) is needed to
obtain positive general and useful results. Our main con-
tributions in this paper are general transfer theorems iden-
tifying abstract properties of query and ontology languages
that are needed to lift unique characterisability and learnabil-
ity from atemporal ontology-mediated queries and ontology-
free path LTL queries to temporalised domain queries me-
diated by a DL ontology. To facilitate the transfer, we begin
by revisiting the atemporal case. Below is an overview of
the obtained results.

Atemporal case. We present and compare two approaches
to finding unique (polysize) characterisations of atemporal
queries mediated by an ontology: via frontiers and via split-
partners (aka dualities). Both tools are developed under the
condition that query containment in the respective atemporal
DLs can be reduced to query evaluation. We call this con-
dition containment reduction. It applies to all fragments of
the expressive DL ALCHI and more general FO-ontologies
without equality as well as to DL-Lite with functional roles.



It ensures that whenever a unique characterisation of a query
mediated by an ontology exists, there is also one with a
single positive example in E+. These tools yield two es-
sentially optimal unique characterisability results: frontiers
give polynomial-size characterisations of ELIQs mediated
by an ontology in the DLs DL-LiteH and DL-Lite−F (Funk,
Jung, and Lutz 2021; 2022b), while split-partners provide
exponential-size characterisations of ELIQs mediated by an
ALCHI ontology and polysize characterisations of ELQs
mediated by an RDFS ontology.

Temporalising unique characterisations. We now assume
that temporal data instances are finite sets of facts (ground
unary and binary atoms) timestamped by the moments i ∈ N
they happened and that queries are equipped with temporal
operators. By combining the results from the atemporal case
above with the techniques of (Fortin et al. 2022), we estab-
lish general transfer theorems on (polysize) unique charac-
terisations of temporal queries mediated by a DL ontology.

We first consider the temporal operators ⃝ (at the next
moment), 3 (sometime later), and 3r (now or later) and de-
fine, given a class Q of atemporal queries (say, ELIQs), the
family LTL⃝33r

p (Q) of path queries of the form

q = r0 ∧ o1(r1 ∧ o2(r2 ∧ · · · ∧ onrn)),

where oi ∈ {⃝,3,3r} and ri ∈ Q. These queries are
evaluated at time 0. Even if Q consists of conjunctions
of atoms only and no ontology is present, not all queries
in LTL⃝33r

p (Q) can be uniquely characterised. A typi-
cal example of a non-characterisable query in this class is
q(x) = 3r(A(x) ∧B(x)) (Fortin et al. 2022). We first give
an effective syntactic criterion for an LTL⃝33r

p (Q)-query
to be ‘safe’ in the sense of admitting a unique characterisa-
tion. Then we prove a fully general transfer theorem stating
that if a DL L admits containment reduction and (polysize)
unique characterisations for Q-queries mediated by an L-
ontology, then so does the class of safe temporalised queries
in LTL⃝33r

p (Q). For example, this theorem yields polysize
unique characterisations of safe queries in LTL⃝33r

p (ELIQ)

mediated by a DL-Lite−F or DL-LiteH ontology and expo-
nential ones for safe LTL⃝33r

p (ELIQ)-queries mediated by
an ALCHI ontology.

Our second transfer result concerns temporal queries with
the binary operator U (until) under the strict semantics and
the family LTLU

p (Q) of path queries of the form

q = r0 ∧ (l1 U (r1 ∧ (l2 U (. . . (ln U rn) . . . )))).

For its subclass of ‘peerless’ queries, in which the ri, li ∈ Q
do not contain each other wrt O, we prove general transfer
of unique characterisations provided that unique characteri-
sations for the atemporal class Q can be obtained via split-
partners. For example, this result gives exponential-size
unique characterisations of peerless queries in LTLU

p (ELIQ)
mediated by any ALCHI ontology and polysize character-
isations of peerless queries in LTLU

p (ELQ) mediated by any
RDFS ontology. We also show that the general transfer fails
if frontier-based characterisations of queries in Q are used
in place of split-partners.

Temporalising learning. We apply our results on unique
characterisations to learning a target query qT , known only
to a teacher, wrt a given ontology O in Angluin’s frame-
work of exact learning. We allow the learner to use mem-
bership queries, which return in unit time whether a given
example (D, a) is a positive one for qT wrt to O. Given
that we always construct example sets effectively, it is not
difficult to show that our exponential-size unique characteri-
sations entail exponential learning algorithms. We are, how-
ever, mainly interested in efficient algorithms formalised as
polynomial time or polynomial query learnability.

Obtaining such algorithms from polysize characterisa-
tions is more challenging and we currently only know how
this can be done if the unique characterisation is based
on polysize frontiers. Hence, we focus on queries in
LTL⃝33r

p (Q) and show that polynomial query learnability
transfers from Q to safe queries in LTL⃝33r

p (Q) and that
polytime learnability transfers if natural additional condi-
tions hold for Q and the DL.

Omitted details and proofs can be found in the appendix.

2 Related Work

The unique characterisation framework for temporal for-
mulas, underpinning this paper, was originally introduced
by Fortin et al. (2022). Recently, it has been generalised
to finitely representable transfinite words as data examples
(Sestic 2023), whose results are not directly applicable to
the problems we are concerned with as the queries have no
DL component and no ontology is present. It would be of in-
terest to extend the techniques used by Sestic (2023) to the
more general languages considered here.

We are not aware of any work on exact learning of tem-
poral formulas save (Camacho and McIlraith 2019) and
the related work of exact learning of finite automata start-
ing with (Angluin 1987a). In contrast, passive learning
of LTL -formulas has recently received significant atten-
tion (Lemieux, Park, and Beschastnikh 2015; Neider and
Gavran 2018; Camacho and McIlraith 2019; Fijalkow and
Lagarde 2021; Fortin et al. 2023).

The database and KR communities have been working on
identifying queries and concept descriptions from data ex-
amples (Staworko and Wieczorek 2015; Konev et al. 2017;
ten Cate, Dalmau, and Kolaitis 2013; Ozaki 2020; ten Cate
and Dalmau 2022). In reverse engineering of queries, the
goal is typically to decide whether there is a query sepa-
rating given positive and negative examples. Relevant work
includes (Arenas and Diaz 2016; Barceló and Romero 2017)
under the closed world and (Lehmann and Hitzler 2010;
Gutiérrez-Basulto, Jung, and Sabellek 2018; Funk et al.
2019; Jung et al. 2022) under the open world assumption.

The use of unique characterisations for explaining and
constructing schema mappings was promoted and investi-
gated by Kolaitis (2011) and Alexe et al. (2011).

Unique characterisability of formulas in modal logics (un-
der the closed world assumption and without ontologies) has
recently been studied by ten Cate and Koudijs (2023).



3 Atemporal Ontologies and Queries
We assume that background knowledge about the object do-
main is given as a standard description logic ontology. This
section recaps the relevant definitions.

As usual in DL, we work with any signature of unary and
binary predicate symbols, typically denoted A,B and P,R,
respectively. A data instance is any finite set A ̸= ∅ of
atoms of the form A(a) and P (a, b) with individual names
a, b, and also ⊤(a), which simply says that a exists. De-
note by ind(A) the set of individuals in A and by P− the
inverse of P , assuming that P−(a, b) ∈ A iff P (b, a) ∈ A.
Let S range over binary predicates and their inverses. A
pointed data instance is a pair (A, a) with a ∈ ind(A).
The size |A| of A is the number of symbols in it.

In general, an ontology, O, is a finite set of first-order
(FO) sentences in the given signature. Ontologies and data
instances are interpreted in structures I = (∆I , ·I) with
domain ∆I ̸= ∅, aI ∈ ∆I , ⊤I = ∆I , AI ⊆ ∆I , and
P I ⊆ ∆I × ∆I . As usual in database theory, we assume
that aI ̸= bI for distinct a, b; moreover, to simplify nota-
tion, we adopt the standard name assumption and interpret
each individual name by itself, i.e., aI = a. Thus, I is a
model of A if a ∈ AI and (a, b) ∈ P I , for all A(a) ∈ A
and P (a, b) ∈ A. We call I a model of an ontology O if
all sentences in O are true in I, and say that O and A are
satisfiable if they have a model.

The ontology languages we consider here are certain
members of the DL-Lite family, ALCHI, ELHIF ; we de-
fine them below as fragments of first-order logic:

DL-LiteF (Calvanese et al. 2007b) aka DL-LiteFcore (Artale
et al. 2009) allows axioms of the following forms:

∀x
(
B(x) → B′(x)

)
, ∀x

(
B(x) ∧B′(x) → ⊥

)
,

∀x, y, z
(
S(x, y) ∧ S(x, z) → (y = z)

)
, (1)

where basic concepts B(x) are either A(x) or ∃S(x) =
∃y S(x, y). In DL parlance, the first two axioms in (1) are
written as B ⊑ B′ and B ⊓ B′ ⊑ ⊥, and the third one as
≥ 2S ⊑ ⊥ or fun(S), a functionality constraint stating
that relation S is functional.

DL-Lite−F (Funk, Jung, and Lutz 2022b) is the fragment of
DL-LiteF , in which concept inclusions (CIs) B ⊑ B′

cannot have B′ = ∃S with functional S−.
DL-LiteH (Calvanese et al. 2007b) aka DL-LiteHcore (Artale

et al. 2009) is obtained by disallowing the functionality
constraints in DL-LiteF and adding axioms of the form

∀x, y (S(x, y) → S′(x, y)) (2)

known as role inclusions (RIs) and written as S ⊑ S′.
RDFS1 has CIs between concept names, RIs between role

names, and CIs of the forms ∃P ⊑ A or ∃P− ⊑ A saying
that the domain of P and range of P are in A, respectively.

ALCHI (Baader et al. 2017) has the same RIs as in (2) but
more expressive CIs ∀x (C1(x) → C2(x)), in which the
concepts Ci are defined inductively starting from atoms
⊤(x) and A(x) and using the constructors C(x)∧C ′(x),

1https://www.w3.org/TR/rdf12-schema/

¬C(x), and ∃y (S(x, y)∧C(y)), for a fresh y—or C⊓C ′,
¬C, and ∃S.C in DL terms.

ELHIF (Baader et al. 2017) has RIs (2), functionality con-
straints, and CIs with concepts built from atoms and ⊥
using ∧ and ∃y (S(x, y) ∧C(y)) only. ELHI and ELIF
are the fragments of ELHIF without functionality con-
straints and RIs, respectively.

We reserve L for denoting any of these ontology languages:

RDFS ⊂
DL-Lite−F ⊂ DL-LiteF ⊂ ELIF ⊂ ELHIF

DL-LiteH ELHI⊂
⊂

ALCHI⊂

The most general query language over the object domain
we consider consists of conjunctive queries (CQs) q(x) in
the signature σ with a single answer variable x. We often
think of q(x) as the set of its atoms and denote by var(q)
and sig(q) the sets of its individual variables and predicates
symbols, respectively. We say that q(x) is satisfiable wrt an
ontology O if O ∪ {q(x)} has a model.

Given a CQ q(x), an ontology O, and a data instance A,
we say that a ∈ ind(A) is a (certain) answer to q over A
wrt O and write O,A |= q(a) if I |= q(a) for all models
I of O and A. Recall that ∅,A |= q(a) iff there is function
h : var(q) → A such that h(x) = a, A(y) ∈ q implies
A(h(y)) ∈ A, and P (y, z) ∈ q implies P (h(y), h(z)) ∈ A.
Such a function h is called a homomorphism from q to A,
written h : q → A; h is surjective if h(var(q)) = ind(A).

We say that a CQ q1(x) is contained in a CQ q2(x) wrt an
ontology O and write q1 |=O q2 if O,A |= q1(a) implies
O,A |= q2(a), for any data instance A and any a ∈ ind(A).
If q1 |=O q2 and q2 |=O q1, we say that q1 and q2 are
equivalent wrt O, writing q1 ≡O q2. For O = ∅, we often
write q1 ≡ q2 instead of q1 ≡∅ q2.

Two smaller query languages we need are ELI-queries
(or ELIQs, for short) that can be defined by the grammar

q := ⊤ | A | ∃S.q | q ∧ q′

and EL-queries (or ELQs), which are ELIQs without in-
verses P−. Semantically, an ELIQ q has the same meaning
as the tree-shaped CQ q(x) that is defined inductively start-
ing from atoms ⊤(x) and A(x) and using the constructors
∃y (S(x, y) ∧ q(y)), for a fresh y, and q(x) ∧ q′(x). The
only free (i.e., answer) variable in q is x.

We reserve Q for denoting a class of queries with answer
variable x such that whenever q1, q2 ∈ Q, then q1∧q2 ∈ Q.
Some of our results require restricting Q to a finite signature
σ: we denote by Qσ the class of those queries in Q that are
built from predicates in σ. The classes of all σ-ELIQs and
σ-ELQs are denoted by ELIQσ and ELQσ , respectively.

It will be convenient to include the ‘inconsistency query’
⊥ into all of our query classes. By definition, we have
O,A |= ⊥(a) iff O and A are inconsistent.

4 Unique Characterisability
An example set is a pair E = (E+, E−), where E+ and E−

are finite sets of pointed data instances (A, a). A CQ q(x)
fits E wrt O if O,A+ |= q(a+) and O,A− ̸|= q(a−), for
all (A+, a+) ∈ E+ and (A−, a−) ∈ E−. We say that E
uniquely characterises q wrt O within a given class Q of

https://www.w3.org/TR/rdf12-schema/


queries if q fits E and q ≡O q′, for every q′ ∈ Q that fits
E. Note that, in this case, E+ = ∅ implies q ≡O ⊥, and so
q is not satisfiable wrt O.

We first observe that, for a large class of ontologies O,
including all those considered here, if q is uniquely charac-
terised by some E = (E+, E−) wrt O, then q has a unique
characterisation of the form E′ = ({(q̂, a)}, E−) with a sin-
gle positive example (q̂, a). Say that an ontology O admits
containment reduction if, for any CQ q(x), there is a pointed
data instance (q̂, a) such that the following conditions hold:
(cr1) q(x) is satisfiable wrt O iff O and q̂ are satisfiable;
(cr2) there is a surjective h : q → q̂ with h(x) = a;
(cr3) if q(x) is satisfiable wrt O, then for every CQ q′(x),

we have q |=O q′ iff O, q̂ |= q′(a).
An ontology language L admits containment reduction if ev-
ery L-ontology does. If the pointed data instance (q̂, a) is
computable in polynomial time, for every O in L, we say
that L admits tractable containment reduction. The next
lemma illustrates this definition by a few concrete examples.
Lemma 1. (1) FO without equality admits tractable con-
tainment reduction; in particular, ALCHI admits tractable
containment reduction.

(2) ELIF admits tractable containment reduction.
(3) {≥ 3P ⊑ ⊥} does not admit containment reduction.

Proof. For (1), one can define q̂ as q, with the variables
regarded as constants. To show (2), q has to be factorised
first to ensure functionality; (3) is shown in appendix.

It is readily checked that we have the following:
Lemma 2. Suppose O admits containment reduction and
q ∈ Q is satisfiable wrt O, having a unique characterisation
E = (E+, E−) wrt O within Q. Then E′ = ({(q̂, a)}, E−)
is a unique characterisation of q wrt O within Q, too.

We use two ways of constructing unique characterisa-
tions: via frontiers and via split-partners. Let O be an ontol-
ogy, Q a class of queries, and q ∈ Q a satisfiable query wrt
O. A frontier of q wrt O within Q is a set Fq ⊆ Q such that
• for any q′ ∈ Fq , we have q |=O q′ and q′ ̸|=O q;
• for any q′′ ∈ Q, if q |=O q′′, then either q′′ |=O q or

there is q′ ∈ Fq with q′ |=O q′′.
(Note that if q ≡O ⊤, then Fq = ∅.) An ontology O is said
to admit (finite) frontiers within Q if every q ∈ Q satisfiable
wrt O has a (finite) frontier wrt O within Q. Further, if such
frontiers can be computed in polynomial time, we say that
O admits polytime-computable frontiers.

The next theorem follows directly from the definitions:
Theorem 1. Suppose Q is a class of queries, an ontology
O admits containment reduction, q ∈ Q is satisfiable wrt
O, and Fq is a finite frontier of q wrt O within Q. Then
({(q̂, a)}, {(r̂, a) | r ∈ Fq}) is a unique characterisation
of q wrt O within Q.

As shown by Funk, Jung, and Lutz (2022b), the two main
ontology languages that admit polytime-computable fron-
tiers within ELIQ are DL-LiteH and DL-Lite−F , whereas
DL-LiteF itself does not admit finite ELIQ-frontiers. By
Theorem 1 and Lemma 1, we then obtain:

Theorem 2. If an ELIQ q is satisfiable wrt a DL-LiteH or
DL-Lite−F ontology O, then q has a polysize unique charac-
terisation wrt O within ELIQ.

We next introduce split-partners aka dualities (McKenzie
1972; ten Cate and Dalmau 2022). Let σ be a finite signa-
ture, Qσ a class of σ-queries, O a σ-ontology, and Θ ⊆ Qσ

a finite set queries. A set S(Θ) of pointed data instances
(A, a) is called a split-partner for Θ wrt O within Qσ if, for
all q′ ∈ Qσ , we have

O,A |= q′(a) for some (A, a) ∈ S(Θ) iff

q′ ̸|=O q for all q ∈ Θ. (3)

Say that an ontology language L has general split-partners
within Qσ if all finite sets of Qσ-queries have split partners
wrt any L-ontology in σ. If this holds for all singleton sub-
sets of Qσ , we say that L has split-partners within Qσ .

We illustrate the notion of split-partner by a few exam-
ples, the last of which shows that, without the restriction to
a finite signature σ, split-partners almost never exist.
Example 1. (i) Let O be any ontology such that O and A
are satisfiable for all data instances A, say, O = {A ⊑ B}.
Let Qσ be any class of σ-CQs, for some signature σ. Then
the split-partner S⊥ of the query ⊥ wrt O within Qσ is

S⊥ = {Bσ}, for Bσ = {R(a, a) | R ∈ σ}∪{A(a) | A ∈ σ}.

(Here and below we drop a from (A, a) if ind(A) = {a}.)
Clearly, O,Bσ |= q, for any q ∈ Qσ different from ⊥.
(ii) For O = {A ⊓ B ⊑ ⊥} and σ = {A,B}, we have

S⊥ = {{A(a)}, {B(a)}}.
(iii) There does not exist a split-partner for Θ = {A} wrt

the empty ontology O within ELIQ. To show this, observe
that B ̸|=O A for any unary predicate B ̸= A. Hence, as
any data instance A is finite, there is no finite set S({A})
satisfying (3).

In contrast, for frontiers and unique characterisations, re-
strictions to sets of predicates containing all symbols in the
query and ontology do not make any difference. Indeed, let
σ be the signature of O and q. Then, for any class Q of
queries, a set Fq is a frontier for q wrt O within Q iff it is
a frontier for q wrt O within the restriction of Q to σ. The
same holds for unique characterisations E of q wrt O.

The following result is proved (in the appendix) using a
construction from the reduction of ontology-mediated query
answering to constraint satisfaction (Bienvenu et al. 2014).
Theorem 3. ALCHI has general split-partners within
ELIQσ that can be computed in exponential time.

For ELQs, we can construct general split-partners wrt
RDFS ontologies in polynomial time, provided that the num-
ber of input queries is bounded. The proof generalises the
construction of split-partners for queries in ELQ wrt to the
empty ontology in (Fortin et al. 2022; ten Cate et al. 2023).
Theorem 4. Let σ be a signature, O a σ-ontology in RDFS,
and n > 0. For any set Θ ⊆ ELQσ with |Θ| ≤ n, one can
compute in polynomial time a split-partner S(Θ) of Θ wrt
O within ELQσ .

Here is our second sufficient characterisability condition:



Theorem 5. Suppose Q is a class of queries, an ontology O
admits containment reduction, q ∈ Q is satisfiable wrt O,
and σ contains the predicate symbols in q and O. If Sq is a
split-partner for {q} wrt O within Qσ , then ({(q̂, a)},Sq)
is a unique characterisation of q wrt O within Q.

As a consequence of Theorems 3, 4, 5 and Lemma 1, we
obtain the following:

Theorem 6. (i) If q ∈ ELIQσ is satisfiable wrt an ALCHI-
ontology O in a signature σ, then q has a unique character-
isation wrt O within ELIQσ .
(ii) If q ∈ ELQσ and O is an RDFS ontology in σ, then q

has a polysize unique characterisation wrt O within ELQσ .

The sufficient conditions of Theorems 1 and 5 use the
notions of frontier and split-partner, respectively. We now
give examples of queries and ontologies having frontiers but
no split-partners and vice versa. The query witnessing that
frontiers can exist where split-partners do not exist provides
a counterexample even if one admits CQ-frontiers, frontiers
containing not only ELIQs but also CQs and defined in the
obvious way in the appendix.

Theorem 7. EL does not admit finite CQ-frontiers within
ELIQ.

Proof. The query q = A ∧ B does not have a finite CQ-
frontier wrt the ontology O = {A ⊑ ∃R.A, ∃R.A ⊑ A}
within ELIQs.

Example 2. Observe that the following set of pointed data
instances is a split-partner of {q} wrt O from the proof
of Theorem 7 within ELIQ{A,B,R}; here all arrows are as-
sumed to be labelled by R:

a

A

b

A,B

a

B

b

A,B

Theorem 8. There exist a DL-Lite−F ontology O, a query
q and a signature σ such that {q} does not have a finite
split-partner wrt O within ELIQσ .

Proof. Let O = {fun(P ), fun(P−), B ⊓ ∃P− ⊑ ⊥} and
q = A. Then Q = {q} does not have a finite split-partner
wrt O within ELIQ{A,B,P}.

Observe that {⊤} is a frontier for A wrt O from the proof
of Theorem 8 within ELIQ and that we can combine the
two proofs above to also refute the natural conjecture that
frontiers and splittings together provide a ‘universal tool’ for
constructing unique characterisations.

5 Temporal Data and Queries
We now extend the definitions of Sections 3 and 4 by adding
a temporal dimension to the domain data and queries me-
diated by an ontology. Our definitions generalise those
of (Fortin et al. 2022), where the ontology-free case was first
considered.

A temporal data instance, denoted D, is a finite sequence
A0, . . . ,An of data instances, where each Ai comprises
the facts with timestamp i. We assume all ind(Ai) to be

the same, adding ⊤(a) to Ai if needed, and set ind(D) =
ind(A0). The length of D is max(D) = n and the size of D
is |D| =

∑
i≤n |Ai|. Within a temporal σ-data instance, we

often denote by ∅ the instance {⊤(a) | a ∈ ind(D)}.
Temporal queries for accessing temporal data instances

we propose in this paper are built from domain queries in a
given class Q (say, ELIQs) using ∧ and the (future-time)
temporal operators of the standard linear temporal logic
LTL over the time flow (N, <): unary ⃝ (at the next mo-
ment), 3 (sometime later), 3r (now or later), and binary
U (until); see below for the precise semantics. The class
of such temporal queries that only use the operators from a
set Φ ⊆ {⃝,3,3r,U} is denoted by LTLΦ(Q). The class
LTL⃝33r

p (Q) comprises path queries of the form

q = r0 ∧ o1(r1 ∧ o2(r2 ∧ · · · ∧ onrn)), (4)

where oi ∈ {⃝,3,3r} and ri ∈ Q; path queries in
LTLU

p (Q) take the form

q = r0 ∧ (l1 U (r1 ∧ (l2 U (. . . (ln U rn) . . . )))), (5)

where ri ∈ Q and either li ∈ Q or li = ⊥. We use C to
refer to classes of temporal queries. The size |q| of q is the
number of symbols in q; the temporal depth tdp(q) of q is
the maximum number of nested temporal operators in q.

An (atemporal) ontology O and temporal data instance
D = A0, . . . ,An are satisfiable if O and Ai are satisfiable
for each i ≤ n. For satisfiable O and D, the entailment
relation O,D, ℓ, a |= q with ℓ ∈ N and a ∈ ind(D) is
defined by induction as follows, where Aℓ = ∅, for ℓ > n:

O,D, ℓ, a |= q iff O,Aℓ |= q(a), for any q ∈ Q,

O,D, ℓ, a |= q1 ∧ q2 iff O,D, ℓ, a |= qi, for i = 1, 2,

O,D, ℓ, a |= ⃝q iff O,D, ℓ+ 1, a |= q,

O,D, ℓ, a |= 3q iff O,D,m, a |= q, for some m > ℓ,

O,D, ℓ, a |= 3rq iff O,D,m, a |= q, for some m ≥ ℓ,

O,D, ℓ, a |= q1 U q2 iff O,D,m, a |= q2, for some m > ℓ,

and O,D, k, a |= q1, for all k, ℓ < k < m.

If O and D are not satisfiable, we set O,D, ℓ, a |= q to hold
for all q, ℓ and a. Our semantics follows the well estab-
lished epistemic approach to evaluating temporal queries;
see (Calvanese et al. 2007a; Artale et al. 2022) and ref-
erences therein. The alternative classical Tarski semantics
based on temporal interpretations is equivalent to our seman-
tics for all Horn ontologies whose FO-translations belong to
the Horn fragment of first-order logic (Chang and Keisler
1998), and so for all DLs we consider here except ALCHI.
A detailed discussion of the relationship between the two
semantics is given in the appendix.

By an example set we now mean a pair E = (E+, E−)
of finite sets E+ and E− of pointed temporal data instances
D, a with a ∈ ind(D). We say that a query q fits E wrt
O if O,D+, 0, a+ |= q and O,D−, 0, a− ̸|= q, for all
(D+, a+) ∈ E+ and (D−, a−) ∈ E−. As before, E
uniquely characterises q wrt O within a class C of tempo-
ral queries if q fits E wrt O and every q′ ∈ C fitting E wrt
O is equivalent to q wrt O. If each q ∈ C is uniquely charac-
terised by some E wrt O within C′ ⊇ C, we call C uniquely



characterisable wrt O within C′. Let Cn be the set of queries
in C of temporal depth ≤ n. We say that C is polysize char-
acterisable wrt O for bounded temporal depth if there is a
polynomial f such that every q ∈ Cn is characterised by
some E of size ≤ f(n) within Cn, n ∈ N.

Note that 3r ≡ ⃝3rr, so 3 does not add any expressive
power to LTL⃝33r

p (Q) and LTL⃝33r
p (Q) = LTL⃝3r

p (Q);
however, LTL⃝3

p (Q) ⫋ LTL⃝33r
p (Q). We also observe

that our temporal query languages do not admit containment
reduction as, for example, there is no temporal data instance
q̂ for q = ⃝(A∧3B) because it will have to fix the number
of steps between 0 and the moment of time where B holds.

We next prove general theorems lifting unique char-
acterisability from domain queries considered above and
ontology-free LTL queries of (Fortin et al. 2022) to temporal
queries mediated by a DL ontology.

6 Unique Characterisations in LTL⃝33r
p (Q)

The aim of this section is to give a criterion of (polysize)
unique characterisability of temporal queries in the class
LTL⃝33r

p (Q) under certain conditions on the ontology and
on the class Q of domain queries. It will be convenient to
represent queries q of the form (4) as a sequence

q = r0(t0), R1(t0, t1), . . . , Rm(tm−1, tm), rm(tm), (6)

where Ri ∈ {suc, <,≤}, suc(t, t′) stands for t′ = t + 1,
and the ti are variables over the timeline (N, <). We set
var(q) = {t0, . . . , tm}, ignoring the (‘non-answer’) vari-
ables that occur in the ri and are different from the ti.
Example 3. Below are a temporal query q and its represen-
tation of the form (6):

q = ∃P.B ∧ ⃝(∃P.A ∧3A) ;
∃P.B(t0), suc(t0, t1),∃P.A(t1), (t1 < t2), A(t2) (7)

with var(q) = {t0, t1, t2}.
We divide q of the form (6) into blocks qi such that

q = q0R1q1 . . .Rnqn, (8)

where Ri = Ri
1(t

i
0, t

i
1) . . . R

i
ni
(tini−1, t

i
ni
), Ri

j ∈ {<,≤}
and

qi = ri0(s
i
0)suc(si0, s

i
1) . . . suc(siki−1, s

i
ki
)riki

(siki
) (9)

with siki
= ti+1

0 , tini
= si0. If ki = 0, the block qi is called

primitive.
Example 4. The query q from Example 3 has two blocks

q0 = ∃P.B(t0), suc(t0, t1),∃P.A(t1) and q1 = A(t2)

connected by (t1 < t2). It contains one primitive block, q1.
Suppose we are given an ontology O and a class Q of

domain queries. Then a primitive block qi = ri0(s
i
0) with

i > 0 in q of the form (8) is called a lone conjunct wrt O
within Q if ri0 is meet-reducible wrt O within Q in the sense
that there are queries r1, r2 ∈ Q such that r ≡O r1∧r2 and
r ̸≡O ri, for i = 1, 2. Lone conjuncts and their impact on
unique characterisability are illustrated by the next example.

Example 5. The query 3A, which is represented by the se-
quence ⊤(t0), (t0 < t1), A(t1), does not have any lone con-
juncts wrt the empty ontology within ELIQ, but A is a lone
conjunct of 3A wrt O = {A ≡ B ∧ C} within ELIQ.

The query q = 3A is uniquely characterised wrt the
empty ontology within LTL⃝33r

p (ELIQ) by the example
set E = (E+, E−), where E+ contains two temporal data
instances ∅, {A} and ∅, ∅, {A} and E− consists of one in-
stance {A}. However, q = 3A cannot be uniquely charac-
terised wrt O = {A ≡ B ∧ C} within LTL⃝33r

p (ELIQ) as
it cannot be separated from queries of the form

3(B ∧3r(C ∧3r(B ∧3r(C ∧3r(. . . )))))

by a finite example set. Observe also that A is a lone con-
junct in q′ = 3(A∧3rD) wrt O′ = O∪{D ⊑ A} but, for
the simplification q′′ = 3D of q′, we have q′′ ≡O′ q′ and
q′′ does not have any lone conjuncts wrt O′.

Example 5 shows that the notion of lone conjunct depends
on the presentation of the query. To make lone conjuncts se-
mantically meaningful, we introduce a normal form. Given
an ontology O and a query q of the form (8), we say that q
is in normal form wrt O if the following conditions hold:

(n1) ri0 ̸≡O ⊤ if i > 0, and riki
̸≡O ⊤ if either i > 0 or

ki > 0 (thus, of all the first/last r in a block only r00 can
be trivial);

(n2) each Ri is either a single ti0 ≤ ti1 or a sequence of <;

(n3) riki
̸|=O ri+1

0 if qi+1 is primitive and Ri+1 is ≤;

(n4) ri+1
0 ̸|=O riki

if i > 0, qi is primitive and Ri+1 is ≤;

(n5) riki
∧ ri+1

0 is satisfiable wrt O whenever Ri+1 is ≤.

Lemma 3. Let O be an FO-ontology (possibly with =).
Then every query q ∈ LTL⃝33r

p (Q) is equivalent wrt O
to a query in normal form of size at most |q| and of temporal
depth not exceeding tdp(q). This query can be computed in
polynomial time if containment between queries in Q wrt O
is decidable in polynomial time. If Q = ELIQ, this is the
case for DL-LiteF but not for DL-LiteH (unless P = NP).

We call a query q ∈ LTL⃝33r
p (Q) safe wrt O if it is

equivalent wrt O to an LTL⃝33r
p (Q)-query in normal form

that has no lone conjuncts.
We are now in a position to formulate the main result of

this section.

Theorem 9. Suppose an ontology O admits containment re-
duction and Q is a class of domain queries that is uniquely
characterisable wrt O. Then the following hold:
(i) A query q ∈ LTL⃝33r

p (Q) is uniquely characterisable
within LTL⃝33r

p (Q) wrt O iff q is safe wrt O.
(ii) If O admits polysize characterisations within Q,

then those queries that are uniquely characterisable within
LTL⃝33r

p (Q) are actually polysize characterisable within
LTL⃝33r

p (Q).
(iii) The class LTL⃝33r

p (Q) is polysize characterisable
for bounded temporal depth if O admits polysize unique
characterisations within Q.



(iv) The class LTL⃝3
p (Q) is uniquely characterisable. It

is polysize characterisable if O admits polysize unique char-
acterisations within Q.

A detailed proof of Theorem 9 is given in the appendix.
To explain the intuition behind it, we show and discuss the
positive and negative examples that provide the unique char-
acterisation required for (i). Suppose O admits containment
reduction and Q is a class of domain queries with a unique
characterisation ({r̂},Nr) of r ∈ Q wrt O within Q. As-
sume that q ∈ LTL⃝33r

p (Q) in normal form wrt O takes
the form (8) with qi of the form (9). We define an example
set E = (E+, E−) characterising q under the assumption
that q has no lone conjuncts wrt O. Let b be the number of
ocurrencies of ⃝ and 3 in q plus 1. For every block qi of
the form (9), let q̂i be the temporal data instance

q̂i = r̂i0r̂
i
1 . . . r̂

i
ki
.

For any two blocks qi, qi+1 such that riki
∧ri+1

0 is satisfiable
wrt O, we take the temporal data instance

q̂i 1 q̂i+1 = r̂i0 . . . r̂
i
ki−1

̂riki
∧ ri+1

0 r̂i+1
1 . . . r̂i+1

ki+1
.

Now, the set E+ contains the data instances given by
– Db = q̂0∅b . . . q̂i∅bq̂i+1 . . . ∅bq̂n,
– Di = q̂0∅b . . . (q̂i1 q̂i+1) . . . ∅bq̂n, if Ri+1 is ≤ and
– Di = q̂0∅b . . . q̂i∅ni+1 q̂i+1 . . . ∅bq̂n, otherwise.
Here, ∅b is a sequence of b-many ∅ and similarly for ∅ni+1 .
By the definition of r̂ using containment reduction, it fol-
lows that O,D, 0, a |= q, for all D ∈ E+. Intuitively, the
data instances in E+ force any query that is entailed to be di-
vided into blocks in a similar way as q. The set E− contains
all data instances of the form
– D−

i = q̂0∅b . . . q̂i∅ni+1−1q̂i+1 . . . ∅bq̂n, if ni+1 > 1,

– D−
i = q̂0∅b . . . q̂i 1 q̂i+1 . . . ∅bq̂n, if Ri+1 is a single <

and riki
∧ ri+1

0 is satisfiable wrt O,
– the data instances obtained from Db by applying to it ex-

actly once each of the rules (a)–(e) defined below in all
possible ways.

It follows from the assumption that q is in normal form
and the reduced ‘gaps’ between blocks in D−

i that we have
O,D−

i , 0, a ̸|= q for all D−
i . To obtain a unique charcater-

isation, the additional data instances obtained by applying
rules (a)–(e) to Db are crucial. They ‘weaken’ Db by replac-
ing some r̂ by negative examples in Nr or by introducing
big ‘gaps’ between some r̂s. To make our notation more uni-
form, we think of the pointed data instances in Nr as having
the form r̂′, for a suitable CQ r′ (which is not necessarily in
Q). The rules are as follows:
(a) replace some r̂ij with rij ̸≡O ⊤ by an r̂ ∈ Nri

j
, for i, j

such that (i, j) ̸= (0, 0)—that is, the rule is not applied to
r00;

(b) replace some pair r̂ij r̂
i
j+1 within block i by r̂ij∅br̂ij+1;

(c) replace some r̂ij such that rij ̸≡O ⊤ by r̂ij∅br̂ij , where
ki > j > 0—that is, the rule is not applied to rij if it is on
the border of its block;

(d) replace r̂iki
(ki > 0) by r̂∅br̂iki

, for some r̂ ∈ Nri
ki

, or

replace r̂i0 (ki > 0) by r̂i0∅br̂, for some r̂ ∈ Nri
0
;

(e) replace r̂00 with r00 ̸≡O ⊤ by r̂∅br̂00 , for r̂ ∈ Nr0
0
, if

k0 = 0, and by r̂00∅br̂00 if k0 > 0.

The proof that (E+, E−) as defined above uniquely char-
acterises q wrt O if q contains no lone conjuncts is non-
trivial and extends ideas from the ontology-free case in-
vestigated in (Fortin et al. 2022). Claim (ii) follows from
the observation that the unique characterisation constructed
in (i) is polynomial in the size of the characterisations
({r̂},Nr) of the domain queries used in q. For (iii), as-
sume that tdp(q) ≤ n. Then we add to rules (a)–(e) the
following rule: if r̂ is a lone conjunct in q, then replace
r̂ by (r̂1∅b · · · ∅br̂k)n in Db for Nr = {r̂1, . . . , r̂k} with
ri ̸≡O rj , for i ̸= j. As r is meet-reducible wrt O, one can
first show that |Nr| ≥ 2 and then that we obtain a unique
characterisation of q wrt O within the class of queries in
Q of temporal depth ≤ n. To show (iv), one can follow
the proof of (i) without 3r in q but possibly with lone con-
juncts. Now, rules (c), (d), and (e) are not needed in the
construction of E−.

As an immediate consequence of Lemma 1 and Theo-
rems 2, 6 and 9 we obtain:

Theorem 10. (i) For any DL-LiteH or DL-Lite−F ontology
O, the following hold:

(i1) any query q ∈ LTL⃝33r
p (ELIQ) is uniquely charac-

terisable—in fact, polysize characterisable—wrt O within
LTL⃝33r

p (ELIQ) iff q is safe wrt O;
(i2) LTL⃝33r

p (ELIQ) is polysize characterisable wrt O for
bounded temporal depth;

(i3) LTL⃝3
p (ELIQ) is polysize characterisable wrt O.

(ii) Let σ be a signature. Then claims (i1)–(i3) also hold
for ALCHI ontologies provided that ‘polysize’ is replaced
by ‘exponential-size’ and ELIQ by ELIQσ .

7 Unique Characterisations in LTLU
p (Qσ)

We next consider temporalisations by means of the binary
operator U (until), which is more expressive than ⃝ and 3
as ⃝q ≡ ⊥U q and 3q ≡ ⊤U q under the strict semantics.
Compared to the previous section, we now have to restrict
queries to a finite signature because otherwise the implicit
universal quantification in U makes queries such as ⊥ U A
not uniquely characterisable wrt the empty ontology (Fortin
et al. 2022). For the same reason, we also have to disallow
nesting of U on the left-hand side of U in queries. Finally,
in the ontology-free case, polysize unique characterisations
for propositional LTL -queries with U are only available for
the so-called peerless queries (Fortin et al. 2022). These ob-
servations lead to the following classes of temporal queries,
for which we are going to obtain our transfer results.

Let Q be a domain query language and σ a finite signature
of unary and binary predicate symbols. Then Qσ denotes
the set of queries in Q that only use symbols in σ. The class
LTLU

p (Qσ) comprises temporal path queries of the form (5)
where each ri ∈ Qσ and each li is either in Qσ or ⊥ (recall



that q, ri, li have a single answer domain variable x and
that we evaluate q at time point 0). Given an ontology O,
we consider the class LTLU

pp(Qσ) of O-peerless queries in
LTLU

p (Qσ) of the form (5), in which ri ̸|=O li and li ̸|=O ri,
for all i ≤ n. In what follows we write O,D |= q instead of
O,D, 0, a |= q when a is clear from context. We also write
D |= q instead of ∅,D |= q (that is, for the empty ontology).

A fundamental difference to the previous section and The-
orem 9 is that now containment reduction and unique char-
acterisability of domain queries are not sufficient to guar-
antee transfer to the temporal case. Recall that DL-Lite−F
admits polytime computable frontiers but no split-partners.

Theorem 11. There exist a DL-Lite−F ontology O, a signa-
ture σ and a query q ∈ LTLU

pp(ELIQσ) such that q is not
uniquely characterisable wrt O within LTLU

p (ELIQσ).

In fact, one can take O and σ from the proof of Theorem 8
and set q = ⊥UA ≡ ⃝A. Observe that to separate ⃝A from
q′ UA with a σ-ELIQ q′ such that q′ ̸|=O A, one has to add
to E− a temporal σ-data instance D = {⊤(a)},A, {A(a)}
such that O,A |= q′(a) but O,A ̸|= A(a). Such A could
be provided by a finite split-partner for {A} wrt O within
ELIQσ had it existed, but not from a frontier.

We establish the following general transfer theorem, as-
suming containment reduction and split-partners:

Theorem 12. Suppose Q is a class of domain queries,
σ a signature, an ontology language L has general split-
partners within Qσ , and O is a σ-ontology in L admitting
containment reduction. Then the following hold:
(i) Every query q ∈ LTLU

pp(Qσ) is uniquely characteris-
able wrt O within LTLU

p (Qσ).
(ii) If a split-partner for any set Θ, |Θ| ≤ 2, of Qσ

queries wrt O within Qσ is exponential, then there is an
exponential-size unique characterisation of q wrt O.

(iii) If a split-partner of any set Θ as above is polynomial
and a split-partner S⊥ of ⊥(x) within Qσ wrt O is a single-
ton, then there is a polynomial-size unique characterisation
of q wrt O.

The detailed proof of Theorem 12 given in the appendix
is by reduction to the ontology-free LTL case, using a char-
acterisation of (Fortin et al. 2022). Here, we define the ex-
ample set that provides the characterisation for (i). Suppose
a signature σ, a σ-ontology O, and a query q ∈ LTLU

pp(Qσ)
of the form (5) are given. We may assume that rn ̸≡O ⊤.
We obtain the set E+ of positive examples by taking

(p′0) r̂0 . . . r̂n;

(p′1) r̂0 . . . r̂i−1l̂ir̂i . . . r̂n;

(p′2) r̂0 . . . r̂i−1l̂
k
i r̂i . . . r̂j−1l̂j r̂j . . . r̂n, i < j, k = 1, 2.

Here, l̂ki is a sequence of k-many l̂i. The negative examples
E− comprise the following instances D whenever D ̸|= q:

(n′0) A1, . . . ,An and A1, . . . ,An−i,A,An−i+1, . . . ,An,
for (A, a) ∈ S({ri}) and (A1, a), . . . , (An, a) ∈ S⊥;

(n′1) D = r̂0 . . . r̂i−1Ar̂i . . . r̂n, where (A, a) is an ele-
ment of S({li, ri}) ∪ S({li}) ∪ S⊥;

(n′2) for all i and (A, a) ∈ S({li, ri})∪S({li})∪S⊥, some
data instance

Di
A = r̂0 . . . r̂i−1Ar̂il̂

ki+1

i+1 r̂i+1 . . . l̂
kn
n rn,

if any, such that max(Di
A) ≤ (n+ 1)2 and Di

A ̸|= q† for
q† obtained from q by replacing all lj , for j ≤ i, with ⊥.

We have (ii) since (E+, E−) is at most exponential in the
size of split-partners of sets with at most two queries. For
(iii), observe that (n′1) is exponential in |S⊥| iff |S⊥| ≥ 2.

As a consequence of Lemma 1, Theorem 12 (ii) and (iii),
and Theorems 3 and 4 we obtain the following (note that, for
every RDFS ontology, the split partner S⊥ of ⊥ is a single-
ton by Example 1 (i)):
Theorem 13. (i) Each q ∈ LTLU

pp(ELIQσ) is exponential-
size uniquely characterisable wrt any ALCHI ontology in
σ within LTLU

p (ELIQσ).
(ii) Each q ∈ LTLU

pp(ELQσ) is polysize uniquely charac-
terisable wrt any RDFS ontology in σ within LTLU

p (ELQσ).

8 Exact Learnability
We apply the results on unique characterisability obtained
in Section 6 to exact learnability of queries wrt ontologies.
Given a query class C and an ontology O, the learner aims
to identify a target query qT ∈ C by means of membership
queries of the form ‘does O,D, 0, a |= qT hold?’ to the
teacher. We call C polynomial time learnable wrt L ontolo-
gies using membership queries if there is a learning algo-
rithm that given O constructs qT (up to equivalence wrt O)
in time polynomial in the sizes of qT and O. For the weaker
requirement of polynomial query learnability, it suffices that
the total size of the examples given to the oracle be bounded
by a polynomial. We start with making the following obser-
vation, where exponential query learnability is defined in the
expected way.
Theorem 14. Let L be an ontology language and C be
a class of queries which admits effective exponential size
unique characterizations wrt L ontologies. Then, C is ex-
ponential query learnable wrt L ontologies.

Proof. Let qT ∈ C be the target query and O be an L ontol-
ogy. We enumerate all queries in C in increasing size (this
is possible assuming that C has an effective syntax). For
every enumerated q, we compute its unique characterisa-
tion (E+, E−) wrt O and use membership queries to check
whether all examples in E+ are positive examples and all
examples in E− are negative examples. If so, output q.

Our main focus, however, is polynomial time and query
learnability. As the presence of ⊓ and ⊥ in the ontology
language precludes polynomial query learnability already
in the atemporal case, c.f. Theorem 6 in (Funk, Jung, and
Lutz 2022b), we follow their approach and assume that the
learner also receives an initial positive example D, a with D
and O satisfiable. In order to state our main result, we intro-
duce one further natural condition. An ontology language L
admits polynomial time instance checking if given an L on-
tology O, a pointed instance (A, a), and a concept name A,
it is decidable in polynomial time whether O,A |= A(a).



Theorem 15. Let L be an ontology language that contains
only ELHI or only ELIF ontologies and that admits poly-
size frontiers within ELIQ that can be computed. Then:

(i) The safe LTL⃝33r
p (ELIQ) queries are polynomial query

learnable wrt L ontologies using membership queries.
(ii) The class LTL⃝33r

p (ELIQ) is polynomial query learn-
able wrt L ontologies using membership queries if the
learner knows the temporal depth of the target query.

(iii) The class LTL⃝3
p (ELIQ) is polynomial query learn-

able wrt L ontologies using membership queries.

If L further admits polynomial time instance checking and
polynomial time computable frontiers within ELIQ, then in
(ii) and (iii), polynomial query learnability can be re-
placed by polynomial time learnability. If, in addition, meet-
reducibility wrt L ontologies can be decided in polynomial
time, then also in (i) polynomial query learnability can be
replaced by polynomial time learnability.

To achieve the generality of the results independently of
the exact languages, in the proof of Theorem 15 we rely on
the results and techniques from Section 6 and general results
proved in the context of exact learning of (atemporal) ELIQs
wrt ontologies (Funk, Jung, and Lutz 2022a).

Let qT be a target query, O be an ontology, and D, a be a
positive example with D = A0 . . .An and D and O satisfi-
able. The idea is to modify D in a number of steps such that,
in the end, D viewed as temporal query is equivalent to qT .

We describe how to show (i); (ii) and (iii) are slight
modifications thereof. In Step 1, the goal is to find a tempo-
ral data instance D where each Ai is tree-shaped and hence
can be viewed as an ELIQ. This can be done separately for
each time point using membership queries and standard un-
raveling techniques from the atemporal setting (Funk, Jung,
and Lutz 2022a). In Step 2, we exhaustively apply Rules (a)-
(e) from the proof of Theorem 9 to D, as long as D, a re-
mains a positive example. In Step 3, we take care of lone
conjuncts in D (when viewed as a temporal query) – recall
that qT is safe and thus does not have any. For this step, we
rely on a characterisation of meet-reducibility in terms of
minimal frontiers. For computing those, we exploit the fact
that containment of ELIQs wrt ELHI and ELIF ontologies
is decidable (Bienvenu et al. 2016). After Step 3, D (viewed
as query) is already very similar to qT . More precisely,
when representing qT in shape (8) as a sequence of blocks
q0R1q1 . . .Rmqm, then D has the shape D0∅b . . . ∅bDm,
for sufficiently large b, and each qi is isomorphic to Di. So
in Step 4, it remains to identify the precise separators Ri.
They can be a single ≤ or a sequence of <, and the two cases
can be distinguished using suitable membership queries.

In order to show that this entire process terminates after
asking polynomially many membership queries, we lift the
notion of generalisation sequences from (Funk, Jung, and
Lutz 2022a) to the temporal setting. For the sake of conve-
nience, we treat the data instances in the time points as CQs.
A sequence D1, . . . of temporal data instances is a generali-
sation sequence towards qT wrt O if for all i ≥ 1:

• Di+1 is obtained from Di by modifying one non-temporal
CQ rj in Di to r′j such that rj |=O r′j and r′j ̸|=O rj ;

• O,Di, 0, a |= qT for all i ≥ 1.
Intuitively, data instances in generalisation sequences be-
come weaker and weaker, and based on this, we show that
the length of generalisation sequences towards qT wrt O
is bounded by a polynomial in max(D1) and the sizes of
qT ,O. The crucial observation is that the sequences of tem-
poral data instances obtained by rule application are mostly
generalisation sequences towards qT wrt O; thus the steps
terminate in polynomial time. If they are not, we use a dif-
ferent (but usually easier) termination argument.

It remains to note that the sketched algorithm runs in poly-
nomial time when L satisfies all the required criteria.

We finally apply Theorem 15 to concrete ontology lan-
guages, namely DL-Lite−F and DL-LiteH.
Theorem 16. The following learnability results hold:
(i) The class of safe queries in LTL⃝33r

p (ELIQ) is poly-
nomial query learnable wrt DL-LiteH ontologies using
membership queries and polynomial time learnable wrt
DL-Lite−F ontologies using membership queries.

(ii) The class LTL⃝33r
p (ELIQ) is polynomial time learn-

able wrt both DL-Lite−F and DL-LiteH ontologies using
membership queries if the learner knows the temporal
depth of the target query in advance.

(iii) The class LTL⃝3
p (ELIQ) is polynomial time learnable

wrt both DL-Lite−F and DL-LiteH ontologies using mem-
bership queries.
Theorem 16 is a direct consequence of Theorem 15 and

the fact that the considered ontology languages satisfy all
conditions mentioned there. In particular, we show in the
appendix that meet-reducibility of ELIQs wrt DL-Lite−F on-
tologies Turing reduces to ELIQ containment wrt DL-Lite−F
ontologies which is tractable (Bienvenu et al. 2013). The
latter is not true for DL-LiteH which explains the difference
in (i). We leave it for future work whether LTL⃝33r

p (ELIQ)
is polynomial time learnable wrt DL-LiteH ontologies.

9 Outlook
Many interesting and challenging problems remain to be ad-
dressed. We discuss a few of them below.
(1) Is it possible to overcome our ‘negative’ unique charac-

terisability results by admitting some form of infinite (but
finitely presentable) examples? Some results in this direc-
tion without ontologies are obtained in (Sestic 2023).

(2) We have not considered learnability using membership
queries of temporal queries with U. In fact, it remains
completely open how far our characterisability results for
these queries can be exploited to obtain polynomial query
(or time) learnability.

(3) We only considered path queries with no temporal oper-
ator occurring in the scope of a DL operator. This is moti-
vated by the negative results of (Fortin et al. 2022), which
showed that (i) applying ∃P to ⃝3-queries quickly leads
to non-characterisability and that (ii) even without DL-
operators and without ontology, branching 3-queries are
often not uniquely characterisable. We still believe there
is some scope for useful positive characterisability results.
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A Proofs and detailed definitions for
Section 4

Lemma 1. (1) FO without equality admits tractable con-
tainment reduction; in particular, ALCHI admits tractable
containment reduction.

(2) ELIF admits tractable containment reduction.
(3) {≥ 3P ⊑ ⊥} does not admit containment reduction.

Proof. (1) By (Bienvenu et al. 2014, Proposition 5.9), for
any FO-ontology O without =, any CQ q, and any pointed
instances A1, a1 and A2, a2, if there is h : A1 → A2 with
h(a1) = a2, then O,A1 |= q(a1) implies O,A2 |= q(a2).
Let (q̂(x), a) be induced by q(x), i.e., obtained by replacing
the variables in q by distinct constants, with x replaced by
a. Suppose O, q̂ |= q′ and O,A |= q(a) but O,A ̸|= q′(a).
Take a model I witnessing O,A ̸|= q2(a). Then I |= q1(a)
and this is witnessed by a homomorphism h : q1 → I. Take
the image h(q1). Then O, ĥ(q1) ̸|= q2(x) is witnessed by
I, and so O, q̂1 ̸|= q2(x), which is a contradiction.

(2) Let O be a ELIF ontology. Given a CQ q(x), define
an equivalence relation ∼ on var(q) as the transitive closure
of the following relation: y ∼′ z iff there is u ∈ var(q) such
that S(u, y), S(u, z) ∈ q, for a functional S in O. Let q/∼
be obtained by identifying (glueing together) all of the vari-
ables in each equivalence class y/∼. Clearly, q/∼(x/∼) is
a homomorphic image of q(x) and q(x) ≡O q/∼(x/∼).
We define (q̂, a) as the pointed data instance induced by
q/∼(x/∼). Conditions (cr1) and (cr2) are obvious, and (cr3)
follows from the fact that q/∼ |=O q′/∼ iff q/∼ |=O′ q′/∼,
where O′ is obtained from O by omitting all of its function-
ality constraints, which is in the scope of part (1).

(3) Suppose otherwise. Let O = {≥ 3P ⊑ ⊥} and
let q(x) = {P (x, yi), Ai(yi) | i = 1, 2, 3} with a suitable
(q̂, a). As O and the instance induced by q are not satisfiable
and in view of (cr2), q̂ contains at most three individuals,
say, q̂ = {P (a, b), A1(b), A2(b), P (a, c), A3(c)}. But then,
by (cr3), q′(x) = {P (x, y), A1(y), A2(y), P (x, z), A3(z)}
should satisfy q |=O q′, which is not the case as witnessed
by A = {P (a, b), A1(b), P (a, c), A2(c), A3(c)} because
O,A |= q(a) but O,A ̸|= q′(a).

Lemma 2. Suppose O admits containment reduction and
q ∈ Q is satisfiable wrt O, having a unique characterisation
E = (E+, E−) wrt O within Q. Then E′ = ({(q̂, a)}, E−)
is a unique characterisation of q wrt O within Q, too.

Proof. To show that E′ is as required, we first observe that
q fits E′ by (cr1) and (cr3). Suppose q′ ̸≡O q for some
q′ ∈ Q. We show that then either O, q̂ ̸|= q′ or O,D |= q′

for some D ∈ E−. Let q ̸|=O q′. Then O, q̂ ̸|= q′ by
(cr3). Let q |=O q′ and q′ ̸|=O q. Then O,D |= q′ for all
D ∈ E+, and so O,D |= q′, for some D ∈ E−, because E
is a unique characterisation of q wrt O.

Theorem 1. Suppose Q is a class of queries, an ontology
O admits containment reduction, q ∈ Q is satisfiable wrt
O, and Fq is a finite frontier of q wrt O within Q. Then
({(q̂, a)}, {(r̂, a) | r ∈ Fq}) is a unique characterisation
of q wrt O within Q.



Proof. By (cr2), O, q̂ |= q(a). To show O, r̂ ̸|= q(a) for all
r ∈ Fq , we observe that r ̸|=O q by the definition of Fq ,
so r(x) is consistent with O and by (cr3) for r, from which
O, r̂ ̸|= q(a). Thus, q fits E.

Let q′ ∈ Q and q ̸≡O q′. We show that either O, q̂ ̸|= q′

or O, r̂ |= q′ for some r ∈ Fq . If q ̸|=O q′, then, since
O admits containment reduction and q(x) is satisfiable wrt
O, we obtain O, q̂ ̸|= q′ by (cr3). So suppose q |=O q′ and
q′ ̸|=O q. As Fq is a frontier of q wrt O, there is r ∈ Fq

with r |=O q′. If r(x) is unsatisfiable wrt O, then O and r̂
are unsatisfiable by (cr1), and so O, r̂ |= q′. And if r(x) is
satisfiable wrt O, we obtain O, r̂ |= q′(a) by (cr3).

Theorem 3. ALCHI has general split-partners within
ELIQσ that can be computed in exponential time.

Proof. Suppose a finite set Q ⊆ ELIQσ and an ALCHI-
ontology O in the signature σ are given. Let subO,Q be the
closure under single negation of the set of subconcepts of
concepts in Q and O. A type for O is any maximal subset
tp ⊆ subO,Q consistent with O. Let T be the set of all
types for O. Define a σ-data instance A with ind(A) = T ,
A(tp) ∈ A for all concept names A ∈ σ and tp such that
A ∈ tp, and P (tp, tp′) ∈ A for all role names P ∈ σ, tp
and tp′ such that tp and tp′ can be satisfied by the domain
elements of a model of O that are related via P . We consider
an interpretation IA with ∆IA = {ind(A)}, AIA = {tp |
A(tp) ∈ A} for concept names A ∈ σ, AIA = ∅ for A ̸∈ σ,
P IA = {(tp, tp′) | P (tp, tp′) ∈ A} for role names P ∈ σ,
P IA = ∅ for P ̸∈ σ. It can be readily checked that, for any
q ∈ Qσ ,

IA |= O,A, (10)
q ∈ tp iff IA, tp |= q iff O,A |= q(tp). (11)

Let Q = {q1, . . . , qn} and let An be the n-times direct
product of A. Set

S(Q) = {(An, (tp1, . . . , tpn)) | ¬qi ∈ tpi, i = 1, . . . n}.

We prove (3) for an arbitrary q′ ∈ Qσ . For the (⇒) di-
rection, suppose O,An |= q′(t⃗p) for some (An, t⃗p) ∈
S(Q) and t⃗p = (tp1, . . . , tpn). Fix i ∈ {1, . . . , n}. Ob-
serve that the projection map h((tp′

1, . . . , tp′n)) = tp′
i for

(tp′
1, . . . , tp′

n) ∈ T n is a homomorphism from An to A
such that h(t⃗p) = tpi. As in the proof of Lemma 1 (1),
we obtain O,A |= q′(tpi). Recall that ¬qi ∈ tpi. Then,
by (11), we have IA, tpi |= q′, IA, tpi ̸|= qi, and so us-
ing (10) we obtain q′ ̸|=O qi. For the opposite direction,
suppose q′ ̸|=O qi for all 1 ≤ i ≤ n. It follows that, for
each i, there exists tpi ∈ T such that q′,¬qi ∈ tpi. Let
t⃗p = (tp1, . . . , tpn). Clearly, (An, t⃗p) ∈ S(Q) and it re-
mains to show that O,An |= q′(t⃗p). Observe that, for each
tpi, by (11), there exists a homomorphism hi that maps q′

into IA with its root mapped to tpi. By the construction of
IA, the same holds for A in place of IA. Because An is
a direct product, there exists a homomorphism that maps q′

into An with its root mapped to t⃗p. Thus, An |= q′(t⃗p).

We observe that split partners for conjunctions can be ob-
tained from split partners for the conjuncts.

Lemma 4. Let σ be a signature, Qσ be a subset of CQ and
L an arbitrary logic. Let q = q1 ∧ q2 be any CQ and O be
an L-ontology. Then, if S1,S2 are split partners for q1, q2
wrt O within Qσ , then S1 ∪S2 is a split partner for q wrt O
within Qσ .

Proof. Let q′ ∈ Qσ arbitrary.
Suppose first O,A |= q′(a) for some (A, a) ∈ S. Then

O,A |= q′(a) for some (A, a) ∈ Si, for some i ∈ {1, 2}.
Since Si is a split-partner for qi wrt O within Qσ , we have
q′ ̸|=O qi, and thus q′ ̸|=O q.

Suppose now that q′ ̸|=O q. Thus q′ ̸|=O qi, for some
i ∈ {1, 2}. Since Si is a split-partner for qi wrt O within
Qσ , we have O,A |= q′(a) for some (A, a) ∈ Si. Hence,
O,A |= q′(a) for some (A, a) ∈ S.

Theorem 4. Let σ be a signature, O a σ-ontology in RDFS,
and n > 0. For any set Θ ⊆ ELQσ with |Θ| ≤ n, one can
compute in polynomial time a split-partner S(Θ) of Θ wrt
O within ELQσ .

Proof. We prove the statement for n = 1, the generalisation
is straightforward. Let Q = {q}. The construction is by
induction over the depth of q. Assume depth(q) = 0. Due
to Lemma 4, it suffices to consider q = A with A a concept
name. Define a data instance A by taking

A = {B(a) | O ̸|= B ⊑ A,B ∈ σ} ∪
{R(a, b) | O ̸|= ∃R ⊑ A,R ∈ σ} ∪
{B(b), R(b, b) | B,R ∈ σ}

and set S(q) = {(A, a)}. We show that S(q) is as required.
Assume

q′ =

m1∧
i=1

Bi ∧
m2∧
i=1

∃Ri.qi.

If q′ ̸|=O q, then

• O ̸|= Bj ⊑ A for all Bj ;
• O ̸|= ∃Rj ⊑ A for all Rj .

Then O,A |= q′(a), as required.
Conversely, if O,A |= q′(a), then

• for all Bj there exists B(a) ∈ A with O |= B ⊑ Bj .
Then O ̸|= B ⊑ A, and so O ̸|= Bj ⊑ A;

• for all ∃Rj .qj there exists R(a, b) ∈ A with O |= R ⊑
Rj . Then O ̸|= ∃R ⊑ A, and so O ̸|= ∃Rj ⊑ A.

Hence, q′ ̸|=O q, as required.

Assume now that depth(q) = n+1 and that split partners
S(q′) have been defined for queries of depth ≤ n. In view
of Lemma 4 it suffices to consider the case

q = ∃S1.q1,

for an ELIQ q1 of depth ≤ n with split partner S(q1) =
{(A1, a1), . . . , (Ak, ak)}.



Let for all R with O |= R ⊑ S1, IR be the set of j ≤ k
with O,Aj |= A(aj) whenever O |= ∃R− ⊑ A. Define a
data instance A by taking

A = {B(a) | B ∈ σ} ∪
{R(a, b), S(b, b), B(b) | O ̸|= R ⊑ S1, R,B, S ∈ σ} ∪
{R(a, aj) | j ∈ IR, R ∈ σ} ∪
A1(a1) ∪ · · · ∪ Ak(ak).

and set S(q) = {(A, a)}. We show that S(q) is as required.
We show the following claim for arbitrary q′ of the form

q′ =

m1∧
i=1

Bi ∧
m2∧
i=1

∃Ri.q
′
i.

Claim 1. q′ ̸|=O ∃S1.q1 iff O,Ai |= q′(a).

Proof of Caim 1. If q′ ̸|=O ∃S1.q1, then for all ∃Rj .q
′
j with

O |= Rj ⊑ S1 we have

∃R−
j ⊓ q′

j ̸|=O q1.

Take any j. Let CRj
be the conjunction of all A with O |=

∃R−
j ⊑ A. Then

CRj
⊓ q′

j ̸|=O q1.

By the definition of split-partners, there is ℓ with

O,Aℓ |= CRj
⊓ q′

j(aℓ).

It now follows immediately that O,A |= ∃Rj .q
′
j(a). Hence

O,A |= q′(a) follows, as required.
Conversely, assume q′ |=O ∃S1.q1. Then there exists

∃Rj .q
′
j with O |= Rj ⊑ S1 and

∃R−
j ⊓ q′

j |=O q1.

Let again CRj be the conjunction of all A with O |= ∃R−
j ⊑

A. Then
CRj ⊓ q′

j |=O qi.

By the definition of split-partners,

O,Aℓ ̸|= CRj ⊓ q′
j(aℓ).

for all ℓ ≤ k. But then O,A ̸|= ∃Rj .q
′
j(a) and so O,A ̸|=

q′(a), as required.
This finishes the proof of Claim 1 and, in fact, of the The-

orem.

Theorem 5. Suppose Q is a class of queries, an ontology O
admits containment reduction, q ∈ Q is satisfiable wrt O,
and σ contains the predicate symbols in q and O. If Sq is a
split-partner for {q} wrt O within Qσ , then ({(q̂, a)},Sq)
is a unique characterisation of q wrt O within Q.

Proof. Clearly, q fits E as O, q̂ |= q(a) and O,A ̸|= q(a)
for any (A, a) ∈ Sq as otherwise q ̸|=O q. Let q′ ̸≡O q. If
q′ |=O q, then q ̸|=O q′, and so O, q̂ ̸|= q′(a). Hence q′

does not fit E. If q′ ̸|=O q, then there exists (A, a) ∈ Sq

with O,A |= q′(a), and so again q′ does not fit E.

A CQ-frontier for an ELIQ q wrt to an ontology O is a set
Fq of CQs such that

• if q′ |=O q′′, for a CQ q′ ∈ Fq and an ELIQ q′′, then
q |=O q′′ and q′′ ̸|=O q;

• if q |=O q′′ and q′′ ̸|=O q, for an ELIQ q′′, then there
exists q′ ∈ Fq such that q′ |=O q′′.

Clearly standard ELIQ frontiers defined above are also CQ-
frontiers.

Theorem 7. EL does not admit finite CQ-frontiers within
ELIQ.

Proof. We show that the query q = A ∧ B does not have a
finite CQ-frontier wrt the ontology

O = {A ⊑ ∃R.A, ∃R.A ⊑ A}

within ELIQs. Suppose otherwise. Let Fq be such a CQ-
frontier. Consider the ELIQs rn,m = ∃Rn∃R−m

.B with
n > m > 0. Clearly, q ̸|=O rn,m, and so rn,m cannot be
entailed wrt O by any CQ in Fq . Thus, if q′ ∈ Fq and B(x)
is in q′(x), then we cannot have an R-cycle in q′ reachable
from x along an R-path as otherwise we would have q′ |=O
rn,m for suitable n,m.

Consider now the ELIQs qn = B∧∃Rn.⊤, for all n ≥ 1.
Clearly, q |=O qn. As qn ̸|=O q, infinitely many qn are
entailed by some q′ ∈ Fq wrt O. Take such a q′. Since
B(x) ∈ q′ because of q′ |=O qn, no R-cycle is reach-
able from x via an R-path in q′. Note also that no y with
A(y) ∈ q′ can be reached from x along an R-path as oth-
erwise q′ |=O B ∧ ∃Rk.A for some k ≥ 0 and, since
B ∧ ∃Rk.A |=O q by the second axiom in O, we would
have q′ |=O q.

To derive a contradiction, we show now that there is an R-
path of any length n starting at x in q′. Suppose this is not
the case. Let n be the length of a longest R-path starting at
x in q′. We construct a model I of O and q′ refuting qn+l,
for any l ≥ 1. Define I by taking

• ∆I = var(q′) ∪ {d1, d2, . . . }, for fresh di;
• a ∈ BI if B(a) ∈ q′;
• a ∈ AI if there is an R-path in q′ from a to some y with
A(y) ∈ q′ or a = di for some i;

• (a, b) ∈ RI if R(a, b) ∈ q′ or there is an R-path in q′

from a to some y with A(y) ∈ q′ and b = d1, or a = di
and b = di+1.

By the construction and the fact that no y with A(y) ∈ q′

can be reached from x along an r-path, I is a model of O
and q′ refuting qn+l.

Theorem 8. There exist a DL-Lite−F ontology O, a query
q and a signature σ such that {q} does not have a finite
split-partner wrt O within ELIQσ .

Proof. Let O = {fun(P ), fun(P−), B ⊓ ∃P− ⊑ ⊥} and
q = A. We show that Q = {q} does not have a finite split
partner wrt O within ELIQ{A,B,P}. For suppose S(Q) is
such a split-partner. Then there exists (A, a) ∈ S(Q) with
O,A |= B ⊓ ∃Pn.⊤(a) for all sufficiently large n because



B ⊓ ∃Pn.⊤ ̸|=O A. Then A must contain n nodes if O and
A are satisfiable, so S(Q) is infinite.

On the other hand, {⊤} is a frontier for A wrt O within
ELIQ.

The following example shows that even by taking fron-
tiers and splittings together we do not obtain a universal
method for constructing unique characterisations with a sin-
gle positive example.
Example 6. Consider the ELIQ q = A∧B and the ELIF-
ontology O with the following axioms:

A ⊑ ∃R.A, ∃R.A ⊑ A, fun(P ), fun(P−), E⊓∃P− ⊑ ⊥.

It can be shown in the same way as above that q has no
frontier wrt O within ELIQ and that q does not have any
split-partner wrt O within ELIQ{A,B,R,P,E}. However, a
unique characterisation of q wrt O within ELIQ is obtained
by taking E+ = {q̂} and E− the same as in Example 2. (To
show the latter one only has to observe that E− is a split-
partner of q wrt O within ELIQ{A,B,R} and that O, q̂ ̸|= r
for any r containing any of the symbols P or E.)

B Results on Meet-Reducibility
Recall that a query r ∈ Q is called meet-reducible (McKen-
zie 1972) wrt O within Q if there are queries r1, r2 ∈ Q
such that r ≡O r1 ∧ r2 and r ̸≡O ri, i = 1, 2.
Lemma 5. (i) If an ontology O admits frontiers within Q,
then q ∈ Q is meet-reducible wrt O within Q iff |Fq| ≥ 2
provided that q′ ̸|=O q′′, for any distinct q′, q′′ ∈ Fq .
(ii) If an ontology O admits containment reduction within

Q, then, for any meet-reducible q ∈ Q wrt O within Q, we
have |Nq| ≥ 2 for every characterisation of q wrt O within
Q of the form ({q̂},Nq).

Proof. (i, ⇐) Let r1, r2 ∈ Fq be distinct and r = r1 ∧ r2.
If q ̸≡O r, then there is r′ ∈ Fq with r′ |=O r, and so
r′ |=O ri, which is impossible.
(i, ⇒) Suppose q ≡O q1 ∧ q2 and q ̸≡O qi, for i = 1, 2.

Then there are ri ∈ Fq with ri ̸≡O qi. Clearly, r1 and r2
are distinct because otherwise ri |=O q.
(ii) Suppose q ≡O q1 ∧ q2 and q ̸≡O qi, for i = 1, 2.

If Nq = {r̂}, then O, r̂ |= qi, for i = 1, 2, because if
O, r̂ ̸|= qi, then qi would fit ({q̂},Nq), and so would be
equivalent to q wrt O, which is not the case.

Lemma 6. (i) Deciding whether an ELIQ q is meet-
reducible wrt to a DL-Lite−F -ontology is in PTIME.
(ii) Deciding whether an ELIQ q is meet-reducible wrt to

a DL-LiteH-ontology is coNP-complete.

Proof. (i) We first compute a frontier Fq of q in polyno-
mial time (Funk, Jung, and Lutz 2022b). Then we remove
from Fq every q′′ for which there is a different q′ ∈ Fq

with q′ |=O q′′. This can also be done in polynomial time
because ELIQ containment in DL-LiteF is tractable (Bien-
venu et al. 2013). It remains to use Lemma 5 (i) to check if
the resulting set is a singleton.

(ii) Assume O and q are given. For the upper bound,
first compute a frontier Fq of q in polynomial time (Funk,

Jung, and Lutz 2022b). To check that q is meet-reducible
guess queries q1, q2 ∈ Fq and witness models showing that
q1 ̸|=O q2 and q2 ̸|=O q1. For the lower bound, consider the
ontologies O, ABox {A0(a)}, and ELIQ q constructed in
the proof of (Kikot, Kontchakov, and Zakharyaschev 2011,
Theorem 1) for Boolean CNFs. Recall that q has a single
answer variable x, an atom A0(x), and A0 does not oc-
cur elsewhere in q. As shown in that proof, the problem
O, A0(a) |= q(a) is NP-hard. Take a copy O′ of O ob-
tained by replacing each predicate symbol S in O except A0

by a fresh S′. Similarly, take a copy q′ of q. We show that

q ∧ q′ ≡O∪O′ q implies O, A0(a) |= q(a) (12)

(⇒) Suppose O, A0(a) ̸|= q(a), then there exists a model
I ′ of O′ with aI

′ ∈ AI′

0 not satisfying q′ at aI
′
. Let aI

′
=

d. Take the interpretation J that looks like q̂, let its root
be d. From (Kikot, Kontchakov, and Zakharyaschev 2011,
Theorem 1) it follows that there exists I ⊇ J such that I |=
O. Clearly, I |= O′ (because all S′I = ∅). By taking the
union of I and I ′, we obtain an interpretation that satisfies
O ∪ O′, A0(a), satisfies q at d and does not satisfy q′ at d.
It follows q ̸|=O∪O′ q ∧ q′.

Using(12), we now show that q∧q′ is not meet-reducible
w.r.t. O ∪ O′ iff O, A0(a) |= q(a). If q ∧ q′ is not meet-
reducible, then q ∧ q′ ≡O∪O′ q and we are done. For
the opposite direction, suppose O, A0(a) |= q(a). We im-
mediately observe that q ≡O A0(x). It follows then that
q ∧ q′ ≡O∪O′ A0(x). Suppose q1 ∧ q2 ≡O∪O′ q ∧ q′,
for some q1, q2. It follows that q1 ∧ q2 ≡O∪O′ A0(x).
Clearly, some qi contains A0(x) for otherwise we easily get
q1∧q2 ̸|=O∪O′ A0(x) contrary to our assumption. But then
it follows that qi ≡O∪O′ q ∧ q′ and q ∧ q′ is not meet-
reducible.

C Comments for Section 5
We discuss the relationship between the epistemic semantics
used in this article for temporal queries and Tarski seman-
tics based on temporal structures I, which are a sequences
I0, I1, . . . of domain structures Ii as introduced above such
that aIn = aIm , for any individual a and n,m ∈ N. I is a
model of D = A0, . . . ,An if each Ii is a model of Ai, for
i ≤ n; and I is a model of O if each Ii is a model of O, for
i ∈ N. The truth relation I, ℓ, a |= q is then defined in the
obvious way. We write O,D, ℓ, a |=T q if I, ℓ, a |= q, for
every model I of O and D. It is easy to see that |= coincides
with |=T for any Horn ontology O, in particular, all DL-Lite
logics considered here and ELHIF . Thus, the results pre-
sented in this paper also hold under |=T if one considers such
ontologies. In general, however, the two entailment relations
do not coincide: consider the ontology O = {⊤ ⊑ A ⊔ B}
and the data instance D = ∅,A1, ∅,A3 with A1 = {A(a)}
and A3 = {B(a)}. Then O,D, 0, a |=T 3(A ∧ ⃝B) but
O,D, 0, a ̸|= 3(A∧⃝B). We leave an investigation of |=T

in the non-Horn case for future work.

D Proof for Section 6
Lemma 3. Let O be an FO-ontology (possibly with =).
Then every query q ∈ LTL⃝33r

p (Q) is equivalent wrt O



to a query in normal form of size at most |q| and of temporal
depth not exceeding tdp(q). This query can be computed in
polynomial time if containment between queries in Q wrt O
is decidable in polynomial time. If Q = ELIQ, this is the
case for DL-LiteF but not for DL-LiteH (unless P = NP).

Proof. The transformation is straightforward: to ensure
(n1), drop any ri0 and riki

for which (n1) fails and add one <
to the relevant Ri. To ensure (n2), replace any Ri contain-
ing at least one occurrence of < with the sequence obtained
from Ri by dropping all occurrences of ≤ and replace any
Ri not containing any occurrence of < by a single ≤. To
ensure (n3), drop any ri+1

0 with riki
|=O ri+1

0 if qi+1 is
primitive and Ri+1 is ≤. To ensure (n4) drop any riki

with
ri+1
0 |=O riki

if i > 0, qi is primitive and Ri+1 is ≤. Fi-
nally, to ensure (n5), replace Ri+1 by < if riki

∧ ri+1
0 is not

satisfiable wrt O and Ri+1 is ≤.
The second part follows from the fact that query contain-

ment in DL-LiteF is in P and NP-hard in DL-LiteH (Kikot,
Kontchakov, and Zakharyaschev 2011).

Theorem 9. Suppose an ontology O admits containment re-
duction and Q is a class of domain queries that is uniquely
characterisable wrt O. Then the following hold:

(i) A query q ∈ LTL⃝33r
p (Q) is uniquely characterisable

within LTL⃝33r
p (Q) wrt O iff q is safe wrt O.

(ii) If O admits polysize characterisations within Q,
then those queries that are uniquely characterisable within
LTL⃝33r

p (Q) are actually polysize characterisable within
LTL⃝33r

p (Q).
(iii) The class LTL⃝33r

p (Q) is polysize characterisable
for bounded temporal depth if O admits polysize unique
characterisations within Q.
(iv) The class LTL⃝3

p (Q) is uniquely characterisable. It
is polysize characterisable if O admits polysize unique char-
acterisations within Q.

To prove Theorem 9 we first provide some notation for
talking about the entailment relation O,D |= q. Let D =
A0, . . . ,An, a ∈ ind(D), and let q take the form (6). A map
h : var(q) → [0,max(D)] is called a root O-homomorphism
from q to (D, a) if h(t0) = 0, O,Ah(t) |= r(a) if r(t) ∈ q,
h(t′) = h(t) + 1 if suc(t, t′) ∈ q, and h(t)Rh(t′) if
R(t, t′) ∈ q for R ∈ {<,≤}. It is readily seen that
O,D, a, 0 |= q iff there exists a root O-homomorphism
from q to (D, a).

Let b ≥ 1. The instance D is said to be b-normal wrt O if
it takes the form

D = D0∅bD1 . . . ∅bDn, where Di = Ai
0 . . .Ai

ki
, (13)

with b > ki ≥ 0 and Ai
0 ̸≡O ∅ if i > 0, and Ai

ki
̸≡O ∅ if

i > 0 or ki > 0 (thus, of all the first/last A in a Di only A0
0

can be trivial). Following the terminology for queries, we
call each Di a block of D. For a block Di in D, we denote by
I(Di) the subset of [0,max(D)] occupied by Di. Then we
call a root O-homomorphism h : q → D block surjective if
every j ∈ I(Di) with a block Di is in the range ran(h) of h.
We next aim to state that after ‘weakening’ the non-temporal

data instances in blocks, no root O-homomorphism from q
to D exists. This is only required if the non-temporal data
instances are obtained from queries in Q, and so we express
‘weakening’ for characterisations ({ŝ},Ns) of queries s in
Q wrt O.

In detail, suppose Ai
j = ŝij , for queries sij ∈ Q. Given

s ∈ Q, take the characterisation ({ŝ},Ns) of s wrt O within
Q, where {ŝ} is the only positive data instance, and Ns is
the set of negative data instances. To make our notation more
uniform, we think of the pointed data instances in Ns as hav-
ing the form ŝ′, for a suitable CQ s′ (which is not necessarily
in Q).

For ℓ ∈ ran(h), let

rℓ =
∧

r(t)∈q,h(t)=ℓ

r.

Then h is called data surjective if O, ŝ ̸|= rℓ(a), for any
s ∈ Nsi

j
and any ℓ ∈ ran(h) such that sij ̸≡ ⊤, where ŝij is

the data instance placed at ℓ in D.
We call the root O-homomorphism h : q → D a root

O-isomorphism if it is data surjective and, for the blocks
q0, . . . , qm of q, we have n = m and h restricted to
var(qi) is a bijection onto I(Di) for all i ≤ n (in partic-
ular, h is block surjective). Intuitively, if we have a root
O-isomorphism h : q → D, then q is almost the same as D
except for differences between the sequences Ri in q and
the gaps between blocks in D.

Let Q, O, q, and D be as before with D of the form (13),
where Ai

j = ŝij , for sij ∈ Q. The following rules will be
used to define the negative examples in the unique charac-
terisation of q and as steps in the learning algorithm. They
are applied to D:

(a) replace some ŝij with sij ̸≡O ⊤ by an ŝ ∈ Nsi
j
, for i, j

such that (i, j) ̸= (0, 0)—that is, the rule is not applied to
s00;

(b) replace some pair ŝij ŝ
i
j+1 within block i by ŝij∅bŝij+1;

(c) replace some ŝij with sij ̸≡O ⊤ by ŝij∅bŝij , where ki >

j > 0—that is, the rule is not applied to sij if it is on the
border of its block;

(d) replace ŝiki
(ki > 0) by ŝ∅bŝiki

, for some ŝ ∈ Nsi
ki

, or

replace ŝi0 (ki > 0) by ŝi0∅bŝ, for some ŝ ∈ Nsi
0
;

(e) replace ŝ00 with s00 ̸≡O ⊤ by ŝ∅bŝ00, for ŝ ∈ Ns0
0
, if

k0 = 0, and by ŝ00∅bŝ00 if k0 > 0.
If ki = 0, i > 0, and si0 is meet-reducible wrt O within Q,
then we say that si0 is a lone conjunct wrt O within Q in D.
Lemma 7. Assume Q,O, and q are as above. Let b exceed
the number of 3 and ⃝ in q, let q be in normal form, and
let D be b-normal without lone conjuncts wrt O within Q.
If O,D |= q but O,D′ ̸|= q, for any D′ obtained from
D by applying any of the rules (a)–(e), then any root O-
homomorphim h : q → D is a root O-isomorphism.

Proof. We assume that q is constructed using rij ∈ Q and
D is constructed using sij ∈ Q. Let O,D |= q. Take a root
O-homomorphism h : q → D.



Suppose first that h is not block surjective. Since h(0) =
0, we find i, j with (i, j) ̸= (0, 0) such that the time point
of ŝij is not in the range of h. If ŝij is not on the border of
its block, that is 0 < j < ki, then we obtain from h a root
O-homomorphism into the data instance D′ obtained from
D by rule (b) and have derived a contradiction. If 0 = j or
ki = j, then we obtain from h a root O-homomorphism into
the data instance D′ obtained from D by rule (a) applied to
sij and have derived a contradiction.

Assume next that h is block surjective but not data surjec-
tive. Then we find ℓ ∈ ran(h) with ŝij such that sij ̸≡O ⊤
placed at ℓ such that O, ŝ |= rℓ(a) for some s ∈ Nsi

j
. But

then h is a root O-homomorphism into the data instance D′

obtained from D by applying rule (a) to sij , that is, replacing
ŝij by ŝ with s ∈ Nsi

j
.

Suppose now that h : q → D is a block and data sur-
jective, (t ≤ t′) ∈ q and h(t) = h(t′) = ℓ lies in the
ith block of D. Then h−1(ℓ) = {t1, . . . , tk} with k ≥ 2
and (tj ≤ tj+1) ∈ q, 1 ≤ j < k. Let r1, . . . , rk be
the queries with rj(tj) in q. As q satisfies (n1) and (n2),
there is j with rj ̸≡O ⊤. Hence, sij0 ̸≡O ⊤ for the
query sij0 with ŝij0 at ℓ in D. Moreover, by data surjectivity,
r1 ∧O · · · ∧O rk ≡O sij0 . Consider possible locations of j0
in its block.

Case 1: j0 has both a left and a right neighbour in its
block. Then there is D′ obtained by (c)—i.e., by replacing
ŝij0 with ŝij0∅

bŝij0—and a root O-homomorphism h′ : q →
D′, which ‘coincides’ with h except that h′(t1) is the point
with the first ŝij0 and h′(tj), for j = 2, . . . , k, is the point
with the second ŝij0 .

Case 2: j0 has no neighbours in its block and i ̸= 0, so
this block is primitive and sij0 is not equivalent to a conjunc-
tion of queries as D has no lone conjuncts by our assump-
tion. Observe that the blocks of t1, . . . , tk are all different
and primitive. As sij0 is not equivalent to a conjunction of
queries, we have

r1 ≡O · · · ≡O rk ≡O sij0 .

However, rj ̸≡O rj+1 by (n3) and (n4). Thus, Case 2 can-
not happen.

Case 3: j0 has a left neighbour in its block but no right
neighbour. Then r1 ̸|=O r2 in view of (n3), and so r1 ̸|=O
sij0 . As sij0 |=O r1, there is ŝ ∈ Nsi

j0
with O, ŝ ̸|=O r1. Let

D′ be obtained by the first part of (d) by replacing ŝij0 with
ŝ∅bŝij0 . Then there is a root O-homomorphism h′ : q → D′

that sends t1 to the point of s and the remaining tj to the
point of sij0 .

Case 4: j0 has a right neighbour in its block, i ̸= 0, and
it has no left neighbour. This case is dual to Case 3 and we
use the second part of (d).

Case 5: i = 0 and j0 = 0. If block 0 is primitive, then all
of the ri(ti) are primitive blocks in q. By (n3), r1 ̸|=O r2,
and so r1 ̸|=O sij0 . Take ŝ ∈ Nsi

j0
. By the first part of (e),

we have D′ obtained by replacing ŝ00 with ŝ∅bŝ00. Then there
is a root O-homomorphism h′ : q → D′ that sends t1 to the
point of s and the remaining tj to the point of s00.

Finally, if block 0 is not primitive, the second part of (e)
gives D′ by replacing ŝ00 in D with ŝ00∅bŝ00. We obtain a root
O-homomorphism from q to D′ by sending t1 to the first ŝ00
and the remaining tj to the second ŝ00.

We can now prove Theorem 9. Suppose an ontology O
admits characterisations ({ŝ},Ns) of queries s wrt O within
a class of domain queries Q. Let q ∈ LTL⃝33r

p (Q) in nor-
mal form wrt O take the form (8) with qi of the form (9).
We define an example set E = (E+, E−) characterising q
under the assumption that q has no lone conjuncts wrt O.
Let b be the number of ⃝ and 3 in q plus 1. For every block
qi of the form (9), let q̂i be the temporal data instance

q̂i = r̂i0r̂
i
1 . . . r̂

i
ki
.

For any two blocks qi, qi+1 such that riki
∧ri+1

0 is satisfiable
wrt O, we take the temporal data instance

q̂i 1 q̂i+1 = r̂i0 . . . r̂
i
ki−1

̂riki
∧ ri+1

0 r̂i+1
1 . . . r̂i+1

ki+1
.

Now, the set E+ contains the data instances given by
– Db = q̂0∅b . . . q̂i∅bq̂i+1 . . . ∅bq̂n,
– Di = q̂0∅b . . . (q̂i1 q̂i+1) . . . ∅bq̂n if Ri+1 is ≤,
– Di = q̂0∅b . . . q̂i∅ni+1 q̂i+1 . . . ∅bq̂n otherwise.
Here, ∅b is a sequence of b-many ∅ and similarly for ∅ni+1 .
The set E− contains all data instances of the form
– D−

i = q̂0∅b . . . q̂i∅ni+1−1q̂i+1 . . . ∅bq̂n if ni+1 > 1,

– D−
i = q̂0∅b . . . q̂i 1 q̂i+1 . . . ∅bq̂n if Ri+1 is a single <

and riki
∧ ri+1

0 is satisfiable wrt O,
– the data instances obtained from Db by applying to it each

of the rules (a)–(e) in all possible ways exactly once.
We show that E characterises q. Clearly, O,D |= q for all
D ∈ E+. To establish O,D ̸|= q for D ∈ E−, we need the
following:

Claim 1. (i) There is only one root O-homomorphism
h : q → Db, and it maps isomorphically each var(qi) onto
I(q̂i).
(ii) O,D−

i ̸|= q, for any Ri different from ≤.
(iii) If D′

b is obtained from Db by replacing some q̂i with
q̂′
i such that O, q̂′

i, ℓ ̸|= qi for any ℓ ≤ max(q̂′
i), then

O,D′
b ̸|= q. In particular, O,D ̸|= q, for all D ∈ E−.

Proof of claim. (i) Let h be a root O-homomorphism. As
q is in normal form and the gaps between q̂i and q̂i+1 are
not shorter than any block in q, every var(qi), where qi is a
block in q, is mapped by h to a single I(q̂j), where q̂j is a
block of Db. Hence we can define a function f : [0, n] →
[0, n] by setting f(i) = j if f(var(qi)) ⊆ I(q̂j). Ob-
serve that f(0) = 0 and i < j implies f(i) ≤ f(j). It
also follows from the definition of the normal form that if
f(i) = i, then h isomorphically maps var(qi) onto I(q̂i)
and f(i − 1) < i and f(i + 1) > i (observe that here
(n3) and (n4) are required as they prohibit that var(qi) and
var(qi+1) are merged if Ri+1 =≤ and var(qi) or var(qi+1)
are a singleton). It remains to show that f(i) = i for all i.

We first observe that f(1) ≥ 1 and f(j) = j, for
j = max{i | f(i) ≥ i}, from which again f(j − 1) < j



and f(j + 1) > j. Then we can proceed in the same way
inductively by considering h and f restricted to the smaller
intervals [j, n] and [0, j].

(ii) Suppose Ri is not ≤ but there is a root O-
homomorphism h : q → D−

i . Consider the location of
h(si0) = ℓ. One can show similarly to (i) that ℓ ∈ I(q̂j)

for some j ≥ i. Since ri+1
ki+1

̸≡O ⊤ and by the construction
of D−

i , h(si+1
0 ) lies in some I(q̂j) with j > i+ 1. But then

there is a root O-homomorphism h′ : q → Db different from
the one in (i), which is impossible.

(iii) is proved analogously. This completes the proof of
the claim.

Now assume that q′ ∈ Q in normal form is given and
q′ ̸≡O q. We have to show that q′ does not fit E. If O,Db ̸|=
q′, we are done as Db ∈ E+. Otherwise, let h be a root
O-homomorphism witnessing O,Db |= q′. If h is not a
root O-isomorphism, then by Lemma 7, there exists a data
instance D obtained from Db by applying one of the rules
(a)–(e) such that O,D |= q′. As D ∈ E−, we are done.

So suppose h : q′ → Db is a root O-isomorphism. Then
the difference between q′ and q can only be in the sequences
of 3 and 3r between blocks. To be more precise, q is of the
form (8),

q′ = q0R′
1q1 . . .R′

nqn (14)

and Ri ̸= R′
i for some i. Four cases are possible:

– Ri = (r0 ≤ r1) and R′
i = (s0 < s1) . . . (sl−1 < sl), for

l ≥ 1. In this case, O,Di ̸|= q′, for Di ∈ E+.

– Ri = (r0 < r1) . . . (rk−1 < rk), R′
i = (s0 < s1) . . .

(sl−1 < sl), for l > k. Then again O,Di ̸|= q′.

– Ri = (r0 < r1) . . . (rk−1 < rk), R′
i = (s0 ≤ s1),

for k ≥ 1. In this case O,D−
i |= q′, for D−

i ∈ E−.
(Note that the compatibility condition is satisfied as q′ is
in normal form.)

– Ri = (r0 < r1) . . . (rk−1 < rk) and R′
i = (s0 < s1) . . .

(sl−1 < sl), for l < k. Then again O,D−
i |= q′.

We now show the converse direction in Theorem 9 (i).
Suppose q in normal form (8) does contain a lone conjunct
qi = r wrt O within Q. Let r− be the last query of the
block qi−1 and let r+ be the first query of the block qi+1.

Now let r ≡O r1 ∧ r2 and ri ̸|=O r, i = 1, 2. Observe
that, for s ∈ {r−, r+},

• s ∧ ri is satifiable wrt O if r− ∧ r is satisfiable wrt O;

• if s ̸|=O r, then s ̸|=O r1 or s ̸|=O r2.

Hence one of the queries s′1 or s′′1 below is in normal form:

s′1 = q0R1 . . .Ris1(≤)s2Ri+1 . . .Rnqn,

s′2 = q0R1 . . .Ris1(≤)s2(≤)s1Ri+1 . . .Rnqn,

where {s1, s2} = {r1, r2}. Pick one of s′1 and s′2, which
is in normal form, and denote it by s′1. For n ≥ 2, let s′n
be the query obtained from s′1 by duplicating n times the
part s1(≤)s2 in s′1 and inserting ≤ between the copies. It is
readily seen that s′n is in normal form. Clearly, q |=O s′n

and, similarly to the proof of Claim 1, one can show that
s′n ̸|=O q, for any n ≥ 1.

Suppose E = (E+, E−) characterises q and n =
max{max(D) | D ∈ E−} + 1. Then there exists D ∈ E−

with O,D |= s′n, so we have a root O-homomorphism
h : s′n → D. By the pigeonhole principle, h maps some
variables of the queries s1, s2 in s′n to the same point in
D. But then h can be readily modified to obtain a root O-
homomorphism h′ : q → D, which is a contradiction. This
finishes the proof of (i).

(ii) follows from the proof of (i) as (E+, E−) is of poly-
nomial size if the characterisations ({ŝ},Ns) of the domain
queries s wrt O within Q are of polynomial size.

(iii) We aim to characterise q in normal form (8), which
may contain lone conjuncts wrt O within Q in the class of
queries from LTL⃝33r

p (Q) of temporal depth at most n =
tdp(q). We first observe a variation of Lemma 7. Extend the
rules (a)–(e) by the following rule: if ŝ is a block in D with
s a lone conjunct in D, then let Nq = {s1, . . . , sk} with
si ̸≡O sj , for i ̸= j, and

(fn) replace s with (s1∅b · · · ∅bsk)n.

By Lemma 5 (ii), |Nq| ≥ 2. Now Lemma 7 still holds if we
admit lone conjuncts in D but only consider q with at most
n blocks and add rule (fn) to (a)–(e). To see this, one only
has to modify the argument for Case 2 in a straightforward
way. With the above modification of Lemma 7, we continue
as follows. The set E+ of positive examples is defined as be-
fore. The set E− of negative examples is defined by adding
to the set E− defined under (i) the results of applying (fn)
to Db in all possible ways exactly once.

For the proof that (E+, E−) characterises q within the
class of queries of temporal depth at most n, observe that
O,D′ ̸|= q for the data instance D′ obtained from Db by
applying (fn).

(iv) Assume q ∈ LTL⃝3
p (Q) is given. The proof of (i)

shows that (E+, E−), defined in the same way as in (i),
characterises q wrt O within LTL⃝3

p (Q) even if q contains
lone conjuncts: the proof of Lemma 7 becomes much sim-
pler as any block and type surjective root O-homomorphism
h is now a root O-isomorphism. Note that therefore rules
(c), (d), and (e) are not needed. This completes the proof of
Theorem 9.

E Proofs for Section 7
Theorem 12. Suppose Q is a class of domain queries,
σ a signature, an ontology language L has general split-
partners within Qσ , and O is a σ-ontology in L admitting
containment reduction. Then the following hold:

(i) Every query q ∈ LTLU
pp(Qσ) is uniquely characteris-

able wrt O within LTLU
p (Qσ).

(ii) If a split-partner for any set Θ, |Θ| ≤ 2, of Qσ

queries wrt O within Qσ is exponential, then there is an
exponential-size unique characterisation of q wrt O.

(iii) If a split-partner of any set Θ as above is polynomial
and a split-partner S⊥ of ⊥(x) within Qσ wrt O is a single-



ton, then there is a polynomial-size unique characterisation
of q wrt O.

The proof is by reduction to the ontology-free proposi-
tional LTL case. Namely, we require the following result
proved in (Fortin et al. 2022), where P is the class of propo-
sitional queries (conjunctions of unary atoms:

Theorem 17 (Fortin et al. 2022). LTLU
pp(Pσ) is polysize

characterisable within LTLU
p (Pσ) wrt the empty ontology,

with the characterisation defined below:
Let s ∈ Pσ ∪ {⊥}. We treat each such s ̸= ⊥ as a set

of its conjuncts and define s̄ = {A(a) | A(x) ∈ s}. For
s = ⊥, we set s̄ = ε, where ε is the empty word in the
sense that εD = D, for any data instance D, and εε =
ε. Consider q ∈ LTLU

pp(Pσ) of the form (5). Then q is
uniquely characterised within LTLU

p (Pσ) by the example set
E = (E+, E−), where E+ contains all data instances of
the following forms:

(p0) r̄0 . . . r̄n,
(p1) r̄0 . . . r̄i−1l̄ir̄i . . . r̄n,
(p2) r̄0 . . . r̄i−1l̄

k
i r̄i . . . r̄j−1l̄j r̄j . . . r̄n, for i < j, and k =

1, 2 (where l̄ki is a sequence of k-many l̄i);

and E− contains all instances D with D ̸|= q of the forms:

(n0) σ̄n and σ̄n−iσ \ {A}σ̄i, for A(x) ∈ ri (here, the
whole σ is regarded as a query),

(n1) r̄0 . . . r̄i−1σ \Xr̄i . . . r̄n, for X = {A,B} with
A(x) ∈ li, B(x) ∈ ri, X = ∅, and X = {A} with
A(x) ∈ li,

(n2) for all i and A(x) ∈ li ∪ {⊥(x)}, some data instance

Di
A = r̄0 . . . r̄i−1(σ \ {A})r̄il̄ki+1

i+1 . . . l̄kn
n r̄n, (15)

if any, such that max(Di
A) ≤ (n + 1)2 and Di

A ̸|= q† for
q† obtained from q by replacing lj , for all j ≤ i, with ⊥.
(Note that Di

A ̸|= q for peerless q.)

Returning to the proof of Theorem 12, assume a signature
σ, an ontology O in σ admitting containment reduction and
general split-partners within Qσ , and a q ∈ LTLU

pp(Qσ) of
the form (5) are given. We may assume that rn ̸≡O ⊤.
We obtain the set E+ of positive examples by taking the
following data instances:

(p′0) r̂0 . . . r̂n,

(p′1) r̂0 . . . r̂i−1l̂ir̂i . . . r̂n = Di
q ,

(p2)
′ r̂0 . . . r̂i−1l̂

k
i r̂i . . . r̂j−1l̂j r̂j . . . r̂n = Dj

i,k, for i < j
and k = 1, 2.

We obtain the set E− of negative examples by taking the
following data instances D whenever D ̸|= q:

(n′0) A1, . . . ,An and A1, . . . ,An−i,A,An−i+1, . . . ,An,
for (A, a) ∈ S({ri}) and (A1, a), . . . , (An, a) ∈ S⊥;

(n′1) r̂0 . . . r̂i−1Ar̂i . . . r̂n, where (A, a) ∈ S({li, ri}) ∪
S({li}) ∪ S⊥;

(n′2) for all i and (A, a) ∈ S({li, ri})∪S({li})∪S⊥, some
data instance

Di
A = r̂0 . . . r̂i−1Ar̂il̂

ki+1

i+1 r̂i+1 . . . l̂
kn
n rn,

if any, such that max(Di
A) ≤ (n+ 1)2 and Di

A ̸|= q† for
q† obtained from q by replacing all lj , for j ≤ i, with ⊥.

We show now that q is uniquely characterised by the
constructed example set E = (E+, E−) wrt O within
LTLU

p (Qσ). Consider any query

q′ = r′0 ∧ (l′1 U (r′1 ∧ (l′2 U (. . . (l′m U r′m) . . . ))))

in LTLU
p (Qσ) such that q′ ̸≡O q. We can again assume that

r′m ̸≡O ⊤. Thus, in what follows we can safely ignore what
the ontology O entails after the timepoint maxD, for any
database D, as these points do not contribute to entailment
of q or q′. In order to show that q fits E and q′ does not fit
E, we need a few definitions.

We define a map f that reduces the 2D case to the 1D
case. Consider the alphabet

Γ = {r0, . . . , rn, l1, . . . , ln, r′0, . . . , rm, l′1, . . . , l
′
m, }\{⊥},

in which we regard the CQs ri, li, r
′
j , l

′
j as symbols. Let

Γ̂ = {(â, a) | a ∈ Γ}, that is, Γ̂ consists of the pointed
databases corresponding to the CQs a ∈ Γ. For any CQ a,
we set

f(a) = {b(x) | b ∈ Γ and O, â |= b(a)}.

Similarly, for any pointed data instance (A, a), we set

f(A, a) = {b(x) | b ∈ Γ and O,A |= b(a)}

and, for any temporal data instance D = A0, . . . ,Ak with a
point a, set

f(D, a) = (f(A0, a), . . . , f(Ak, a)),

which is a temporal data instance over the signature Γ. Fi-
nally, we define an LTLU

p (PΓ)-query

f(q) = ρ0 ∧ (λ1 U (ρ1 ∧ (λ2 U (. . . (λn U ρn) . . . ))))

by taking ρi = f(ri) and λi = f(li), and similarly for q′.
It follows immediately from the definition that, for any data
instance D, we have O,D |= q iff f(D, a) |= f(q) and
O,D |= f(q′) iff f(D, a) |= f(q′).

We first observe that f(q) is a peerless LTLU
p (PΓ)-query:

indeed, since O, r̂i ̸|= li(a), we have li ∈ f(li) \ f(ri), and
since O, l̂i ̸|= ri(a), we have ri ∈ f(ri) \ f(li). It follows
that f(q) ̸≡ f(q′)

Let Eprop = (E+
prop, E

−
prop) be the example set defined for

f(q) using (p0)–(p2) and (n0)–(n2). By Theorem 17, f(q)
fits Eprop and f(q′) does not fit Eprop.

A satisfying root O-homomorphism for any query

r0 ∧ (l1 U (r1 ∧ (l2 U (. . . (ln U rn) . . . ))))

in D, a = (A0, a) . . . , (Ak, a) is a map h from {0, . . . , n}
to N such that h(0) = 0 and h(i) < h(i+ 1) for i < n and
• O,Af(i) |= ri(a);



• O,Ai′ |= li(a) for all i′ ∈ (f(i), f(i+ 1)).

Clearly, such a root O-homomorphism exists iff the query
is satisfied in D, a. If the query is in LTLU

p (Pσ) and O is
empty, then we call the homomorphism above a satisfying
homomorphism.

We are now in a position to show that q fits E but q′ does
not fit E. It is immediate from the definitions that q fits E.
So we show that q′ does not fit E.

Assume first that f(q′) is not entailed by some example
in E+

p . Then q′ is not entailed by some example in E+ as
the examples from (p0)–(p2) are exactly the f -images of the
examples (p′0)–(p

′
2).

Assume now that f(q′) is entailed by all data instances in
E+

prop and is also entailed by some D from E−
prop. We show

that then there is a data instance in E− that entails q′ under
O.

If D = Γn, then it follows that the temporal depth of
f(q′) is less than the temporal depth of f(q). Then m < n
and the query q′ is entailed by some A1, . . . ,An ∈ E− with
(Ai, a) ∈ S⊥: we obtain Ai by taking (Ai, a) ∈ S⊥ such
that O,Ai |= r′i(a).

Suppose D = Γn−i(Γ \ {a})Γi |= f(q′). Observe that
the only satisfying homomorphim that witnesses this is the
identity mapping. So we have f(rn−i) ̸⊆ Γ \ {a} and
therefore O, r̂n−i |= a(a) but f(r′n−i) ⊆ Γ \ {a}. Then
O, r̂′n−i ̸|= a(a), and so r′n−i ̸|=O ri. Therefore, there is
(A, a) ∈ S({rn−i}) such that O,A |= r′n−i(a). Observe
that also O,A ̸|= rn−i(a).

Now take, for any j ̸= n − i, some (Aj , a) ∈ S⊥ with
O,Aj |= r′j . Then

O,A0 · · · An−i−1AAn−i+1 · · · An ̸|= q,

O,A0 · · · An−i−1AAn−i+1 · · · An ̸|= q′.

Assume next that D is from (n1). We have D |= f(q′)
and D ̸|= f(q). As D |= f(q′), we have a satisfying homo-
morphism h for f(q′) in D.

If there is j such that h(j) = i, then let r = rj . Other-
wise, there is j such that h(j) < i < h(j + 1). Then let
r = lj . In both cases f(r) ⊆ Y , where Y depends on D
and is either:

1. Γ \ {a, b} with O, l̂i |= a(a) and O, r̂i |= b(a) or

2. Γ \ {a} with O, l̂i |= a(a) or

3. Γ (only if li = ⊥) or

4. Γ \ {b}.

Case 1. We have O, r̂ ̸|= a(a) and O, r̂ ̸|= b(a). Hence
O, r̂ ̸|= li(a) and O, r̂ ̸|= ri(a). By the definition of
split-partners, there exists (A, a) ∈ S({li, ri}) such that
O,A |= r(a). But then h is also a satisfying root O-
homomorphism in D′, a witnessing that q′ is entailed by
D′ = r̂0 . . . r̂i−1Ar̂ir̂i+1 . . . rn wrt O.

It remains to show that O,D′ ̸|= q. Assume other-
wise. Take a satisfying root O-homomorphism h∗ witness-
ing O,D′ |= q. By peerlessness of q, h∗(j) = j for all
j < i. But then O,A |= li or O,A |= ri which both con-
tradict to (A, a) ∈ S({li, ri}).

Case 2. We have O, r̂ ̸|= a(a). Hence O, r̂ ̸|= li(a). We
now distinguish two cases. If also O, r̂ ̸|= ri(a), then we
proceed as in the previous case and choose a split-partner
(A, a) ∈ S({li, ri}) such that O,A |= r(a). We proceed as
in Case 1.

If O, r̂ |= ri(a), then we proceed as follows.
Choose a split-partner (A, a) ∈ S({li}) such that
O,A |= r(a). Then h is also a satisfying root O-
homomorphism in D′, a witnessing that q′ is entailed by
D′ = r̂0 . . . r̂i−1Ar̂ir̂i+1 . . . rn wrt O.

It remains to show that O,D′ ̸|= q. Assume otherwise.
Take a satisfying root O-homomorphism h∗ in D′, a wit-
nessing D′ |= q. By peerlessness of q, h∗(j) = j for all
j < i. Then h∗(i) = i as O,A |= li would contradict
(A, a) ∈ S({li}). But then h∗ is a satisfying homomor-
phism in D, a witnessing D |= f(q) and we have derived a
contradiction.

Case 3. We set D′ = r̂0 . . . r̂i−1Ar̂il̂
ki+1

i+1 r̂i+1 . . . l̂
kn
n rn

for some (A, a) ∈ S⊥ with O,A |= r′i. It directly follows
from D |= f(q′) that O,D′ |= q′ and also from D ̸|= f(q)
that O,D′ ̸|= q.

Case 4. We have O, r̂ ̸|= b(a). Hence O, r̂ ̸|= ri(a). We
distinguish two cases. If also O, r̂ ̸|= li(a), then we proceed
as in Case 1 and choose split-partner (A, a) ∈ S({li, ri})
such that O,A |= r(a).

If O, r̂ |= li(a), then we proceed as follows.
Choose a split-partner (A, a) ∈ S({ri}) such that
O,A |= r(a). Then h is also a satisfying root O-
homomorphism in D′, a witnessing that q′ is entailed by
D′ = r̂0 . . . r̂i−1Ar̂ir̂i+1 . . . rn wrt O.

It remains to show that O,D′ ̸|= q. Assume otherwise.
Take a satisfying root O-homomorphism h∗ in D′, a wit-
nessing O,D′ |= q. By peerlessness of q, h∗(j) = j for all
j < i. Then h∗(i) > i as O,A |= ri(a) would contradict
the definition of A. But then, as Γ \ {b} |= f(li), h∗ is also
a satisfying homomorphism in D, a witnessing D |= f(q)
and we have derived a contradiction.

The case when D is from (n2) is considered similarly to
the case of (n1).

Theorem 11. There exist a DL-Lite−F ontology O, a signa-
ture σ and a query q ∈ LTLU

pp(ELIQσ) such that q is not
uniquely characterisable wrt O within LTLU

p (ELIQσ).

Proof. Consider the ontology

O = {fun(P ), fun(P−), B ⊓ ∃P− ⊑ ⊥}
from the proof of Theorem 8. We know from (Funk, Jung,
and Lutz 2022b) and that proof that O admits frontiers
within ELIQ{A,B,P} but not split-partners. We show that
the query ⃝A is not uniquely characterisable wrt O within
LTLU

p (ELIQ{A,B,P}). Indeed, suppose E = (E+, E−) is
such a unique characterisation.

Consider the following set of pointed data instances:

S({A}) = {(Ai, a) | i > 0, ∃D = A0, . . . ,An ∈ E−,

O,Aj ̸|= A(a) for 0 < j ≤ i}.
We claim that the defined S({A}) is a split-partner for {A}
within ELIQ{A,B,P}, which is a contradiction.



Take any q′ ∈ ELIQ{A,B,P}. If O,A |= q′(a), for
some (A, a) ∈ S({A}), then q′ ̸|=O ⃝A because other-
wise O,A |= A(a) which is not the case by definition of
S({A}).

Now suppose O,A ̸|= q′(a) for all (A, a) ∈ S({A}).
Then D ̸|= q′ U A for all D of the form A0, . . . ,An in E−

with O,A1 ̸|= A(a). Hence D ̸|= q′ U A for all D ∈ E−.
On the other hand, from ⃝A |= q′UA we obtain D |= q′UA
for all D ∈ E+, and so q′UA is equivalent to ⃝A wrt O. By
the shape of O, this implies that q′ is equivalent to ⊥, and so
q′ |=O A, as required by the definition of split-partners.

F Proofs for Section 8
This section is mainly devoted to give a full proof of Theo-
rem 15, but we need some preparation.

F.1 Normal Form
In order to lift some results obtained in the atemporal
case (Funk, Jung, and Lutz 2022a) to the temporal setting,
we have to rely on the same normal form for ontologies. An
ELHIF ontology is in normal form if every concept inclu-
sion takes one of the following forms:

A ⊑ ∃R.A′, ∃R.A ⊑ A′, A ⊓A′ ⊑ B,

where A,A′ are concept names or ⊤, B is a concept name
or ⊥, and R is a role.

We describe next how to convert an ELHIF ontology
O into an ELHIF ontology O′ in normal form. Let us use
C(O) to denote the set of all concepts that occur in a concept
inclusion in O. Note that C(O) is closed under taking sub-
concepts. We introduce a fresh concept name XC for every
complex concept C ∈ C(O), and set X⊥ = ⊥ and XA = A
for concept names A ∈ C(O). The ontology O′ consists of
all functionality assertions and all role inclusions in O and
the following concept inclusions:

• XC ⊑ XD for every C ⊑ D ∈ O;

• XD1⊓D2 ⊑ XDi and XD1 ⊓XD2 ⊑ XD1⊓D2 , for every
D1 ⊓D2 ∈ C(O) and i ∈ {1, 2};

• X∃R.C ⊑ ∃R.XC and ∃R.XC ⊑ X∃R.C , for every
∃R.C ∈ C(O).

Clearly, O′ can be computed in polynomial time. Regarding
the relationship between O and O′, we observe the follow-
ing consequences of the definition of O′.

Lemma 8.
1. O′ is a conservative extension of O;
2. sig(O′) = sig(O) ∪ {XC | C ∈ C(O)};
3. O′ |= XC ≡ C, for all C ∈ C(O).

Lemma 8 essentially says that O′ is a conservative exten-
sion of O, but is slightly stronger in also making precise how
exactly a model of O can be extended to a model of O′.

We next show that it suffices to provide learning algo-
rithms wrt ontologies in normal form.

Lemma 9. Let L be an ontology language contained in
ELHI or ELIF . If a class Q ⊆ LTL⃝33r

p (ELIQ) of

queries is polynomial query learnable wrt ELHIF ontolo-
gies in normal form using membership queries, then the
same is true for L ontologies. If, additonally, L admits poly-
nomial time instance checking, then even polynomial time
learnability is preserved.

Proof. Let L′ be a polynomial time learning algorithm for
Q wrt ontologies in normal form. We transform it into a
polynomial time learning algorithm L for Q wrt unrestricted
ELIF ontologies, relying on the normal form provided by
Lemma 8. The construction for ELHI is similar, and we
strongly conjecture that it is possible to lift it to full ELHIF
but it is beyond the scope of the paper.

Given an ELIF ontology O and a signature Σ = sig(O)
with sig(qT ) ⊆ Σ, algorithm L first computes the ontology
O′ in normal form as per Lemma 8, choosing the fresh con-
cept names so that they are not from Σ. It then runs L′ on O′

and Σ′ = Σ∪sig(O′). In contrast to L′, the oracle still works
with the original ontology O. To ensure that the answers to
the queries posed to the oracle are correct, L modifies L′ as
follows.

Whenever L′ asks a membership query D′, a with D′ =
A′

0, . . . ,A′
n, we may assume that each A′

i satisfies the func-
tionality assertions from O, since otherwise the answer is
trivially “yes”. Then, L asks the membership query D, a,
where D is obtained from D′. Note that the D we are going
to construct contains concept assertions C(d) for complex
concepts C, but these can be removed at the cost of intro-
ducing more fresh individuals and using standard concept
assertions.

We start with setting Ai = A′
i ∪ {C(d) | XC(d) ∈ A′

i},
for all i and then extending the Ai, for every role R and
every individual b ∈ ind(A′

i) as follows:

(†) Let CR,b be the set of all concepts ∃R.D ∈ C(O) such
that O′,A′

i |= ∃R.D(b) but O′,A′
i ̸|= D(b′) for any

R(b, b′) ∈ A′
i. Then

– if fun(R) /∈ O, then add for each ∃R.D ∈
CR,b one fresh individual c together with assertions
R(b, c), D(c);

– otherwise, add one fresh individual c and add assertions
R(b, c) and D(c), for all ∃R.D ∈ CR,b.

By the following claim, the answer to the modified member-
ship query coincides with that to the original query.

Claim 1. O′,D′, 0, a |= q iff O,D, 0, a |= q for all q ∈
LTL⃝33r

p (ELIQ) that only use symbols from Σ, and all a ∈
ind(D′).

Proof of Claim 1. For “if”, suppose that O,D, 0, a |= q

and let I ′ be a model of D′ and O′. We can assume that ∆I′

does not mention any of the individuals that were introduced
in the construction of D. We will construct a model I of D
and O such that (Ii, a) → (I ′

i, a), for every 0 ≤ i ≤ n.
This clearly suffices since I, 0, a |= q.

Fix some i with 0 ≤ i ≤ n and start with setting Ii to the
restriction of I ′

i to ind(A′
i). Then process every individual

b ∈ ind(A′
i) and every role R.

Let CR,b be the set of concepts in (†). We distinguish
cases:



• If fun(R) /∈ O, process each ∃R.D ∈ CR,b as follows.
By definition of CR,b, we have O′,A′

i |= ∃R.D(b). As
I ′
i is a model of O′ and A′

i, there is an element c with
(b, c) ∈ RI′

i and c ∈ DI′
i . Take the unraveling Jc of I ′

i
at c, omit the R−-successor of c if fun(R−) ∈ O, and add
the root of Jc as an R-successor of b.

• If fun(R) ∈ O, we proceed as follows. By definition
of CR,b, we have O′,A′

i |= ∃R.D(b), for all ∃R.D ∈
CR,b. As I ′ is a model of O′ and A′

i, there is an element
c with (b, c) ∈ RI′

i and c ∈ DI′
i , for all ∃r.D ∈ CR,b.

By definition of CR,b and since fun(R) ∈ O, we know
that there is no b′ ∈ ind(A′

i) with (b, b′) ∈ A′
i. Take the

unraveling Jc of I ′
i at c, omit the R−-successor of c if

fun(R−) ∈ O, and add the root of Jc as an R-successor
of b.

For the sake of completeness, we provide a formal def-
inition of Jc. Its domain ∆Jc consists of all sequences
a0R1a1 . . . Rnan such that

• a0 = c;
• ai ∈ ∆I′

, for all i with 0 ≤ i ≤ n;
• (ai, ai+1) ∈ RI′

i+1, for all i with 0 ≤ i < n;
• if fun(R−

i ) ∈ O, then Ri+1 ̸= R−
i , for all i with 0 ≤ i <

n;
• if R1 = R− then fun(R−) /∈ O.

The interpretation of concept names A ∈ NC and role names
r ∈ NR is then as expected:

AJc = {a0R1a1 . . . Rnan ∈ ∆Jc | an ∈ AI′
}

rJc = {(π, πra) | πra ∈ ∆Jc} ∪
{(πr−a, π) | πr−a ∈ ∆Jc}.

Note that each Jc has a homomorphism into I ′: just map
every sequence a0R1 . . . an to an.

Let I be the result of the above process. Due to the ini-
tialization, we have I |= A. It is routine to verify that
I is also a model of O and that there is a homomorphism
(I, a) → (I ′, a).

For “only if”, suppose that O′,D′, 0, a |= q and let I be
a model of D and O. Since O′ is a conservative extension
of O, there is a model I ′ of O′ that coincides (in every time
point) with I on Σ. Moreover, by Point 3 of Lemma 8, it is
also a model of D′. It follows that I, 0, a |= q as required.
This finishes the proof of Claim 1.

For ELHI, we use the following variant of (†):
(‡) Let CR,b be the set of all concepts ∃R.D ∈ C(O)

such that O′,A′
i |= ∃R.D(b). Then add for each

∃R.D ∈ CR,b one fresh individual c together with as-
sertions R(b, c), D(c).

Now, polynomial query learnability is preserved simply due
to the fact that the construction of D from D′ is computable
because instance checking wrt ELHIF ontologies is decid-
able. If the ontology language admits polynomial time in-
stance checking, then the construction can actually be com-
puted in polynomial time; thus polynomial time learnability
is preserved.

F.2 Generalisation Sequences
Generalisation sequences have been introduced as a generic
tool to show that exact learning algorithms in the atemporal
case need only polynomially many steps (Funk, Jung, and
Lutz 2022a). We recall the definition.

A generalisation sequence for a CQ q wrt O is a sequence
q1, q2, . . . of CQs that satisfies the following conditions, for
all i ≥ 1:

• qi |=O qi+1 and qi+1 ̸|=O qi, and

• qi |=O q.

Intuitively, a generalisation sequence is a sequence of
weaker and weaker CQs which, however, still entail q wrt O.
We recall next that suitable generalisation sequences have
bounded length.

Let us fix CQs q, qT . We say that q is (qT ,O)-minimal
if q′ ̸|=O qT , for every restriction q′ of q to a strict subset
of the variables in q. For a variable y ∈ var(q), we denote
with q(y), the variant of q where the unique free variable
is y. We then say that q is O-saturated if q(y) |=O A(y)
implies that A(y) is a conjunct in q, for every variable y in
q and every concept name A that occurs in O. As usual, a
CQ is rooted if the graph (var(q), {{x, y} | r(x, y) ∈ q}) is
connected. Clearly, all ELIQs are rooted.

We recall Theorem 13 from (Funk, Jung, and Lutz 2022a),
adapted to our notation.

Theorem 18. Let O be an ELIF ontology in normal form,
qT be a rooted CQ, and q1, q2, . . . be a generalization se-
quence towards q wrt O such that q1 is satisfiable wrt O. If
all qi are (qT ,O)-minimal and O-saturated, then the length
of the sequence is bounded by a polynomial in the sizes of O
and qT .

Using the same techniques it can be proved that Theo-
rem 18 is remains true for ELHIF ontologies.

We lift the notion of generalisation sequences to temporal
data instances as discussed in the main part of the paper, and
show an analogue of Theorem 18. We repeat the definition
here for the sake of convenience.

Let qT ∈ LTL⃝33r
p (ELIQ) be a temporal query, and let

us fix throughout the rest of the subsection an individual
name a. A sequence D1, . . . of temporal data instances is
a generalisation sequence towards qT wrt O if for all i ≥ 1:

• Di+1 is obtained from Di by modifying one non-temporal
CQ rj in Di to r′j such that rj |=O r′j and r′j ̸|=O rj ;

• O,Di, 0, a |= qT for all i ≥ 1.

The notion of O-saturatedness lifts from CQs to temporal
data instances D = q0 . . . qn as expected: D is O-saturated
if every qi is. We further say that D is (qT ,O)-minimal
if the result D′ of dropping any atom from any qi satisfies
O,D′, 0, a ̸|= qT . The support supp(D) of a temporal data
instance D = A0 . . .An the set of all i such that Ai ̸= ∅
Lemma 10. Let qT ∈ LTL⃝33r

p (ELIQ). The length of a
generalisation sequence D1, . . . ,Dn towards qT wrt O such
that all Di are satisfiable wrt O, O-saturated, and (qT ,O)-
minimal is bounded by a polynomial in the sizes of qT , O,
and |supp(D1)|.



Proof. Consider a time point i and let r1, r2, . . . be the se-
quence of different queries at time point i that occur in the
generalisation sequence, that is, rj |=O rj+1 and rj+1 ̸|=O
rj , for each j. Let h be a root homomorphism from qT to
Dn and let I be the set of all t with h(t) = i. (By construc-
tion, h is a root homomorphism from qT to all Dj .) Consider
q′ =

∧
i∈I qi. Clearly, r1, r2, . . . , is a generalisation se-

quence towards q′ wrt O. Since all Dj are satisfiable wrt O,
O-saturated and (qT , a,O)-minimal, it follows that in par-
ticular, all r1, r2, . . . are satisfiable wrt O, O-saturated, and
(qT ,O)-minimal. By Theorem 18, the length of r1, r2, . . .
is bounded by a polynomial in the sizes of qT and O. Since
there are only |supp(D1)| time points to consider, the over-
all sequence D1,D2, . . . ,Dn is bounded by a polynomial in
qT , O, and |supp(D1)|.

F.3 Proof of Theorem 15
We restate Theorem 15 for convenience.
Theorem 15. Let L be an ontology language that contains
only ELHI or only ELIF ontologies and that admits poly-
size frontiers within ELIQ that can be computed. Then:

(i) The safe LTL⃝33r
p (ELIQ) queries are polynomial query

learnable wrt L ontologies using membership queries.
(ii) The class LTL⃝33r

p (ELIQ) is polynomial query learn-
able wrt L ontologies using membership queries if the
learner knows the temporal depth of the target query.

(iii) The class LTL⃝3
p (ELIQ) is polynomial query learn-

able wrt L ontologies using membership queries.

If L further admits polynomial time instance checking and
polynomial time computable frontiers within ELIQ, then in
(ii) and (iii), polynomial query learnability can be re-
placed by polynomial time learnability. If, in addition, meet-
reducibility wrt L ontologies can be decided in polynomial
time, then also in (i) polynomial query learnability can be
replaced by polynomial time learnability.

Proof. Let L be as in the theorem. Let qT be the target
query, O an L ontology, and D, a be a positive example with
D = A0 . . .An and such that D is satisfiable wrt O. By
Lemma 9, we can assume that O is actually in normal form.
Moreover, by Lemma 3, we can assume qT to be in normal
form as well. We further assume qT to be of shape (8):

qT = q0R1q1 . . .Rnqn.

As qT is safe, it does not have lone conjuncts.

We start with showing (i) and then describe the neces-
sary modifications for (ii) and (iii). The idea of the proof
is to modify D in a number of steps such that in the end D
viewed as a temporal query is equivalent to qT . As a gen-
eral proviso we assume that at all times: each Ai (viewed as
CQ) is O-saturated; this is without loss of generality since
instance checking wrt ELHIF ontologies is decidable (To-
bies 2001),

We call a temporal data instance D temporally minimal
if there is no time point i such that D′, a is a positive ex-
ample where D′ is obtained from D by dropping Ai from
D. Clearly, temporal minimality can be established using at

most max(D) membership queries, and a temporally min-
imal data instance D satisfies that max(D) is at least the
number of occurrences of suc and < in qT and at most as
large as the size of qT .

Thus, we can assume without loss of generality that the
initial data example D is temporally minimal. Thus, every
root O-homomorphism h : qT → D is block surjective2 for
the block size

b := max(D) + 1,

as D has only one block for this b. In fact, during all
modifications, we maintain the invariant that every root O-
homomorphism is block surjective for this number b. We
use this initial constant b in steps 2, 3, and 4 below.

Step 1. We first aim to find a temporal data instance which
is tree-shaped, meaning that in D = A0 . . .An each Ai

is tree-shaped. To achieve this, we exhaustively apply the
following rules Unwind and Minimise with a preference
given to Minimise. A cycle in a data instance is a se-
quence R1(a1, a2), . . . , Rn(an, a1) of distinct atoms such
that a1, . . . , an are distinct.
Minimise. If there is some i and some individual b ∈

ind(Ai) such that D′, a is a positive example where D′ is
obtained from D by dropping from Ai all atoms that men-
tion b, then replace D with D′.

Unwind. Choose an atom R(a1, a2) ∈ Ai that is part of a
cycle. Obtain A′

i by first adding a disjoint copy A′
i of Ai to

Ai and let a′1, a
′
2 be the copies of a1, a2 in A′

i. Then replace
all atoms S(a1, a2) (respectively, S(a′1, a

′
2)) by S(a1, a

′
2)

(respectively, S(a′1, a2)), for all roles S.
It is clear that the resulting temporal data instance is tree-

shaped as required. It is still temporally minimal and the
invariant that every root O-homomorphism is block surjec-
tive is preserved.

Step 2. In this step, we ‘close’ D under applications of
the Rules (a)–(e) used in Lemma 7. Formally, consider the
following Rule 2(x), for x ∈ {a,b,c,d,e}.

2(x) Let D′ be a data instance obtained from D by apply-
ing Rule (x) from the proof of Lemma 7. If D′, a is a
positive example, replace D with the result of the ex-
haustive application of Minimise to D′.

We first apply 2(b) and 2(c) until D stabilises. Then, we
exhaustively apply 2(a), 2(d), and 2(e) giving preference
to 2(a).

After Step 2, D satisfies that, if D′ is the result of an appli-
cation of Rules (a)–(e), then D′, a is not a positive example.

Step 3. In this step, we take care of lone conjuncts in D by
applying (∗) below as long as D contains one. Recall that
qT does not, so we can simplify D.

2Recall the notion of (block surjective) root O-homomorphisms
from the proof of Theorem 9.



(∗) Choose a primitive block ∅bA∅b in D such that A,
viewed as CQ q is meet-reducible wrt O within ELIQ. Let
Fq = {q1, . . . , qℓ} and w = q̂1∅bq̂2∅b . . . q̂ℓ∅b. Denote
with Dk the result of replacing ∅bA∅b in D with ∅b(w)k.
Then identify some i ≥ 1 such that Di, a is a positive
example, by using membership queries for i = 1, 2, . . . .
Notice that this requires only polynomially many member-
ship queries as Dk, a is a positive example for k = |qT |,
and that all queries are of polynomial size since Fq is of
polynomial size. Replace D with the result of exhaus-
tively applying Rule 2(a) to Di and subsequently shorten-
ing blocks ∅d for d > b to ∅b.

Let D be the result of Step 3. It is routine to verify that
2(a)–2(e) are not applicable, that D is b-normal, and that D
is without lone conjuncts wrt O within LTL⃝33r

p (ELIQ).
By Lemma 7, any root O-homomorphism is a root O-
isomorphism. Thus, the algorithm has identified all
blocks in the following sense. Suppose that qT =
q0R1q1 . . .Rmqm is a sequence of blocks qi = ri0 . . . r

i
ℓi

and

D = D0∅bD1 . . . ∅bDn where Di = Ai
0 . . .Ai

ki
.

Then m = n and each block Di in D is isomorphic to qi,
that is, ℓi = ki and r̂ij = Ai

j , for all i, j with 0 ≤ i ≤ n
and 0 ≤ j ≤ ki. It is unclear, however, whether the Ri are
(a single) ≤ or a sequence of <. This is resolved in the final
step.

Step 4. We determine Ri+1, for each i with 0 ≤ i < n, as
follows:

• If riki
∧ ri+1

0 is satisfiable wrt O and Di, a with Di =

D0∅b . . . ∅bDi 1 Di+1∅b . . . ∅bDn (1 defined as in the
proof of Theorem 9) is a positive example, then Ri+1 is
≤. Otherwise, let s be minimal such that D′

i, a is a posi-
tive example for D′

i = D0∅b . . . ∅bDi∅sDi+1∅b . . . ∅bDn.
Then, Ri+1 is a sequence of s times <.

We have thus shown that indeed the returned query is equiv-
alent to qT . It remains to argue that the algorithm issues
only polynomially many membership queries. We analyse
Steps 1–4 separately.

For Step 1, let D1,D2, . . . be the sequence of tempo-
ral data instances that Unwind is applied to during Step 1.
Clearly, all these queries are (qT ,O)-minimal (recall that
we give preference to Minimise) and O-saturated. Since an
application of Minimise decreases the overall number of in-
dividuals in the instance, there are only polynomially many
applications of Minimise between Di and Di+1. In the proof
of Lemma 14 in (Funk, Jung, and Lutz 2022a), it is shown
that the operation Unwind3 applied to a (qT ,O)-minimal
CQ q leads to a strictly weaker CQ q′, that is, q |=O q′,
but not vice versa. This applies here as well, and implies
that D1,D2, . . . is a generalisation sequence towards qT wrt
O. Applying Lemma 10 yields that Step 1 terminates in time
polynomial in the size of qT , O, and |supp(D)| which in turn

3Unwind is called Double Cycle in (Funk, Jung, and Lutz
2022a).

is bounded by the size of qT (recall that D is temporally
minimal).

We next analyse Step 2, starting with Rules 2(b) and 2(c).
First note that the number of applications of Rules 2(b)
and 2(c) is bounded by the number of < and ≤ in qT . To see
this, we inductively show that Rules 2(b) and 2(c) preserve
the fact that every root O-homomorphism h : qT → D is
block surjective. As D is temporally minimal, this certainly
holds before Step 2. Suppose now that D′ is obtained by a
single application of 2(b) or 2(c) to D, and that there is a
root O-homomorphism that is not block surjective. Then we
can easily construct a non-block surjective homomorphism
from qT to D, a contradiction. Applications of Minimise
also preserve the claim. Also note that the block-surjectivity
implies that the support of the resulting D is bounded by the
size of qT .

We next analyse Rules 2(a), 2(d), and 2(e). Let
D1,D2, . . . be a sequence of temporal data instances ob-
tained by a sequence of applications of 2(a). Clearly,
D1,D2, . . . is a generalisation sequence towards qT wrt O
such that all Di are satisfiable wrt O, O-saturated, and
(qT ,O)-minimal. By Lemma 10, the length of the sequence
is bounded by a polynomial in the sizes of qT and O, and
in |supp(D)| ≤ |qT |. Further note that applications of 2(a)
preserve that every root O-homomorphism is block surjec-
tive and that 2(b) and 2(c) remain not applicable.

Next consider an application of 2(d) to a temporal data
instance D where 2(a) is not applicable and such that ev-
ery root O-homomorphism is block surjective. Let D′ be
the result. Since 2(a) is not applicable, every root O-
homomorphism to D′ must also be block surjective. Thus,
the number of applications of 2(d) is bounded by the num-
ber of < and ≤ in qT . The same argument works for 2(e).
It is readily seen that 2(b) and 2(c) are still not applicable,
thus none of the rules is applicable to D. Overall, we obtain
a polynomial number of rule applications. This finishes the
analysis of Step 2.

Consider now Step 3. Recall that, by Lemma 5, a CQ q
is meet-reducible wrt O in ELIQ iff |Fq| ≥ 2 provided that
q′ ̸|=O q′′, for all distinct q′, q′′ ∈ Fq . Thus, to find a lone
conjunct ∅bA∅b in D, we can compute such a minimal fron-
tier Fq of q wrt O by first computing any frontier F (which
is possible by assumption) and then exhaustively removing
from F queries q′′ such that q′ |=O q′′ for some q′ ∈ F
with q′ ̸= q′′. Note that the test q′ |=O q′′ is decidable for
ELHIF ontologies (Bienvenu et al. 2016).

As noted in (∗), identifying the right Di needs only poly-
nomially many membership queries (despite the fact that de-
ciding meet-reducibility might require more time). Since ex-
haustive application of 2(a) requires only polynomial time,
a single application of (∗) requires only polynomially many
membership queries. Moreover, using the fact that 2(a) is
not applicable before application of (∗) one can show that
the number of ‘gaps’ is increased and that the rule pre-
serves that every root O-homomorphism is block surjective.
Hence, (∗) is applied at most once for each ≤ in qT .

It remains to analyse the running time of Step 4. Clearly,
only linearly many (in the size of qT ) membership queries
are asked. To finish the argument, it remains to note that



ELHIF admits tractable containment reduction and that
satisfiability wrt ELHIF ontologies is decidable.

We argue next that the above algorithm runs in polyno-
mial time if L additionally admits polynomial time instance
checking, polynomial time computable frontiers, and meet-
reducibility of ELIQs wrt L ontologies can be decided in
polynomial time. First note that O-saturation of D (which
is assumed throughout the algorithm) can be established in
polynomial time via instance checking. Then observe that,
in Step 3, a (not necessarily minimal) frontier Fq can be
computed in polynomial time and meet-reducibility can also
be decided in polynomial time, by assumption. Together
with the analysis of Step 3 above, this yields that Step 3
needs only polynomial time. Finally observe that also Step 4
runs in polynomial time since the tests for satisfiability can
be reduced to (polynomial time) instance checking.

It remains to prove Points (ii) and (iii) from Theorem 15.
The learning algorithm for Point (ii) is similar to the algo-
rithm provided above, but with a modified Step 3 since in
this case qT might have lone conjuncts and possibly more
than one variable from var(qT ) is mapped to the same time
point in D. Let T be the temporal depth of the target query.

Step 3′. In this step, we apply (∗′) until D stabilises.

(∗′) Choose a primitive block ∅bA∅b and an ELIQ q
with A = q̂. Let Fq = {q1, . . . , qℓ} and w =
q̂1∅bq̂2∅b . . . q̂ℓ∅b. Let D′ be the result of replacing ∅bA∅b
in D with ∅b(w)T . If D′, a is a positive example, then re-
place D with the result of exhaustively applying Rule 2(a)
to D′ and subsequently shortening blocks ∅d for d > b to
∅b.

Let D be the result of Step 3. It is routine to verify that 2(a)–
2(e) are not applicable. The following can be proven similar
to Lemma 7.

Lemma 11. Let O and qT be as above. Let b exceed the
number of 3 and ⃝ in qT , and let D be b-normal. If
Rules 2(a)–(e) and (∗′) are not applicable, then any root
O-homomorphim h : q → D is a root O-isomorphism.

As an immediate consequence, after Step 3′, the modified
algorithm has identified all blocks in qT as described above
and it remains to apply Step 4.

The learning algorithm for Point (iii) is a similar mod-
ification. Note that for the query class LTL⃝3

p (ELIQ), we
know that the temporal depth of qT is exactly T0 = max(D)
for the temporally minimal input example D. This T0 can
then be used in place of T in (∗′) above. This finishes the
proof of Theorem 15.

F.4 Proof of Theorem 16
Theorem 16. The following learnability results hold:

(i) The class of safe queries in LTL⃝33r
p (ELIQ) is poly-

nomial query learnable wrt DL-LiteH ontologies using
membership queries and polynomial time learnable wrt
DL-Lite−F ontologies using membership queries.

(ii) The class LTL⃝33r
p (ELIQ) is polynomial time learn-

able wrt both DL-Lite−F and DL-LiteH ontologies using
membership queries if the learner knows the temporal
depth of the target query in advance.

(iii) The class LTL⃝3
p (ELIQ) is polynomial time learnable

wrt both DL-Lite−F and DL-LiteH ontologies using mem-
bership queries.

Proof. The theorem is a direct consequence of Theorem 15
and the fact that the considered ontology languages satisfy
all conditions mentioned in that theorem. Most importantly:

• DL-LiteF admits polynomial time instance check-
ing (Calvanese et al. 2007b) and DL-Lite−F admits poly-
nomial time computable frontiers (Funk, Jung, and Lutz
2022b). Meet-reducibility in DL-Lite−F is decidable in
polynomial time, by Lemma 6.

• DL-LiteH admits polynomial time instance check-
ing (Calvanese et al. 2007b) and admits polynomial time
computable frontiers (Funk, Jung, and Lutz 2022b).

This completes the proof.
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