
Separating Counting from Non-Counting in
Fragments of Two-Variable First-Order Logic
(Extended Abstract)
Louwe Kuijer1, Tony Tan1, Frank Wolter1 and Michael Zakharyaschev2

1University of Liverpool, Ashton Street, Liverpool L69 3BX, UK
2Birkbeck, University of London, Malet Street, London WC1E 7HX, UK

Abstract
We consider the problem of deciding whether two disjoint classes of models defined in a fragment of first-
order logic (FO) with counting can be separated in the same fragment but without counting. This problem
turns out to be hard. We show that separation for the two-variable fragment FO2 extended with counting
quantifiers by means of plain FO2 is undecidable, and the same is true of the pair 𝒜ℒ𝒞𝒪ℐ𝒬/𝒜ℒ𝒞𝒪ℐ
of description logics. On the other hand, we establish 2ExpTime-completeness of the separation problem
for the pairs 𝒜ℒ𝒞𝒬𝑢/𝒜ℒ𝒞𝑢 and 𝒜ℒ𝒞ℐ𝒬𝑢/𝒜ℒ𝒞ℐ𝑢.

Keywords
Separation, two-variable first-order logic, counting quantifiers, bisimulation.

1. Introduction

Our concern in this paper is the following separation problems for a pair of languages 𝐿 and 𝐿𝑠:

𝐿/𝐿𝑠-separation: given two mutually exclusive 𝐿-formulas 𝜙 and 𝜓, decide whether there
exists an 𝐿𝑠-formula 𝜒—a separator for 𝜙 and 𝜓—such that 𝜙 |= 𝜒 and 𝜒 |= ¬𝜓;

Craig 𝐿/𝐿𝑠-separation: decide whether the given 𝐿-formulas 𝜙 and 𝜓 have an 𝐿𝑠-separator
𝜒 that only contains common non-logical symbols (predicates and constants) of 𝜙 and 𝜓.

For example, 𝜙 could be an ontology 𝒪 and 𝜓 a concept 𝐶 that is not satisfiable with respect to
𝒪, both given in an expressive language 𝐿. Then a separator ontology 𝒪′ in a weaker, easier to
comprehend language 𝐿𝑠 potentially explains unsatisfiability as it inherits that 𝒪 |= 𝒪′ and
𝐶 is not satisfiable under 𝒪′. Similarly, if in the concept learning context, 𝜙 and 𝜓 represent
positive and negative examples for a target concept 𝐶 , then any separator in an appropriately
chosen language 𝐿𝑠 could represent the concept one aims to learn.

Separation generalises definability (aka membership), which asks whether a given 𝐿-formula
(say, a datalog query) is equivalent to some 𝐿𝑠-formula (say, a first-order query), and is regarded

DL 2024: 37th International Workshop on Description Logics, June 18–21, 2024, Bergen, Norway
$ Louwe.Kuijer@liverpool.ac.uk (L. Kuijer); Tony.Tan@liverpool.ac.uk (T. Tan); wolter@liverpool.ac.uk
(F. Wolter); m.zakharyaschev@bbk.ac.uk (M. Zakharyaschev)
� 0000-0001-6696-9023 (L. Kuijer); 0009-0005-8341-2004 (T. Tan); 0000-0002-4470-606X (F. Wolter);
0000-0002-2210-5183 (M. Zakharyaschev)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:Louwe.Kuijer@liverpool.ac.uk
mailto:Tony.Tan@liverpool.ac.uk
mailto:wolter@liverpool.ac.uk
mailto:m.zakharyaschev@bbk.ac.uk
https://orcid.org/0000-0001-6696-9023
https://orcid.org/0009-0005-8341-2004
https://orcid.org/0000-0002-4470-606X
https://orcid.org/0000-0002-2210-5183
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

as one of the main approaches to understanding the expressive power of 𝐿 relative to 𝐿𝑠. For
instance, studying separability of regular languages by smaller language classes (e.g., a star-
free language) has brought major insights into the respective formal languages, with some
fundamental open problems in the area cast as separation questions [1].

Craig 𝐿/𝐿𝑠-separation generalises classical Craig interpolation in 𝐿 [2] because a Craig
𝐿/𝐿-separator for 𝜙 and 𝜓 is a Craig interpolant for 𝜙→ ¬𝜓 in 𝐿.

Our aim in this paper is to investigate the decidability and complexity of the separation
problem for certain fragments 𝐿 of C2—that is, the two-variable first-order logic FO2 extended
with the counting quantifiers ∃<𝑛𝑥, ∃=𝑛𝑥—and the same fragments 𝐿𝑠 but without counting.

Example 1. Consider the following C2-formulas:

𝜙(𝑥) = ∃=1𝑦 𝑅(𝑥, 𝑦), 𝜓(𝑥) = ∃=1𝑦
(︀
𝑅(𝑥, 𝑦) ∧𝐴(𝑦)

)︀
∧ ∃=1𝑦

(︀
𝑅(𝑥, 𝑦) ∧ ¬𝐴(𝑦)

)︀
.

Then 𝜙 |= ¬𝜓 and the FO2-formula 𝜒(𝑥) = ∀𝑦
(︀
𝑅(𝑥, 𝑦) → 𝐴(𝑦)

)︀
∨∀𝑦

(︀
𝑅(𝑥, 𝑦) → ¬𝐴(𝑦)

)︀
is

a separator for 𝜙(𝑥) and 𝜓(𝑥). For 𝜓′(𝑥) = ∃=2𝑦 𝑅(𝑥, 𝑦), we also have 𝜙 |= ¬𝜓′, but 𝜙(𝑥) and
𝜓′(𝑥) are not separable in FO2. On the other hand, there is no Craig FO2-separator for 𝜙(𝑥)
and 𝜓(𝑥) as it would have to be defined using 𝑅 only, and so separate 𝜙(𝑥) and 𝜓′(𝑥) as well.

2. Logics

The logics we consider here can all be regarded as fragments of first-order logic, FO, and are
defined as follows. Let 𝜎 be a signature containing unary and binary relation symbols and
possibly constants. Fix a set var comprising two individual variables. Then

FO2(𝜎), the two-variable fragment of FO(𝜎), is defined as the set of formulas that are built
from atoms 𝐴(𝑥), 𝑅(𝑥, 𝑦), and 𝑥 = 𝑦 with unary 𝐴 ∈ 𝜎, binary 𝑅 ∈ 𝜎, and 𝑥, 𝑦 ∈ var,
using the Boolean connectives ∧ and ¬ and quantifier ∃𝑥 with 𝑥 ∈ var (other Booleans
and ∀𝑥 are regarded as standard abbreviations);

C2(𝜎), the two-variable fragment of FO2(𝜎) with counting, extends FO2(𝜎) with the counting
quantifiers ∃<𝑘𝑥, for 𝑘 ∈ N and 𝑥 ∈ var (other counting quantifiers ∃=𝑘𝑥, ∃≤𝑘𝑥, ∃≥𝑘𝑥
can be introduced as abbreviations).

In this paper, we are only interested in formulas 𝜙(𝑥) with one free variable 𝑥 ∈ var. The
signature of 𝜙 is the set sig(𝜙) of relation and constant symbols occurring in 𝜙.
FO(𝜎) and its fragments are interpreted in 𝜎-structures A = (dom(A), (𝑅A)𝑅∈𝜎, (𝑐

A)𝑐∈𝜎)
with a domain dom(A) ̸= ∅, relations 𝑅A on dom(A) of the same arity as 𝑅 ∈ 𝜎, and elements
𝑐A ∈ dom(A). A pointed structure is a pair A, 𝑎 with 𝑎 ∈ dom(A).

We also consider a few fragments of C2 that correspond to some standard description logics
(DLs). In the context of DLs, unary relation symbols are called concept names, binary ones
role names, and constants individual names [3]. A role is a role name 𝑟 or its inverse 𝑟−. The
universal role is denoted by 𝑢. A nominal takes the form {𝑐} with an individual name 𝑐.

An 𝒜ℒ𝒞𝒪ℐ𝒬𝑢(𝜎)-concept is defined by the grammar

𝐶 ::= ⊤ | 𝐴 | {𝑐} | ¬𝐶 | 𝐶 ⊓ 𝐶 ′ | ≥ 𝑘 𝑟.𝐶 | ∃𝑢.𝐶,

where 𝐴 ∈ 𝜎 is a concept, 𝑐 ∈ 𝜎 an individual, 𝑟 a role name in 𝜎 or its inverse, and 𝑘 > 0.
We consider several fragments of 𝒜ℒ𝒞𝒪ℐ𝒬𝑢. The weakest, 𝒜ℒ𝒞, is obtained by dropping the
universal role (indicated by omitting ·𝑢 from the name), inverse roles (indicated by omitting
ℐ), nominals (indicated by omitting 𝒪), and only admitting qualified number restrictions of
the form ∃𝑟.𝐶 = (≥ 1 𝑟.𝐶) (indicated by dropping 𝒬). The languages between 𝒜ℒ𝒞 and
𝒜ℒ𝒞𝒪ℐ𝒬𝑢 are now defined in the obvious way.

The semantics of DLs can be defined via the standard translation ·♯ into C2 with constants. For
any 𝒜ℒ𝒞𝒪ℐ𝒬𝑢-concept 𝐶 , we denote by 𝐶♯𝑥 the C2-formula with constants and free variable
𝑥 ∈ var defined inductively by taking

⊤♯
𝑥 = (𝑥 = 𝑥), 𝐴♯𝑥 = 𝐴(𝑥), {𝑐}♯𝑥 = (𝑥 = 𝑐), (¬𝐶)♯𝑥 = ¬𝐶♯𝑥, (𝐶 ⊓𝐷)♯𝑥 = 𝐶♯𝑥 ∧𝐷♯

𝑥,

(∃𝑢.𝐶)♯𝑥 = ⊤♯
𝑥 ∧ ∃�̄� 𝐶♯�̄�, (≥ 𝑘 𝑟.𝐶)♯𝑥 = ∃≥𝑘�̄�

(︀
𝑟(𝑥, �̄�) ∧ 𝐶♯�̄�

)︀
,

where �̄� = 𝑦, 𝑦 = 𝑥 and {𝑥, 𝑦} = var.
The complexities of the satisfiability problems for the logics in question are as follows [3, 4]:

• FO2, C2, and 𝒜ℒ𝒞𝒪ℐ𝒬𝑢 are all NExpTime-complete;

• 𝒜ℒ𝒞𝑢, 𝒜ℒ𝒞𝒬𝑢, 𝒜ℒ𝒞ℐ𝒬𝑢, and 𝒜ℒ𝒞𝒪ℐ𝑢 are all ExpTime-complete.

3. Deciding Separation

Our main results are summarised in the next theorem:

Theorem 1. The separation and Craig separation problems are

• undecidable for the pairs C2/FO2 and 𝒜ℒ𝒞𝒪ℐ𝒬/𝒜ℒ𝒞𝒪ℐ , and

• 2ExpTime-complete for the pairs 𝒜ℒ𝒞ℐ𝒬𝑢/𝒜ℒ𝒞ℐ𝑢 and 𝒜ℒ𝒞𝒬𝑢/𝒜ℒ𝒞𝑢.

The proofs of these results are based on the following model-theoretic characterisation of
separation in terms of appropriate bisimulations; see [5, 6, 7] and further references therein:

Lemma 2. Let 𝜙(𝑥) and 𝜓(𝑥) be any C2(𝜎)-formulas, 𝜚 ⊆ 𝜎, and let 𝐿𝑠 be any of the languages
introduced in Section A. Then the following conditions are equivalent:

• 𝜙(𝑥) and 𝜓(𝑥) do not have an 𝐿𝑠(𝜚)-separator ;

• there are pointed 𝜎-structures A, 𝑎 and B, 𝑏 such that

A |= 𝜙(𝑎), B |= 𝜓(𝑏), A, 𝑎 ∼𝐿𝑠(𝜚) B, 𝑏.

For Craig separation, we additionally require that 𝜚 ⊆ sig(𝜙) ∩ sig(𝜓).

Here, A, 𝑎 ∼𝐿𝑠(𝜚) B, 𝑏 means that there is an 𝐿𝑠(𝜚)-bisimulation 𝛽 between A and B such
that (𝑎, 𝑏) ∈ 𝛽, which is equivalent to A |= 𝜑(𝑎) iff B |= 𝜑(𝑏), for all 𝐿𝑠(𝜚)-formulas 𝜑(𝑥)
[5, 8, 4]. The proof of the characterisation in Lemma 1 is similar to the characterisations of Craig
interpolant nonexistence in [6, 7]. The undecidability proofs are by reduction of the halting
problem for 2 register machines where the numbers in the registers are represented by the
number of 𝐿𝑠(𝜚)-bisimilar nodes. The decidability proofs are based on novel adaptations of the
mosaic technique for constructing 𝐿𝑠(𝜚)-bisimilar models [6, 7].

4. Related Work

While separability has so far been mainly investigated in automata theory [9, 10, 11], definability
has been considered for many logics. For example, the problem of deciding whether a TBox
given in a DL 𝐿 can be equivalently expressed in another DL 𝐿′ is considered in [12], the
problem of deciding whether a GF or GNF formula is equivalent to an existential (or positive
existential) GF or, respectively, GNF formula is considered in [13, 14], and there are many results
on deciding when fixpoints can be dropped from a second-order extension of a fragment of
FO. For instance, it is shown in [15] that it is ExpTime-complete to decide whether a modal
𝜇-calculus formula is equivalent to a basic modal logic formula. Variants of definability explored
in description logic are approximation [16] and conservative rewritability [17].

Craig separators are a generalisation of Craig interpolants where 𝐿𝑠 = 𝐿. If the logic 𝐿 has
the Craig interpolation property (CIP), then the Craig separator existence problem for 𝜙 and 𝜓
reduces to checking whether 𝜙 |= 𝜓 and is thus not harder than entailment. Only recently the
problem of deciding the existence of Craig interpolants has been considered for logics without
the CIP [18, 19]. In fact, the bisimulation-based method employed here makes heavy use of
techniques introduced for checking Craig interpolant existence [6, 7].

5. Discussion

We have started investigating the separation problem for fragments of FO with counting by
formulas in the same fragments but without counting. Many problems remain to be addressed;
we mention a few of them below:

1. Our decidability proofs are non-constructive, and it would be of interest to develop
algorithms that construct separators whenever they exist and to determine bounds on
their size.

2. With the exception of 𝒜ℒ𝒞𝒬, the logics with counting we considered do not have the
finite model property. It would be of interest to investigate whether our results also hold
on finite structures. In that case, the bisimulation criterion does not hold as formulated
(because its proof uses compactness) and one has to employ a different criterion that
holds on finite structures (say, bounded bisimulations).

3. Our logics have the universal role. We conjecture that without the universal role
𝒜ℒ𝒞𝒬/𝒜ℒ𝒞- and 𝒜ℒ𝒞ℐ𝒬/𝒜ℒ𝒞ℐ-separation becomes coNExpTime-complete.

4. Is definability less complex than separation for the pairs of languages considered here.
For example, is C2/FO2-definability decidable?

References

[1] T. Place, M. Zeitoun, Separating regular languages with first-order logic, Log. Methods
Comput. Sci. 12 (2016).

[2] W. Craig, Three uses of the Herbrand-Gentzen theorem in relating model theory and
proof theory, J. Symb. Log. 22 (1957) 269–285. doi:10.2307/2963594.

[3] F. Baader, I. Horrocks, C. Lutz, U. Sattler, An Introduction to Description Logic, Cambridge
University Press, 2017.

[4] I. Pratt-Hartmann, Fragments of First-Order Logic, Oxford Logic Guides, Oxford University
Press, United Kingdom, 2023.

[5] V. Goranko, M. Otto, Model theory of modal logic, in: Handbook of Modal Logic, Elsevier,
2007, pp. 249–329.

[6] J. C. Jung, F. Wolter, Living without Beth and Craig: Definitions and interpolants in the
guarded and two-variable fragments, in: Proceedings of the 36th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2021, IEEE, 2021, pp. 1–14. URL: https:
//doi.org/10.1109/LICS52264.2021.9470585. doi:10.1109/LICS52264.2021.9470585.

[7] A. Artale, J. C. Jung, A. Mazzullo, A. Ozaki, F. Wolter, Living without Beth and Craig:
Definitions and interpolants in description and modal logics with nominals and role
inclusions, ACM Trans. Comput. Log. 24 (2023) 34:1–34:51. URL: https://doi.org/10.1145/
3597301. doi:10.1145/3597301.

[8] E. Grädel, M. Otto, The freedoms of (guarded) bisimulation, in: Johan van Benthem on
Logic and Information Dynamics, Springer International Publishing, 2014, pp. 3–31.

[9] T. Place, M. Zeitoun, The tale of the quantifier alternation hierarchy of first-order logic over
words, ACM SIGLOG News 2 (2015) 4–17. URL: https://doi.org/10.1145/2815493.2815495.
doi:10.1145/2815493.2815495.

[10] M. Bojanczyk, It is undecidable if two regular tree languages can be separated by a
deterministic tree-walking automaton, Fundam. Informaticae 154 (2017) 37–46. URL:
https://doi.org/10.3233/FI-2017-1551. doi:10.3233/FI-2017-1551.

[11] T. Place, Separating regular languages with two quantifier alternations, Log. Methods
Comput. Sci. 14 (2018). URL: https://doi.org/10.23638/LMCS-14(4:16)2018. doi:10.23638/
LMCS-14(4:16)2018.

[12] C. Lutz, R. Piro, F. Wolter, Description Logic TBoxes: Model-Theoretic Characterizations
and Rewritability, in: IJCAI, 2011, pp. 983–988.

[13] M. Benedikt, B. ten Cate, M. Vanden Boom, Effective interpolation and preservation in
guarded logics, ACM Trans. Comput. Log. 17 (2016) 8. URL: https://doi.org/10.1145/2814570.
doi:10.1145/2814570.

[14] V. Bárány, M. Benedikt, B. ten Cate, Some model theory of guarded negation, J. Symb. Log.
83 (2018) 1307–1344.

[15] M. Otto, Eliminating recursion in the 𝜇-calculus, in: C. Meinel, S. Tison (Eds.), STACS
99, 16th Annual Symposium on Theoretical Aspects of Computer Science, Trier, Ger-
many, March 4-6, 1999, Proceedings, volume 1563 of Lecture Notes in Computer Science,
Springer, 1999, pp. 531–540. URL: https://doi.org/10.1007/3-540-49116-3_50. doi:10.1007/
3-540-49116-3_50.

[16] A. Bötcher, C. Lutz, F. Wolter, Ontology approximation in Horn description logics, in:
Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence,
IJCAI 2019, Macao, China, August 10-16, 2019, 2019, pp. 1574–1580. URL: https://doi.org/
10.24963/ijcai.2019/218. doi:10.24963/IJCAI.2019/218.

[17] B. Konev, C. Lutz, F. Wolter, M. Zakharyaschev, Conservative rewritability of description

http://dx.doi.org/10.2307/2963594
https://doi.org/10.1109/LICS52264.2021.9470585
https://doi.org/10.1109/LICS52264.2021.9470585
http://dx.doi.org/10.1109/LICS52264.2021.9470585
https://doi.org/10.1145/3597301
https://doi.org/10.1145/3597301
http://dx.doi.org/10.1145/3597301
https://doi.org/10.1145/2815493.2815495
http://dx.doi.org/10.1145/2815493.2815495
https://doi.org/10.3233/FI-2017-1551
http://dx.doi.org/10.3233/FI-2017-1551
https://doi.org/10.23638/LMCS-14(4:16)2018
http://dx.doi.org/10.23638/LMCS-14(4:16)2018
http://dx.doi.org/10.23638/LMCS-14(4:16)2018
https://doi.org/10.1145/2814570
http://dx.doi.org/10.1145/2814570
https://doi.org/10.1007/3-540-49116-3_50
http://dx.doi.org/10.1007/3-540-49116-3_50
http://dx.doi.org/10.1007/3-540-49116-3_50
https://doi.org/10.24963/ijcai.2019/218
https://doi.org/10.24963/ijcai.2019/218
http://dx.doi.org/10.24963/IJCAI.2019/218

logic TBoxes, in: Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9-15 July 2016, 2016, pp. 1153–1159.
URL: http://www.ijcai.org/Abstract/16/167.

[18] A. Kurucz, F. Wolter, M. Zakharyaschev, Definitions and (uniform) interpolants in first-
order modal logic, in: Proceedings of the 20th International Conference on Principles of
Knowledge Representation and Reasoning, KR 2023, Rhodes, Greece, September 2-8, 2023,
2023, pp. 417–428. URL: https://doi.org/10.24963/kr.2023/41. doi:10.24963/KR.2023/41.

[19] A. Kurucz, F. Wolter, M. Zakharyaschev, A non-uniform view of craig interpolation in
modal logics with linear frames, CoRR abs/2312.05929 (2023). URL: https://doi.org/10.
48550/arXiv.2312.05929. doi:10.48550/ARXIV.2312.05929. arXiv:2312.05929.

[20] A. K. Chandra, D. C. Kozen, L. J. Stockmeyer, Alternation, J. ACM 28 (1981) 114–133.

Appendix: Supplementary Material

A. Logics

In this section, we define the syntax and semantics of the fragments of first-order logic, FO, we
deal with in what follows. Let 𝜎 be a signature containing unary and binary relation symbols
and possibly constants. Fix a set var comprising two individual variables. Then

FO2(𝜎), the two-variable fragment of FO(𝜎), is defined as the set of formulas 𝜙 that are built
from atoms 𝐴(𝑥), 𝑅(𝑥, 𝑦), and 𝑥 = 𝑦 with unary 𝐴 ∈ 𝜎, binary 𝑅 ∈ 𝜎, and 𝑥, 𝑦 ∈ var,
using the Boolean connectives ∧ and ¬ and quantifier ∃𝑥 with 𝑥 ∈ var (other Boolean
connectives and ∀𝑥 are regarded as standard abbreviations);

C2(𝜎), the two-variable fragment of FO2(𝜎) with counting, extends FO2(𝜎) with the counting
quantifiers ∃<𝑘𝑥, for 𝑘 ∈ N and 𝑥 ∈ var (other counting quantifiers ∃=𝑘𝑥, ∃≤𝑘𝑥, ∃≥𝑘𝑥
can be introduced as abbreviations).

In this paper, we are only interested in formulas 𝜙(𝑥) with one free variable 𝑥 ∈ var. The
signature of 𝜙 is the set sig(𝜙) of relation and constant symbols occurring in 𝜙. We denote by
sub(𝜙) the set of subformulas of 𝜙 together with their negations, setting |𝜙| = |sub(𝜙)|.
FO(𝜎) and its fragments are interpreted in 𝜎-structures A = (dom(A), (𝑅A)𝑅∈𝜎, (𝑐

A)𝑐∈𝜎)
with a domain dom(A) ̸= ∅, relations 𝑅A on dom(A) of the same arity as 𝑅 ∈ 𝜎, and elements
𝑐A ∈ dom(A). A pointed structure is a pair A, 𝑎 with 𝑎 ∈ dom(A).

We also consider a few fragments of C2 that correspond to some standard description (or
modal) logics. In the context of DLs, unary relation symbols are called concept names, binary
ones role names, and constants individual names [3]. A role is a role name 𝑟 or its inverse 𝑟−,
with (𝑟−)− = 𝑟. The universal role is denoted by 𝑢. A nominal takes the form {𝑐} with an
individual name 𝑐. An 𝒜ℒ𝒞𝒪ℐ𝒬𝑢(𝜎)-concept is defined by the grammar

𝐶 ::= ⊤ | 𝐴 | {𝑐} | ¬𝐶 | 𝐶 ⊓ 𝐶 ′ | ≥ 𝑘 𝑟.𝐶 | ∃𝑢.𝐶,

where 𝐴 ∈ 𝜎 is a concept name, 𝑐 ∈ 𝜎 an individual name, 𝑟 a role name in 𝜎 or its inverse, and
𝑘 > 0. The construct (≥ 𝑘 𝑟.𝐶) is known as the qualified number restriction. As usual, we set

http://www.ijcai.org/Abstract/16/167
https://doi.org/10.24963/kr.2023/41
http://dx.doi.org/10.24963/KR.2023/41
https://doi.org/10.48550/arXiv.2312.05929
https://doi.org/10.48550/arXiv.2312.05929
http://dx.doi.org/10.48550/ARXIV.2312.05929
http://arxiv.org/abs/2312.05929

∃𝑟.𝐶 = (≥ 1 𝑟.𝐶) and use 𝐶 ⊔𝐷 as an abbreviation for ¬(¬𝐶 ⊓ ¬𝐷), 𝐶 → 𝐷 for ¬𝐶 ⊔𝐷,
𝐶 ↔ 𝐷 for (𝐶 → 𝐷) ⊓ (𝐷 → 𝐶), and ∀𝑟.𝐶 for ¬∃𝑟.(¬𝐶). Other counting concepts such as
≤ 𝑘 𝑟.𝐶 or = 𝑘 𝑟.𝐶 can also be introduced as abbreviations in an obvious way.

We consider several fragments of 𝒜ℒ𝒞𝒪ℐ𝒬𝑢. The weakest, 𝒜ℒ𝒞, is obtained by dropping
the universal role (indicated by omitting ·𝑢 from the name), inverse roles (indicated by omitting
ℐ), nominals (indicated by omitting 𝒪), and only admitting qualified number restrictions of the
form ∃𝑟.𝐶 (indicated by dropping 𝒬). The languages between 𝒜ℒ𝒞 and 𝒜ℒ𝒞𝒪ℐ𝒬𝑢 are now
defined in the obvious way.

The semantics of DLs can be defined via the standard translation ·♯ into C2 with constants. For
any 𝒜ℒ𝒞𝒪ℐ𝒬𝑢-concept 𝐶 , we denote by 𝐶♯𝑥 the C2-formula with constants and free variable
𝑥 ∈ var defined inductively by taking

⊤♯
𝑥 = (𝑥 = 𝑥), 𝐴♯𝑥 = 𝐴(𝑥), {𝑐}♯𝑥 = (𝑥 = 𝑐), (¬𝐶)♯𝑥 = ¬𝐶♯𝑥, (𝐶 ⊓𝐷)♯𝑥 = 𝐶♯𝑥 ∧𝐷♯

𝑥,

(∃𝑢.𝐶)♯𝑥 = ⊤♯
𝑥 ∧ ∃�̄� 𝐶♯�̄�, (≥ 𝑘 𝑟.𝐶)♯𝑥 = ∃≥𝑘�̄�

(︀
𝑟(𝑥, �̄�) ∧ 𝐶♯�̄�

)︀
,

where �̄� = 𝑦, 𝑦 = 𝑥 and {𝑥, 𝑦} = var. Then the extension 𝐶A of a concept 𝐶 in A is defined as

𝐶A = {𝑎 ∈ dom(A) | A |= 𝐶♯𝑥(𝑎)}.

In this paper, DL concepts 𝐶 are always regarded as FO-formulas 𝐶♯𝑥 with one free variable
𝑥, though we often use the more succinct DL notation (denoting roles by small letters like 𝑟
and 𝑠 rather than 𝑅 and 𝑆 as in FO-formulas). A formula 𝜙(𝑥) is called satisfiable if there is
a pointed structure A, 𝑎 such that structure A |= 𝜙(𝑎). Given 𝜎-formulas 𝜙(𝑥) and 𝜓(𝑥), we
write 𝜙(𝑥) |= 𝜓(𝑥) if, for any pointed 𝜎-structure A, 𝑎,

A |= 𝜙(𝑎) implies A |= 𝜓(𝑎).

Finally, we remind the reader of the complexity of the satisfiability problem for the logics in
question [3, 4]:

• FO2, C2, and 𝒜ℒ𝒞𝒪ℐ𝒬𝑢 are all NExpTime-complete;

• 𝒜ℒ𝒞𝑢, 𝒜ℒ𝒞𝒬𝑢, 𝒜ℒ𝒞ℐ𝒬𝑢, and 𝒜ℒ𝒞𝒪ℐ𝑢 are ExpTime-complete.

In the next section, we define the separation problems for the logics defined above and give a
model-theoretic criterion of separability in terms of bisimulations.

B. Separation and Bisimulation

Let 𝜙(𝑥) and 𝜓(𝑥) be FO-formulas. An FO-formula 𝜒(𝑥) is called a separator for 𝜙(𝑥) and
𝜓(𝑥) if 𝜙(𝑥) |= 𝜒(𝑥) and 𝜒(𝑥) |= ¬𝜓(𝑥). If, in addition, sig(𝜒) ⊆ sig(𝜙)∩ sig(𝜓), we say that
𝜒(𝑥) is a Craig separator for 𝜙(𝑥) and 𝜓(𝑥).

Given two languages 𝐿 and 𝐿𝑠, the separation problem for 𝐿 by 𝐿𝑠—or 𝐿/𝐿𝑠-separation, for
short—is to decide whether any two given 𝐿-formulas have an 𝐿𝑠-separator. If we are only
interested in Craig separators, we refer to the problem as Craig 𝐿/𝐿𝑠-separation.

Lemma 3. Let 𝐿/𝐿𝑠 be any of the pairs C2/FO2, 𝒜ℒ𝒞𝒪ℐ𝒬/𝒜ℒ𝒞𝒪ℐ , 𝒜ℒ𝒞ℐ𝒬𝑢/𝒜ℒ𝒞ℐ𝑢,
𝒜ℒ𝒞𝒬𝑢/𝒜ℒ𝒞𝑢. Then 𝐿/𝐿𝑠-separation is polynomial-time reducible to Craig 𝐿/𝐿𝑠-separation.

Proof. Given 𝐿-formulas 𝜙(𝑥) and 𝜓(𝑥), consider the formulas

𝜙′(𝑥) = 𝜙(𝑥) ∧
⋀︁

𝐴∈sig(𝜓)∖sig(𝜙)

(︀
𝐴(𝑥) → 𝐴(𝑥)

)︀
∧

⋀︁
𝑅∈sig(𝜓)∖sig(𝜙)

(︀
𝑅(𝑥, 𝑥) → 𝑅(𝑥, 𝑥)

)︀
∧

⋀︁
𝑐∈sig(𝜓)∖sig(𝜙)

(𝑐 = 𝑐),

𝜓′(𝑥) = 𝜓(𝑥) ∧
⋀︁

𝐴∈sig(𝜙)∖sig(𝜓)

(︀
𝐴(𝑥) → 𝐴(𝑥)

)︀
∧

⋀︁
𝑅∈sig(𝜙)∖sig(𝜓)

(︀
𝑅(𝑥, 𝑥) → 𝑅(𝑥, 𝑥)

)︀
∧

⋀︁
𝑐∈sig(𝜙)∖sig(𝜓)

(𝑐 = 𝑐).

It is readily seen that 𝜙(𝑥) and 𝜓(𝑥) have an 𝐿𝑠-separator iff 𝜙′(𝑥) and 𝜓′(𝑥) have a Craig
𝐿𝑠-separator. ⊣

Our main tool for determining the decidability and complexity of 𝐿/𝐿𝑠-separation is based
on the notion of bisimulation.

Let 𝐿 be any of the fragments of FO defined above and let 𝜚 ⊆ 𝜎. Given pointed 𝜎-structures
A, 𝑎 and B, 𝑏, we write A, 𝑎 ≡𝐿,𝜚 B, 𝑏 and say that A, 𝑎 and B, 𝑏 are 𝐿(𝜚)-equivalent if
A |= 𝜙(𝑎) iff B |= 𝜙(𝑏), for all 𝐿(𝜚)-formulas 𝜙(𝑥).

A binary relation 𝛽 ⊆ dom(A)× dom(B) is called an FO2(𝜚)-bisimulation between A and
B if 𝛽 is global in the sense that dom(A) ⊆ {𝑎 | (𝑎, 𝑏) ∈ 𝛽} and dom(B) ⊆ {𝑏 | (𝑎, 𝑏) ∈ 𝛽}
and, for every (𝑎, 𝑏) ∈ 𝛽, the following conditions are satisfied:

• for every 𝑎′ ∈ dom(A), there is a 𝑏′ ∈ dom(B) such that (𝑎′, 𝑏′) ∈ 𝛽 and (𝑎, 𝑎′) ↦→ (𝑏, 𝑏′)
is a partial 𝜚-isomorphism between A and B;

• for every 𝑏′ ∈ dom(B), there is a 𝑎′ ∈ dom(A) such that (𝑎′, 𝑏′) ∈ 𝛽 and (𝑎, 𝑎′) ↦→ (𝑏, 𝑏′)
is a partial 𝜚-isomorphism between A and B.

We write A, 𝑎 ∼FO2(𝜚) B, 𝑏 if 𝑎 ↦→ 𝑏 is a partial 𝜚-isomorphism between A and B and there is
an FO2(𝜚)-bisimulation 𝛽 between A and B such that (𝑎, 𝑏) ∈ 𝛽.

A non-empty binary relation 𝛽 ⊆ dom(A) × dom(B) is called an 𝒜ℒ𝒞(𝜚)-bisimulation
between A and B if the following conditions are satisfied:

1. if (𝑎, 𝑏) ∈ 𝛽, then 𝑎 ∈ 𝐴A iff 𝑏 ∈ 𝐴B for all 𝐴 ∈ 𝜚;

2. if (𝑎, 𝑏) ∈ 𝛽 and (𝑎, 𝑎′) ∈ 𝑅A, for 𝑅 ∈ 𝜚, then there exists 𝑏′ ∈ dom(B) such that
(𝑎′, 𝑏′) ∈ 𝛽 and (𝑏, 𝑏′) ∈ 𝑅B;

3. if (𝑎, 𝑏) ∈ 𝛽 and (𝑏, 𝑏′) ∈ 𝑅B, for 𝑅 ∈ 𝜚, then there exists 𝑎′ ∈ dom(A) such that
(𝑎′, 𝑏′) ∈ 𝛽 and (𝑎, 𝑎′) ∈ 𝑅A.

We write A, 𝑎 ∼𝒜ℒ𝒞(𝜚) B, 𝑏 if there is an 𝒜ℒ𝒞(𝜚)-bisimulation 𝛽 between A and B such that
(𝑎, 𝑏) ∈ 𝛽. We say that an 𝒜ℒ𝒞(𝜚)-bisimulation 𝛽 between A and B is

• an 𝒜ℒ𝒞𝑢(𝜚)-bisimulation if it is global;

• an 𝒜ℒ𝒞ℐ(𝜚)-bisimulation if conditions 2 and 3 also hold for 𝑟 = 𝑠− with 𝑠 ∈ 𝜚.

Further, we call 𝛽 an 𝒜ℒ𝒞ℐ𝑢(𝜚)-bisimulation if it is both an 𝒜ℒ𝒞𝑢(𝜚)- and an 𝒜ℒ𝒞ℐ(𝜚)-
bisimulation; 𝛽 is an 𝒜ℒ𝒞𝒪ℐ(𝜚)-bisimulation if it is both an 𝒜ℒ𝒞ℐ(𝜚)-bisimulation and
(𝑐A, 𝑐B) ∈ 𝛽 for all 𝑐 ∈ 𝜚. Finally, 𝛽 is an 𝒜ℒ𝒞𝒪ℐ𝑢(𝜚)-bisimulation if it is both an 𝒜ℒ𝒞ℐ𝑢(𝜚)
and an 𝒜ℒ𝒞𝒪ℐ(𝜚)-bisimulation. The following characterisation is well-known; see, e.g., [?
8, 4]:

Lemma 4. Let 𝐿 be any of the languages introduced in Section A. For any pointed 𝜎-structures
A, 𝑎 and B, 𝑏,

A, 𝑎 ∼𝐿(𝜚) B, 𝑏 implies A, 𝑎 ≡𝐿(𝜚) B, 𝑏

and, conversely, if structures A and B are 𝜔-saturated, then

A, 𝑎 ≡𝐿(𝜚) B, 𝑏 implies A, 𝑎 ∼𝐿(𝜚) B, 𝑏.

Lemma 5. Let 𝜙(𝑥) and 𝜓(𝑥) be any C2(𝜎)-formulas, 𝜚 ⊆ 𝜎, and let 𝐿𝑠 be any of the languages
introduced in Section A. Then the following conditions are equivalent:

• 𝜙(𝑥) and 𝜓(𝑥) do not have an 𝐿𝑠(𝜚)-separator ;

• there are pointed 𝜎-structures A, 𝑎 and B, 𝑏 such that

A |= 𝜙(𝑎), B |= 𝜓(𝑏), A, 𝑎 ∼𝐿𝑠(𝜚) B, 𝑏.

Proof. The proof is similar to the characterisations of Craig interpolant existence in [6, 7].⊣

C. Undecidable Separation

We show that 𝒜ℒ𝒞𝒪ℐ𝒬/𝒜ℒ𝒞𝒪ℐ-(Craig) separation is undecidable with and without the
universal role and that C2/FO2-(Craig) separation undecidable.

To this end we reduce the halting problem for two-register machines. A (deterministic)
two-register machine (2RM) is a pair 𝑀 = (𝑄,𝑃) with 𝑄 = 𝑞0, . . . , 𝑞ℓ a set of states and
𝑃 = 𝐼0, . . . , 𝐼ℓ−1 a sequence of instructions. By definition, 𝑞0 is the initial state, and 𝑞ℓ the
halting state. For all 𝑖 < ℓ,

• either 𝐼𝑖 = +(𝑝, 𝑞𝑗) is an incrementation instruction with 𝑝 ∈ {0, 1} a register and 𝑞𝑗 the
subsequent state;

• or 𝐼𝑖 = −(𝑝, 𝑞𝑗 , 𝑞𝑘) is a decrementation instruction with 𝑝 ∈ {0, 1} a register, 𝑞𝑗 the
subsequent state if register 𝑝 contains 0, and 𝑞𝑘 the subsequent state otherwise.

A configuration of 𝑀 is a triple (𝑞,𝑚, 𝑛), with 𝑞 the current state and 𝑚,𝑛 ∈ 𝜔 the register
contents. We write (𝑞𝑖, 𝑛1, 𝑛2) ⇒𝑀 (𝑞𝑗 ,𝑚1,𝑚2) if one of the following holds:

• 𝐼𝑖 = +(𝑝, 𝑞𝑗), 𝑚𝑝 = 𝑛𝑝 + 1, and 𝑚1−𝑝 = 𝑛1−𝑝;

• 𝐼𝑖 = −(𝑝, 𝑞𝑗 , 𝑞𝑘), 𝑛𝑝 = 𝑚𝑝 = 0, and 𝑚1−𝑝 = 𝑛1−𝑝;

• 𝐼𝑖 = −(𝑝, 𝑞𝑘, 𝑞𝑗), 𝑛𝑝 > 0, 𝑚𝑝 = 𝑛𝑝 − 1, and 𝑚1−𝑝 = 𝑛1−𝑝.

The computation of 𝑀 on input (𝑛,𝑚) ∈ 𝜔2 is the unique longest configuration sequence
(𝑝0, 𝑛0,𝑚0) ⇒𝑀 (𝑝1, 𝑛1,𝑚1) ⇒𝑀 · · · such that 𝑝0 = 𝑞0, 𝑛0 = 𝑛, and 𝑚0 = 𝑚. The halting
problem for 2RMs is to decide, given a 2RM 𝑀 , whether its computation on input (0, 0) is finite
(which implies that its last state is 𝑞ℓ).

C.1. 𝒜ℒ𝒞𝒪ℐ𝒬/𝒜ℒ𝒞𝒪ℐ-separation is undecidable.

We show that 𝒜ℒ𝒞𝒪ℐ𝒬𝑢/𝒜ℒ𝒞𝒪ℐ𝑢-separation is undecidable and then use spy-points to
eliminate the universal role and obtain that 𝒜ℒ𝒞𝒪ℐ𝒬/𝒜ℒ𝒞𝒪ℐ-separation is undecidable. We
also obtain undecidability of Craig separation since the concepts used in the proof use the same
signature.

We reduce the non-halting problem for 2RM to the non-existence of a separator. To this
purpose, let a two-register machine𝑀 = (𝑄,𝑃) be given. We assume without loss of generality
that the initial state 𝑞0 only occurs initially and that 𝐼0 is a decrementation instruction.

We introduce two concepts, 𝐶𝑀 and 𝐷𝑀 , both conjunctions, with the conjuncts best pre-
sented in a few groups. For 𝐶𝑀 , the first group of conjuncts are as follows.

1. {𝑎} ⊓𝑄0

2. ∀𝑢.(𝐹 ⊔ ⊔
1≤𝑖≤ℓ

𝑄𝑖)

3. ∀𝑢.(𝐹 → ⊔
1≤𝑖≤ℓ

¬𝑄𝑖)

4. ∀𝑢. ⊓
1≤𝑖≤ℓ

(𝑄𝑖 → ⊓
𝑖<𝑗≤ℓ

¬𝑄𝑗)

These conjuncts describe the various concept names that we need: every element satisfies
exactly one of 𝐹 , 𝑄0, · · · , 𝑄ℓ, and the unique node satisfying {𝑎} satisfies 𝑄0. We will use
models of 𝐶𝑀 to represent runs of the machine 𝑀 ; elements satisfying some 𝑄𝑖 will represent
snapshots of the computations where the machine is in state 𝑞𝑖. The elements satisfying 𝐹 are
auxiliary, their purpose will become more clear once we discuss 𝐷𝑀 .

The next group of conjuncts of 𝐶𝑀 is as follows.

5. {𝑎} → ∀𝑟−1.⊥

6. ∀𝑢.(¬𝐹 → (= 1 𝑟.⊤)

7. ∀𝑢.((¬𝐹 ∧ ¬{𝑎}) → (= 1 𝑟−1.⊤)

8. ∀𝑢.(¬𝐹 → (∀𝑟.¬𝐹 ⊓ ∀𝑟−1.¬𝐹))

9. ∀𝑢.(¬𝐹 → ∃𝑠.𝐹)

These conjuncts describe the relations 𝑟 and 𝑠: every non-auxiliary element (i.e., every ¬𝐹
element) has exactly one 𝑟-successor, and every such element has exactly one 𝑟-predecessor,
except for the node satisfying {𝑎} which has no 𝑟-predecessors. Furthermore, if an element
is non-auxiliary then so are its 𝑟-successor and 𝑟-predecessor. Finally, every non-auxiliary
element has an 𝑠-successor that is auxiliary.

It follows from these conditions that every pointed model A, 𝑥0 with 𝑥0 ∈ 𝐶A
𝑀 contains an

infinite 𝑟-chain starting at 𝑥0 and each element of the chain satisfies exactly one 𝑄𝑖. We will
interpret these elements as representing a run of 𝑀 .

The next group of conjuncts depends on the instructions of the machine 𝑀 . If 𝐼𝑖 = +(𝑝, 𝑞𝑗)
we add the conjuct

10. ∀𝑢.(𝑄𝑖 → ∀𝑟.𝑄𝑗)

and if 𝐼𝑖 = −(𝑝, 𝑞𝑗 , 𝑞𝑘) we add the conjuncts

11. ∀𝑢.((𝑄𝑖 ∧ 𝐸𝑝) → ∀𝑟.𝑄𝑗)

12. ∀𝑢.((𝑄𝑖 ∧ ¬𝐸𝑝) → ∀𝑟.𝑄𝑘)

These conjuncts express that the instructions of 𝑀 are followed, where 𝐸𝑝 (with 𝑝 ∈ {0, 1})
indicates that register 𝑝 is empty. Note that we do not, at this stage, keep track of the value in
each register. But if 𝐸𝑝 holds if and only if register 𝑝 is empty, then these conjuncts ensure that
every pointed model A, 𝑥0 of 𝐶𝑀 encodes the run of 𝑀 .

Finally, we add one more, very simple, conjunct,

13. ∀𝑢.¬𝑄ℓ

which expresses that the halting state 𝑄ℓ is not reached. So if 𝐶𝑀 encodes a run of 𝑀 , it must
be a non-halting run.

The concept 𝐷𝑀 can similarly be divided into groups of conjuncts. Before discussing these
conjuncts, it is convenient to first define a few abbreviations:

• 𝑈 := (= 1 𝑠.𝐹) ⊔ (= 3 𝑠.𝐹)

• 𝑅0 := (= 1 𝑠.𝐹) ⊔ (= 2 𝑠.𝐹)

• 𝑅1 := ¬𝑅0.

Note that, because 𝑈 , 𝑅0 and 𝑅1 are mere abbreviations, they are not considered to be part of
the signature. Note also that 𝑈 ⊓𝑅0 and 𝑈 ⊓𝑅1 are both consistent, while 𝑅0 ⊓𝑅1 obviously
is not. Now, let us introduce the conjuncts of 𝐷𝑀 .

The first group is the same as the the first group of conjuncts of 𝐶𝑀 :

1. {𝑎} ⊓𝑄0

2. ∀𝑢.(𝐹 ⊔ ⊔
1≤𝑖≤ℓ

𝑄𝑖)

3. ∀𝑢.(𝐹 → ⊔
1≤𝑖≤ℓ

¬𝑄𝑖)

4. ∀𝑢. ⊓
1≤𝑖≤ℓ

(𝑄𝑖 → ⊓
𝑖<𝑗≤ℓ

¬𝑄𝑗)

So, as with 𝐶𝑀 , in every pointed model B, 𝑦0 of 𝐷𝑀 , all elements satisfy exactly one of 𝐹 , 𝑄0,
· · · , 𝑄ℓ. The remaining conjuncts are quite different, however.

5. (= 2 𝑟.⊤)

6. ∃𝑟.(𝑈 ⊓𝑅0) ⊓ ∃𝑟.(𝑈 ⊓𝑅1)

7. 𝐸0 ⊓ 𝐸1

8. ∀𝑢.(𝑅𝑝 → (∀𝑟.𝑅𝑝 ⊓ ∀𝑟−1.(𝑅𝑝 ⊔ {𝑎}))) for 𝑝 ∈ {0, 1}

9. ∀𝑢.((𝑈 ⊓ ¬{𝑎}) → ((= 1 𝑟.𝑈) ⊓ (= 1 𝑟−1.𝑈)))

Conjunct 1 implies that in any pointed model B, 𝑦0 of 𝐷𝑀 we have that 𝑦0 satisfies {𝑎}, so
conjuncts 5 and 6 imply that 𝑦0 has exactly two 𝑟-successors, with one satisfying 𝑈 ⊓𝑅0 and the
other 𝑈 ⊓𝑅1. We will use these branches to represent registers 0 and 1, respectively. Conjunct 7,
meanwhile, says that 𝑦0 satisfies both 𝐸0 and 𝐸1. Conjuncts 8 and 9 handle propagation: 8 says
that 𝑅𝑝 propagates forward and back along 𝑟 (except to {𝑎}), while 9 says that 𝑈 propagates to
exactly one 𝑟-successor and 𝑟-predecessor (except from {𝑎}).

The next group of conjuncts depends on the instructions of 𝑀 . If 𝐼𝑖 = +(𝑝, 𝑞𝑗),

10. ∀𝑢.((𝑄𝑖 ⊓𝑅𝑝) → ((= 2 𝑟.⊤) ⊓ ∀𝑟.(= 1 𝑟−1.⊤)))

11. ∀𝑢.((𝑄𝑖 ⊓ ¬𝑅𝑝) → ((= 1 𝑟.⊤) ⊓ ∀𝑟.(= 1 𝑟−1.⊤)))

If 𝑖 ̸= 0 and 𝐼𝑖 = −(𝑝, 𝑞𝑗 , 𝑞𝑘),

12. ∀𝑢((𝑄𝑖 ⊓𝑅𝑝 ⊓ 𝐸𝑝) → ((= 1 𝑟.⊤) ⊓ ∀𝑟.(= 1 𝑟−1.⊤)))

13. ∀𝑢((𝑄𝑖 ⊓𝑅𝑝 ⊓ ¬𝐸𝑝) → ((= 1 𝑟.⊤) ⊓ ∀𝑟.(= 2 𝑟−1.⊤)))

14. ∀𝑢.((𝑄𝑖 ⊓ ¬𝑅𝑝) → ((= 1 𝑟.⊤) ⊓ ∀𝑟.(= 1 𝑟−1.⊤)))

Conjunct 10 expresses that if 𝑄𝑖 is an incrementation instruction, then an element satisfying
𝑄𝑖⊓𝑅𝑝 will have two 𝑟-successors that each have one 𝑟-predecessor. We will use 𝑟 to represent
the computation, so this means that the number of elements will double in a state with an
incrementation instruction. With respect to conjuncts 12 and 13, recall that we use 𝐸𝑝 as a
marker for register 𝑝 being empty. So these conjuncts say that if a decrementation instruction is
given with an empty register (conjunct 12), then for every 𝑅𝑝 element there is one 𝑟-successor
that has one 𝑟-predecessor so the number of elements remains the same, and if a decrementation
instruction is given with a non-empty register (conjunct 13) then for every 𝑅𝑝 element there is
a single 𝑟-successor that has two 𝑟-predecessors, so the number of elements is halved.

Conjuncts 11 and 14 state that elements in the other register (i.e., those satisfying ¬𝑅𝑝) have
exactly one successor that has exactly one predecessor, so the number of elements remains the
same.

Note that we treat 𝑄0 separately. This is because we first need to create the two registers
before we can increase or decrease the number of elements in each register. This is done by
conjuncts 5 and 6. After one step of the computation, our two registers are then initialized with
one element each, which we interpret as the value 0 for that register. This is why we assume
that 𝑞0 is decrementing (so the registers are empty after one step of the computation) and only
occurs initially (so we do not perform the initialization again at later times).

Finally, we add one more conjunct

15. ∀𝑢((𝐸𝑝 ⊓𝑅𝑝) → 𝑈)

which states that the combination of 𝐸𝑝 and 𝑅𝑝 is possible only when 𝑈 also holds.
The concepts 𝐶𝑀 and𝐷𝑀 have the same signature. Hence any separator is a Craig separator.

We show that a separator exists if and only if 𝑀 is non-halting, from which it follows that
separation is undecidable. More precisely, the reduction shows that non-separation is co-RE
hard, and therefore the separation problem is RE hard.

Before proving our reduction, let us first introduce the intended pointed models for 𝐶𝑀 and
𝐷𝑀 , where 𝑀 is non-halting. A pointed model A, 𝑥0 of 𝐶𝑀 will be used to represent a clock,
and the state the machine is in at each time step. Recall that 𝐶𝑀 guarantees that A, 𝑥0 follows
the instructions of 𝑀 , as long as 𝐸𝑝 holds when register 𝑝 is empty. In our intended models,
we will make sure that (i) 𝐸𝑝 only holds if register 𝑝 is empty and (ii) if register 𝑝 is empty and
the current instruction is to decrement register 𝑝, then 𝐸𝑝 holds (to indicate that decrementing
is impossible). If register 𝑝 is empty and the current instruction is anything other than to
decrement register 𝑝, we do not care whether 𝐸𝑝 holds.

A pointed model B, 𝑦0 of 𝐷𝑀 is used to represent the content of the registers. Every point 𝑡
of the computation is represented by some element 𝑒𝑡 of A, and this 𝑒𝑡 is 𝒜ℒ𝒞𝒪ℐ𝑢-bisimilar
to a set of elements in B. These elements of B can be divided into those that satisfy 𝑅0 and
those that satisfy 𝑅1. If 𝑒𝑡 is 𝒜ℒ𝒞𝒪ℐ𝑢-bisimilar to 𝑚 elements that satisfy 𝑅0 and 𝑛 elements
that satisfy 𝑅1, then we say that registers 0 and 1 contains log2(𝑚) and log2(𝑛), respectively,
at time 𝑡.

An example of (part of) these intended models is shown in Figure 1. In this example,
𝐼0 = −(0, 𝑞1, 𝑞1), 𝐼1 = +(0, 𝑞4) and 𝐼4 = −(0, 𝑞2, 𝑞4). So the machine starts in state 𝑞0
by decrementing the (already empty) register 0, and goes to state 𝑞1. In this state, it increments
register 0, and continues to state 𝑞4. In 𝑞4, it first decrements register 0 while staying in 𝑞4.
Then it tries to decrement register 0 again, but now that register is empty so the next state is 𝑞2
instead of 𝑞4.

It is straightforward (if somewhat labour intensive) to verify that the intended pointed models
satisfy 𝐶𝑀 and 𝐷𝑀 , and that they are 𝒜ℒ𝒞𝒪ℐ𝑢-bisimilar.

Proposition 6. If 𝑀 is non-halting, then there are pointed models A, 𝑥0 of 𝐶𝑀 and B, 𝑦0 of 𝐷𝑀

such that A, 𝑥0 ∼𝒜ℒ𝒞𝒪ℐ𝑢 B, 𝑦0.

Next, we need to show the converse.

Proposition 7. If there are there are pointed models A, 𝑥0 of 𝐶𝑀 and B, 𝑦0 of 𝐷𝑀 such that
A, 𝑥0 ∼𝒜ℒ𝒞𝒪ℐ𝑢 B, 𝑦0, then 𝑀 is non-halting.

Proof. We will show that A and B contain intended models as sub-models. A contains a
sequence of elements 𝑥0, 𝑥1, · · · where 𝑥0 = 𝑎A, 𝑥𝑡+1 is the unique 𝑟-successor of 𝑥𝑡 and 𝑥𝑡 is
the unique 𝑟-predecessor of 𝑥𝑡+1. Furthermore, on each 𝑥𝑡 some 𝑄𝑖 (with 0 ≤ 𝑖 ≤ ℓ) holds.

In B we also have 𝑦0 = 𝑎B. Let 𝑌0 = {𝑦0}, and for every 𝑡 let 𝑌𝑡+1 be the 𝑟-successors of
the elements of 𝑌𝑡. Let 𝛽 ⊆ dom(A)× dom(B) be the 𝒜ℒ𝒞𝒪ℐ𝑢-bisimulation between A, 𝑥0
and B, 𝑦0.
Claim 1: For every 𝑡 ∈ N, we have (i) if (𝑥𝑡, 𝑦) ∈ 𝛽 then 𝑦 ∈ 𝑌𝑡 and (ii) if 𝑦 ∈ 𝑌𝑡, then

(𝑥𝑡, 𝑦) ∈ 𝛽.

Figure 1: Example pointed models of 𝐶𝑀 (above the dashed line) and 𝐷𝑀 (below the dashed line).
Elements that are drawn below each other are 𝒜ℒ𝒞𝒪ℐ𝑢-bisimilar. Recall that 𝑅0, 𝑅1 and 𝑈 are
abbreviations that depend on the number of 𝑠-successors satisfying 𝐹 . All elements in the upper branch
of the pointed model of 𝐷𝑀 have 1 or 2 𝑠-successors, to they satisfy 𝑅0. In the lower branch they have
more than 2 𝑠-successors, so they satisfy𝑅1. All but one elements have 1 or 3 𝑠-successors, and therefore
satisfy 𝑈 . The one exception is where the upper branch splits; there can be at most one 𝑅0-element
that satisfies 𝑈 , so the lower of the two 𝑅0 elements has 2 𝑠-successors, which is a ¬𝑈 amount.

{𝑎}, 𝑄0

𝐸0, 𝐸1

𝑄1 𝑄4 𝑄4, 𝐸0 𝑄2

· · ·

𝐹 𝐹 𝐹 𝐹 𝐹

𝑟 𝑟 𝑟 𝑟

𝑠 𝑠 𝑠 𝑠 𝑠

{𝑎}, 𝑄0

𝐸0, 𝐸1

𝑄1

𝑄1

𝑄4

𝑄4

𝑄4

𝑄4, 𝐸0

𝑄4, 𝐸0

𝑄2

𝑄2

· · ·

· · ·

𝑟

𝑟

𝑟

𝑟

𝑟

𝑟

𝑟

𝑟

𝑟

𝑟

𝐹

𝐹

𝐹

𝐹

𝐹

𝐹 𝐹

𝑠

𝑠

𝑠

𝑠

𝑠

𝑠 𝑠

𝐹

𝐹

𝐹

𝐹

𝐹

𝐹

𝐹

𝐹

𝐹

𝐹

𝐹

𝐹

𝑠
𝑠
𝑠

𝑠
𝑠
𝑠

𝑠
𝑠
𝑠

𝑠
𝑠
𝑠

Proof of claim 1: By induction on 𝑡. As base case, note that 𝑥0 and 𝑦0 are the unique elements
satisfying {𝑎} in their respective models, so 𝑥0 and 𝑦0 can only be 𝒜ℒ𝒞𝒪ℐ𝑢-bisimilar to each
other. Since 𝛽 is, by assumption, a 𝒜ℒ𝒞𝒪ℐ𝑢-bisimulation, we must have (𝑥0, 𝑦0) ∈ 𝛽. Assume
then as induction hypothesis that 𝑡 > 0 and that the claim holds for all 𝑡′ < 𝑡.

Take any 𝑦 such that (𝑥𝑡, 𝑦) ∈ 𝛽. Because 𝛽 is an 𝒜ℒ𝒞𝒪ℐ𝑢-bisimulation and 𝑥𝑡 has 𝑥𝑡−1

as an 𝑟-predecessor, 𝑦 must have some 𝑦′ as 𝑟-predecessor such that (𝑡𝑥−1, 𝑦
′) ∈ 𝛽. By the

induction hypothesis, 𝑦′ ∈ 𝑌𝑡−1. This implies that 𝑦 is an 𝑟-successor of an element from 𝑌𝑡−1

so, by definition, 𝑦 ∈ 𝑌𝑡.
Now, take any 𝑦 ∈ 𝑌𝑡. By the definition of 𝑌𝑡, there is some 𝑦′ ∈ 𝑌𝑡−1 that is an 𝑟-predecessor

of 𝑦. by the induction hypothesis, (𝑥𝑡−1, 𝑦) ∈ 𝛽. Because 𝛽 is a bisimulation and 𝑦 is an
𝑟-successor of 𝑦′, there must be some 𝑥′ that is an 𝑟-successor of 𝑥𝑡−1 such that (𝑥′, 𝑦) ∈ 𝛽.
The only 𝑟-successor of 𝑥𝑡−1 is 𝑥𝑡, so we have 𝑥′ = 𝑥𝑡, and hence (𝑥𝑡, 𝑦) ∈ 𝛽. This completes

the induction step, and thereby the proof of Claim 1.
Claim 2: For every 𝑦 ∈ 𝑌𝑡, if 𝑦′ is an 𝑟-predecessor of 𝑦, then 𝑦′ ∈ 𝑌𝑡−1.

Proof of claim 2: By claim 1, (𝑥𝑡, 𝑦) ∈ 𝛽. Since 𝑦′ is an 𝑟-predecessor of 𝑦, we must have
(𝑦′, 𝑥′) ∈ 𝛽 for some 𝑟-predecessor 𝑥′ of 𝑥𝑡. The only 𝑟-predecessor of 𝑥𝑡 is 𝑥𝑡−1, so we have
(𝑥𝑡−1, 𝑦

′) ∈ 𝛽. By claim 1, this implies that 𝑦′ ∈ 𝑌𝑡−1. This completes the proof of claim 2.
Claim 3: For every 𝑡, there is exactly one 𝑖𝑡 such that 𝑄𝑖𝑡 holds on any of 𝑥𝑡 and 𝑌𝑡. This

𝑄𝑖𝑡 holds on all of 𝑥𝑡 and 𝑌𝑡. Furthermore, 𝐸𝑝 either holds on all of 𝑥𝑡 and 𝑌𝑡, or on none.
Proof of claim 3: Because A is a model of 𝐶𝑀 , every 𝑥𝑡 satisfies exactly one 𝑄𝑖𝑡 . The rest of
the claim follows immediately from 𝛽 being a bisimulation.

Before continuing with further claims, let use define 𝑌 𝑝
𝑡 , for 𝑡 > 0 and 𝑝 ∈ {0, 1}, by

𝑌 𝑝
𝑡 = {𝑦 ∈ 𝑌𝑡 | B, 𝑦 |= 𝑅𝑝}. If 𝑝 ∈ {0, 1}, we write 𝑝 for the other element of {0, 1}, i.e.,

0 = 1 and 1 = 0.
Claim 4: For 𝑝 ∈ {0, 1} and 𝑡 > 0, the 𝑟-successors of 𝑌 𝑝

𝑡 are in 𝑌 𝑝
𝑡+1 and the 𝑟-predecessors

of 𝑌 𝑝
𝑡+1 are in 𝑌 𝑝

𝑡 .
Proof of claim 4: Conjuncts 8 says that 𝑅𝑝 propagates forward and back trough 𝑟.

Claim 5: For every 𝑡 > 0,

• if 𝐼𝑖𝑡 = +(𝑝, 𝑞𝑗) then 𝑖𝑡+1 = 𝑗, |𝑌 𝑝
𝑡+1| = 2× |𝑌 𝑝

𝑡 |,

• if 𝐼𝑖𝑡 = −(𝑝, 𝑞𝑗 , 𝑞𝑘) and 𝐸𝑝 holds on 𝑥𝑡, then 𝐼𝑡+1 = 𝑗, |𝑌 𝑝
𝑡+1| = |𝑌 𝑝

𝑡 |,

• if 𝐼𝑖𝑡 = −(𝑝, 𝑞𝑗 , 𝑞𝑘) and 𝐸𝑝 does not hold on 𝑥𝑡, then 𝑖𝑡+1 = 𝑘, |𝑌 𝑝
𝑡+1| = 1

2 × |𝑌 𝑝
𝑡 |,

and, in each case, |𝑌 𝑝
𝑡+1| = |𝑌 𝑝

𝑡 |.
Proof of claim 5: Conjuncts 10, 11 and 12 of 𝐶𝑀 guarantee that 𝑖𝑡+1 has the appropriate value.

Consider, then the sets 𝑌 𝑝
𝑡 and 𝑌 𝑝

𝑡+1. By claim 4, all the 𝑟-successor of 𝑌 𝑝
𝑡 are in 𝑌 𝑝

𝑡+1, and
all the 𝑟-predecessors of 𝑌 𝑝

𝑡+1 are in 𝑌 𝑝
𝑡 . Furthermore, conjunct 10 of 𝐷𝑀 implies that, if

𝐼𝑖+𝑡 = +(𝑝, 𝑞𝑗) then every 𝑦 ∈ 𝑌 𝑝
𝑡 has exactly two 𝑟-successors that each have exactly one

𝑟-predecessor. It follows that |𝑌 𝑝
𝑡+1| = 2× |𝑌 𝑝

𝑡 |. Similarly, if 𝐼𝑖𝑡 = −(𝑝, 𝑞𝑗 , 𝑞𝑘) and 𝐸𝑝 holds,
then conjunct 12 says that every 𝑦 ∈ 𝑌 𝑝

𝑡 has exactly one 𝑟-successor that has exactly one
𝑟-predecessor, so |𝑌 𝑝

𝑡+1| = |𝑌 𝑝
𝑡 |. If 𝐼𝑖+𝑡 = −(𝑝, 𝑞𝑗 , 𝑞𝑘) and 𝐸𝑝 does not hold, then conjunct 13

makes sure that every 𝑦 ∈ 𝑌 𝑝
𝑡 has exactly one 𝑟-successor that has exactly two 𝑟-predecessors,

so |𝑌 𝑝
𝑡+1| = 1

2 × |𝑌 𝑝
𝑡 |.

Finally, the conjuncts 11 and 14 guarantee that every 𝑦 ∈ 𝑌 𝑝
𝑡 has exactly one 𝑟-successor

that has exactly one 𝑟-predecessor, so |𝑌 𝑝
𝑡+1| = |𝑌 𝑝

𝑡 |.
Claim 6: |𝑌 0

1 | = |𝑌 1
1 | = 1.

Proof of claim 6: By conjuncts 5 and 6 of 𝐷𝑀 , {𝑎} has exactly two successors, one of which
satisfies 𝑈 ⊓𝑅0 while the other satisfies 𝑈 ⊓𝑅1.
Claim 7: For every 𝑡 > 0 and 𝑝 ∈ {0, 1}, there is exactly one 𝑦 ∈ 𝑌 𝑝

𝑡 that satisfies 𝑈 .
Proof of claim 7: For 𝑡 = 1, the claim holds because, by conjunct 6 of 𝐷𝑀 , there is at least
one 𝑦 ∈ 𝑌 𝑝

1 that satisfies 𝑈 . As 𝑌 𝑝
1 is a singleton (by claim 6), there must be exactly one such 𝑦.

Conjunct 9 implies that every 𝑈 element (other than {𝑎}) has exactly one 𝑟-predecessor and
one 𝑟-successor that satisfies 𝑈 , so if 𝑌 𝑝

𝑡 has exactly one element satisfying 𝑈 then so does
𝑌 𝑝
𝑡+1.
Claim 8: for every 𝑡 > 0 and 𝑝 ∈ {0, 1},

• if 𝐸𝑝 holds on 𝑥𝑡 and 𝑌𝑡, then 𝑌 𝑝
𝑡 is a singleton and

• if 𝐼𝑡 = −(𝑝, 𝑞𝑗 , 𝑞𝑘) and 𝑌 𝑝
𝑡 is a singleton, then 𝐸𝑝 holds on 𝑥𝑡 and 𝑌𝑡.

Proof of claim 8: Suppose that 𝐸𝑝 holds on 𝑥𝑡 and 𝑌𝑡. Then 𝐸𝑝 ⊓𝑅𝑝 is true for every element
of 𝑌 𝑝

𝑡 . By conjunct 15, this implies that 𝑈 is true for all of 𝑌 𝑝
𝑡 . Claim 7 says that only one

element of 𝑌 𝑝
𝑡 can satisfy 𝑈 , so 𝑌 𝑝

𝑡 must be a singleton.
Suppose then that 𝐼𝑡 = −(𝑝, 𝑞𝑗 , 𝑞𝑘) and 𝑌 𝑝

𝑡 is a singleton. Assume towards a contradiction
that 𝐸𝑝 does not hold on 𝑥𝑡. Then, by claim 5, |𝑌 𝑝

𝑡+1| = 1
2 × |𝑌 𝑝

𝑡 |. But 𝑌 𝑝
𝑡+1 cannot have half as

many elements as 𝑌 𝑝
𝑡 , since 𝑌 𝑝

𝑡 is a singleton. From this contradiction, we conclude that 𝐸𝑝
holds on 𝑥𝑡 (and therefore also on 𝑌𝑡).
Claim 9: for every 𝑡 and 𝑝 ∈ {0, 1}, let 𝑣𝑝𝑡 be the value in register 𝑝 at time 𝑡 in the run of

𝑀 and 𝑞𝑖𝑡 the state 𝑀 is in at time 𝑡. The following hold:

• 𝑄𝑖𝑡 holds on 𝑥𝑡 and 𝑌𝑡,

• if 𝑡 > 0, then |𝑌 𝑝
𝑡 | = 2𝑣

𝑝
𝑡 .

Proof of claim 9: As we remarked when we introduced them, conjuncts 10–12 of𝐶𝑀 guarantee
that the state transition instruction of 𝑀 are obeyed, if 𝐸𝑝 holds in the appropriate places.
Claim 5 shows that B follows the incrementation/decrementation instructions of 𝑀 , again
under the assumption that 𝐸𝑝 holds when appropriate. Finally, claim 8 shows that 𝐸𝑝 holds
where appropriate.

Claim 10: 𝑀 is non halting.
Proof of claim 10: Follows from conjunct 13 of 𝐶𝑀 together with claim 9. ⊣

We have shown the following.

Theorem 8. 𝒜ℒ𝒞𝒪ℐ𝒬𝑢/𝒜ℒ𝒞𝒪ℐ𝑢)-(Craig) separation is RE-complete.

We observe that the proof above can be adapted so that the universal role 𝑢 is not used. Let
𝐶𝑀 and 𝐷𝑀 be as defined above, except that we treat 𝑢 not as the universal role but instead as
a role name. Now, add the following additional conjuncts to both 𝐶𝑀 and 𝐷𝑀 :

• ∃𝑢.{𝑎}

• ∀𝑢.(∀𝑟.∃𝑢−.{𝑎} ⊓ ∀𝑟−.∃𝑢−.{𝑎})

• ∀𝑢.(∀𝑠.∃𝑢−.{𝑎} ⊓ ∀𝑠−.∃𝑢−.{𝑎})

These additional conjuncts guarantee that while 𝑢 is not necessarily interpreted as the universal
relation, all elements that are relevant in the proof are 𝑢-successors of 𝑎A and 𝑎B, respec-
tively, and hence all conjuncts that start with ∀𝑢 have the desired effect. Undecidability of
𝒜ℒ𝒞𝒪ℐ𝒬/𝒜ℒ𝒞𝒪ℐ-(Craig) separation follows immediately.

Theorem 9. 𝒜ℒ𝒞𝒪ℐ𝒬/𝒜ℒ𝒞𝒪ℐ-(Craig) separation is RE-complete.

C.2. C2/FO2-separation is undecidable

We show that C2/FO2-(Craig) separation is undecidable. Our reduction is very similar to the
one presented in the previous Section for 𝒜ℒ𝒞𝒪ℐ𝒬/𝒜ℒ𝒞ℐ𝒪-separation. The reduction is
given below, but before we consider the details we discuss the modifications that are required.

Since we are now working in C2, instead of 𝒜ℒ𝒞𝒪ℐ𝒬𝑢, we will use different notation, but
the main idea remains the same. We use two formulas 𝜙𝑀 and 𝜓𝑀 , where the pointed model
A, 𝑥0 of 𝜑𝑀 is essentially an 𝑟-chain encoding the the run of 𝑀 , and the model B, 𝑦0 of 𝜓𝑀
represents the contents of the registers. Synchronisation between A and B is done through the
bisimulation between them. All of this is exactly as in the 𝒜ℒ𝒞𝒪ℐ𝒬𝑢/𝒜ℒ𝒞𝒪ℐ𝑢 case.

Where things get more complicated is that now the bisimulation has to be a FO2-bisimulation,
which is more constraining than a 𝒜ℒ𝒪ℐ𝒬𝑢-bisimulation. Recall that a FO2-bisimulation
requires that if (𝑥, 𝑦) ∈ 𝛽, then for every 𝑥′ there is an 𝑦′ such that (𝑥′, 𝑦′) ∈ 𝛽 and (𝑥, 𝑥′) ↦→
(𝑦, 𝑦′) is a partial isomorphism, and similarly for every 𝑦′ there must be an 𝑥′ with the same
properties. Here (𝑥, 𝑥′) ↦→ (𝑦, 𝑦′) being a partial isomorphism means that (i) for every unary
predicate 𝑃 in the relevant signature, 𝑃 (𝑥) iff 𝑃 (𝑦) and 𝑃 (𝑥′) iff 𝑃 (𝑦′), (ii) for every binary
predicate 𝑅 in the relevant signature, 𝑅(𝑥, 𝑥′) iff 𝑅(𝑦, 𝑦′) and 𝑅(𝑥′, 𝑥) iff 𝑅(𝑦′, 𝑦′) and (iii)
𝑥 = 𝑥′ iff 𝑦 = 𝑦′.

Perhaps surprisingly, it is only condition (iii) that will give us trouble, and that requires us
to make the current proof slighltly more complicated than the 𝒜ℒ𝒞𝒪ℐ𝒬𝑢/𝒜ℒ𝒞𝒪ℐ𝑢 one. On
the intended pointed models of 𝐶𝑀 and 𝐷𝑀 , we can already choose an 𝑦′ (or 𝑥′) that satisfies
properties (i) and (ii). Condition (iii), however, is not satisfied for those models.

This is because condition (iii) implies that a FO2-bisimulation can never relate a singleton
set to a multi-element set (i.e., if (𝑥, 𝑦) ∈ 𝛽 and (𝑥, 𝑦′) ∈ 𝛽 with 𝑦 ̸= 𝑦′ then there must be a
𝑥′ ̸= 𝑥 such that (𝑥′, 𝑦) ∈ 𝛽 and (𝑥′, 𝑦′) ∈ 𝛽). After all, if (𝑥, 𝑦), (𝑥, 𝑦′) ∈ 𝛽 with 𝑦 ̸= 𝑦′ then
there must be some 𝑥′ such that (𝑥′, 𝑦′) ∈ 𝛽 and (𝑥, 𝑥′) ↦→ (𝑦, 𝑦′) is a partial isomorphism. In
particular, we must then have 𝑥 = 𝑥′ iff 𝑦 = 𝑦′, so from 𝑦 ̸= 𝑦′ it follows that 𝑥 ̸= 𝑥′.

In order to solve this issue, we make a small modification to the intended models for 𝐶𝑀 and
𝐷𝑀 . Specifically, we create two copies of everything: the intended models of 𝜑𝑀 and 𝜓𝑀 are
simply two disjoint copies of 𝐶𝑀 and 𝐷𝑀 , respectively.

Now, let us consider the precise formulas 𝜙𝑀 and 𝜙𝑀 that achieve this effect. We begin with
𝜙𝑀 , which is the conjunction of the following formulas:

1. ∃=2𝑥𝑄0(𝑥)

2. ∀𝑥 (𝐹 (𝑥) ∨
⋁︀

1≤𝑖≤ℓ𝑄𝑖(𝑥))

3. ∀𝑥 (𝐹 (𝑥) →
⋀︀

1≤𝑖≤ℓ ¬𝑄𝑖(𝑥))

4. ∀𝑥
⋀︀

1≤𝑖≤ℓ(𝑄𝑖(𝑥) →
⋀︀
𝑖<𝑗≤ℓ ¬𝑄𝑗(𝑥))

5. ∀𝑥 (𝑄0(𝑥) → ∀𝑦¬𝑅(𝑦, 𝑥))

6. ∀𝑥 (¬𝐹 (𝑥) → ∃=1𝑦𝑅(𝑥, 𝑦))

7. ∀𝑥 ((¬𝐹 (𝑥) ∧ ¬𝑄0(𝑥)) → ∃=1𝑦𝑅(𝑦, 𝑥))

8. ∀𝑥 (¬𝐹 (𝑥) → ∀𝑦 ((𝑅(𝑥, 𝑦) ∨𝑅(𝑦, 𝑥)) → ¬𝐹 (𝑦)))

9. ∀𝑥 (¬𝐹 → ∃≥2𝑦(𝑆(𝑥, 𝑦) ∧ 𝐹 (𝑦)))

if 𝐼𝑖 = +(𝑝, 𝑞𝑗) then

10. ∀𝑥 (𝑄𝑖(𝑥) → ∀𝑦 (𝑅(𝑥, 𝑦) → 𝑄𝑗(𝑦)))

and if 𝐼𝑖 = −(𝑝, 𝑞𝑗 , 𝑞𝑘) then

11. ∀𝑥 ((𝑄𝑖(𝑥) ∧ 𝐸𝑝(𝑥)) → ∀𝑦 (𝑅(𝑥, 𝑦) → 𝑄𝑗(𝑦)))

12. ∀𝑥 ((𝑄𝑖(𝑥) ∧ ¬𝐸𝑝(𝑥)) → ∀𝑦 (𝑅(𝑥, 𝑦) → 𝑄𝑘(𝑦)))

And, finally,

13. ∀𝑥¬𝑄ℓ(𝑥)

The reader may notice that most conjuncts of 𝜙𝑀 are simply translations of the conjunct of
𝐶𝑀 with the same number to C2. The only exceptions, and these are very minor exceptions,
are conjuncts 1 and 9. The corresponding 𝐶𝑀 conjuncts guarantee the existence of one 𝑄0

element and one 𝑠-successor, while here we guarantee the existence of two 𝑄0 elements and
two 𝑆-successors.

The formula 𝜓𝑀 uses abbreviations 𝑈 , 𝑅0 and 𝑅1, similar to how we used them in 𝐷𝑀 .
We need to scale the numbers up a bit, however, due to the aforementioned issue regarding
bisimulations and singletons.

• 𝑈(𝑥) := ∃=2𝑦 (𝑆(𝑥, 𝑦) ∧ 𝐹 (𝑦)) ∨ ∃=4𝑦 (𝑆(𝑥, 𝑦) ∧ 𝐹 (𝑦))

• 𝑅0(𝑥) := ∃=2𝑦 (𝑆(𝑥, 𝑦) ∧ 𝐹 (𝑦)) ∨ ∃=3𝑦 (𝑆(𝑥, 𝑦) ∧ 𝐹 (𝑦))

• 𝑅1(𝑥) := ¬𝑅0(𝑥).

Using these abbreviations, we can define the conjuncts of 𝜓𝑀 .

1. ∃=2𝑥𝑄0(𝑥)

2. ∀𝑥 (𝐹 (𝑥) ∨
⋁︀

1≤𝑖≤ℓ𝑄𝑖(𝑥))

3. ∀𝑥 (𝐹 (𝑥) →
⋀︀

1≤𝑖≤ℓ ¬𝑄𝑖(𝑥))

4. ∀𝑥
⋀︀

1≤𝑖≤ℓ(𝑄𝑖(𝑥) →
⋀︀
𝑖<𝑗≤ℓ ¬𝑄𝑗(𝑥))

5. ∀𝑥 (𝑄0(𝑥) → ∃=2𝑦 𝑅(𝑥, 𝑦))

6. ∀𝑥 (𝑄0(𝑥) →
⋀︀
𝑝∈{0,1} ∃=1𝑦 (𝑅(𝑥, 𝑦) ∧ 𝑈(𝑦) ∧𝑅𝑝(𝑦)))

7. ∀𝑥 (𝑄0(𝑥) → (𝐸0(𝑥) ∧ 𝐸1(𝑥)))

8. ∀𝑥 (𝑅𝑝(𝑥) → (∀𝑦 ((𝑅(𝑥, 𝑦) ∨𝑅(𝑦, 𝑥)) → (𝑅𝑝(𝑦) ∨𝑄0(𝑦)))))

9. ∀𝑥 ((𝑈(𝑥) ∧ ¬𝑄0(𝑥)) → (∃=1𝑦 (𝑅(𝑥, 𝑦) ∧ 𝑈(𝑦)) ∧ ∃=1𝑦 (𝑅(𝑦, 𝑥) ∧ 𝑈(𝑦))))

If 𝐼𝑖 = +(𝑝, 𝑞𝑗) then

10. ∀𝑥 ((𝑄𝑖(𝑥) ∧𝑅𝑝(𝑥)) → (∃=2𝑦 𝑅(𝑥, 𝑦) ∧ ∀𝑦 (𝑅(𝑥, 𝑦) → ∃=1𝑥𝑅(𝑥, 𝑦))))

11. ∀𝑥 ((𝑄𝑖(𝑥) ∧ ¬𝑅𝑝(𝑥)) → (∃=1𝑦 𝑅(𝑥, 𝑦) ∧ ∀𝑦 (𝑅(𝑥, 𝑦) → ∃=1𝑥𝑅(𝑥, 𝑦))))

If 𝐼𝑖 = −(𝑝, 𝑞𝑗 , 𝑞𝑗) then

12. ∀𝑥 ((𝑄𝑖(𝑥) ∧𝑅𝑝(𝑥) ∧ 𝐸𝑝) → (∃=1𝑦 𝑅(𝑥, 𝑦) ∧ ∀𝑦 (𝑅(𝑥, 𝑦) → ∃=1𝑥𝑅(𝑥, 𝑦))))

13. ∀𝑥 ((𝑄𝑖(𝑥) ∧𝑅𝑝(𝑥) ∧ ¬𝐸𝑝) → (∃=1𝑦 𝑅(𝑥, 𝑦) ∧ ∀𝑦 (𝑅(𝑥, 𝑦) → ∃=2𝑥𝑅(𝑥, 𝑦))))

14. ∀𝑥 ((𝑄𝑖(𝑥) ∧ ¬𝑅𝑝(𝑥)) → (∃=1𝑦 𝑅(𝑥, 𝑦) ∧ ∀𝑦 (𝑅(𝑥, 𝑦) → ∃=1𝑥𝑅(𝑥, 𝑦))))

And finally

15. ∀𝑥 ((𝐸𝑝(𝑥) ∧𝑅𝑝(𝑥)) → 𝑈(𝑥))

Note that 𝜙𝑀 and 𝜓𝑀 use the same signature 𝜚.

Proposition 10. If 𝑀 is non-halting, then there are pointed models A, 𝑥0 and B, 𝑦0 with A |=
𝜙𝑀 (𝑥0) and B |= 𝜓𝑀 (𝑦0 such that A, 𝑥0 ∼FO2(𝜚) B, 𝑦0.

Proof. The models in question are slight variations on the intended models for 𝐶𝑀 and 𝐷𝑀

that we discussed previously. The required modifications are as follows:

• For notation reasons, we call the relations 𝑅 and 𝑆, instead of 𝑟 and 𝑠.

• In the intended model of𝐶𝑀 , we gave every ¬𝐹 element a single 𝑠-successor that satisfies
𝐹 , in the intended model of 𝜙𝑀 we give every ¬𝐹 element two 𝑆-successors that satisfy
𝐹 .

• Similarly, in the intended model of 𝐷𝑀 , we gave every ¬𝐹 element between 1 and 4
𝑠-successors satisfying 𝐹 , with the exact amount determined by whether 𝑈 , 𝑅0 and 𝑅1

should hold. In the intended model for 𝜓𝑀 we increase this amount by one, so we add
between 2 and 5 𝑆-successors satisfying 𝐹 for every ¬𝐹 element.

• Finally, we take two disjoint copies of the structure obtained so far.

Apart from the renaming of 𝑟 and 𝑠 to 𝑅 and 𝑆, these changes are necessary because, as
discussed above, a singleton set can never be FO2-bisimilar to a multi-element set.

Verifying that these structures are indeed models of A and B, and that they are FO2-bisimilar,
is straightforward.

⊣

Next, the other direction.

Proposition 11. If there are pointed models A, 𝑥0 and B, 𝑦0 with A |= 𝜙𝑀 (𝑥0) and B |= 𝜓𝑀 (𝑦0
such that A, 𝑥0 ∼FO2(𝜚) B, 𝑦0, then 𝑀 is non-halting.

Proof. This proof is mostly similar to that of Proposition 7, except for the first few claims,
in which we show certain elements to be bisimilar. We therefore prove the first few claims in
detail, and refer to the proof of Proposition 7 for details on the remainder.

Let 𝛽 be the bisimulation betweem A and B, and let 𝛼0 be the elements in A that satisfy
𝑄0 and 𝛽0 the ones in B. Then, for 𝑛 ∈ N, let 𝛼𝑛+1 be the set of 𝑅-successors of elements of
𝛼𝑛 and 𝛽𝑛+1 the set of 𝑅-successors of 𝛽𝑛. The remained of this proof is organized by several
numbered claims.
Claim 1: 𝛽 can only relate an element of 𝛼𝑛 to elements of 𝛽𝑛, and vice versa.
Proof of claim 1: By induction. We show the base case for one direction, the other direction

can be shown similarly. Suppose, towards a contradiction, that (𝑎, 𝑏) ∈ 𝛽 with 𝑎 ∈ 𝛼0 and
𝑏 ̸∈ 𝛽0. Then, for any 𝑥, (𝑎, 𝑎) ↦→ (𝑏, 𝑥) is not a partial isomorphism, since 𝑄0(𝑎) but ¬𝑄0(𝑏).
This contradicts 𝛽 being a bisimulation, so such 𝑎 and 𝑏 cannot exist.

Assume then, as induction hypothesis, that the claim holds for all 𝑛′ < 𝑛. Again, we show
one direction; that (𝑎, 𝑏) ∈ 𝛽 and 𝑎 ∈ 𝛼𝑛. The element 𝑎 has an 𝑎-predecessor 𝑎′ ∈ 𝛼𝑛−1.
Because 𝛽 is a bisimulation, there must be a 𝑏′ such that (𝑏, 𝑏′) ∈ 𝛽 and (𝑎, 𝑎′) ↦→ (𝑏, 𝑏′) is a
partial isomorphism. We have 𝑅(𝑎′, 𝑎), so we must also have 𝑅(𝑏′, 𝑏). Furthermore, by the
induction hypothesis, (𝑎′, 𝑏′) ∈ 𝛽, together with 𝑎′ ∈ 𝛼𝑛−1, implies that 𝑏′ ∈ 𝛽𝑛−1. Hence 𝑏 is
the 𝑅-successor of an element in 𝛽𝑛−1, which, by definition, means 𝑏 ∈ 𝛽𝑛. This completes the
induction step, thereby proving the claim.
Claim 2: If 𝑎 ∈ 𝛼𝑛+1 and 𝑅(𝑎′, 𝑎) then 𝑎′ ∈ 𝛼𝑛, and if 𝑏 ∈ 𝛽𝑛+1 and 𝑅(𝑏′, 𝑏), then 𝑏′ ∈ 𝛽𝑛.
Proof of claim 2: In A, every element, other than the two that satisfy 𝑄0, has exactly one

𝑅-predecessor. So it immediately follows that every 𝑅-predecessor of 𝑎 ∈ 𝛼𝑛+1 is in 𝛼𝑛.
Now, take any 𝑏 ∈ 𝛽𝑛+1 and 𝑏′ such that 𝑅(𝑏′, 𝑏). There must be some 𝑎 such that (𝑎, 𝑏) ∈ 𝛽.

By Claim 1, this implies that 𝑎 ∈ 𝛼𝑛+1. Furthermore, there is some 𝑎′ such that (𝑎′, 𝑏′) ∈ 𝛽 and
(𝑎′, 𝑎) ↦→ (𝑏′, 𝑏) is a partial isomorphism. As 𝑅(𝑏′, 𝑏), this implies that 𝑅(𝑎′, 𝑎) as well, so we
have 𝑎′ ∈ 𝛼𝑛. By Claim 1, this implies that 𝑏′ ∈ 𝛽𝑛.
Claim 3: If 𝑎0 ∈ 𝛼0 and 𝑏0 ∈ 𝛽0, then (𝑎0, 𝑏0) ∈ 𝛽.
Proof of claim 3: Let 𝑏0 be one of the two elements of 𝛽0. Then there is at least one 𝑎0 ∈ 𝛼0

such that (𝑎0, 𝑏0) ∈ 𝛽. Let 𝑎′0 be the other element of 𝛼0. This 𝑏0 has exactly two 𝑅-successors
𝑏1, 𝑏

′
1 ∈ 𝛽1 (with 𝑏1 ̸= 𝑏′1). There must be 𝑎1, 𝑎′1 such that (𝑎1, 𝑏1) ∈ 𝛽 and (𝑎′1, 𝑏

′
1) ∈ 𝛽,

and (𝑎0, 𝑎1) ↦→ (𝑏0, 𝑏1) and (𝑎0, 𝑎
′
1) ↦→ (𝑏0, 𝑏

′
1) are partial isomorphisms. From 𝑅(𝑏0, 𝑏1) and

𝑅(𝑏0, 𝑏
′
1) it therefore follows that 𝑅(𝑎0, 𝑎1) and 𝑅(𝑎0, 𝑎′0). As 𝑎0 has exactly one 𝑅-successor,

this implies that 𝑎0 = 𝑎′0.
Now, consider the pair (𝑏1, 𝑏′1). We have (𝑎1, 𝑏1) ∈ 𝛽, so there must be some 𝑎′′1 such that

(𝑎′′1, 𝑏
′
1) ∈ 𝛽 and (𝑎1, 𝑎

′′
1) ↦→ (𝑏1, 𝑏

′
1) is a partial isomorphism. This implies that, in particular,

𝑎1 = 𝑎′′1 if and only if 𝑏1 = 𝑏′1. We have 𝑏1 ̸= 𝑏′1, so 𝑎1 ̸= 𝑎′′1 . From (𝑎′′1, 𝑏
′
1) ∈ 𝛽 and Claim 1, it

follows that 𝑎′′1 ∈ 𝛼1. Because 𝑎1 ̸= 𝑎′′1 , this 𝑎′′1 must be the other element of 𝛼1, which is the
𝑅-successor of 𝑎′0.

Because (𝑎′′1, 𝑏
′
1) ∈ 𝛽 and 𝑅(𝑎′0, 𝑎

′′
1), there must be some 𝑏′0 such that (𝑎′0, 𝑏

′
0) ∈ 𝛽 and

𝑅(𝑏′0, 𝑏
′
1). But 𝑏′1 is an 𝑅-successor of 𝑏0 and has only one 𝑅-predecessor, so 𝑏′0 = 𝑏′0. Hence

(𝑎′0, 𝑏
′
0) ∈ 𝛽 implies (𝑎′0, 𝑏0) ∈ 𝛽. We have now shown that, for arbitrary 𝑏0 ∈ 𝛽0, we have

(𝑎0, 𝑏0) ∈ 𝛽 and (𝑎′0, 𝑏0) ∈ 𝛽, with 𝑎0 ̸= 𝑎′0. The claim follows immediately.
Claim 4: If 𝑎𝑛 ∈ 𝛼𝑛 and 𝑏𝑛 ∈ 𝛽𝑛, then (𝑎𝑛, 𝑏𝑛) ∈ 𝛽.
Proof of claim 4: By induction. The base case is Claim 3. So assume as induction hypothesis

that 𝑛 > 0 and that Claim 4 holds for all 𝑛′ < 𝑛. Take any 𝑎𝑛 ∈ 𝛼𝑛 and 𝑏𝑛 ∈ 𝛽𝑛. There
are 𝑎𝑛−1 ∈ 𝛼𝑛−1 and 𝛽𝑛−1 ∈ 𝛽𝑛−1 such that 𝑅(𝑎𝑛−1, 𝑎𝑛) and 𝑅(𝑏𝑛−1, 𝑏𝑛). By the induction
hypothesis, (𝑎𝑛−1, 𝑏𝑛−1) ∈ 𝛽. Now, there must be some 𝑎′𝑛 such that (𝑎′𝑛, 𝑏𝑛) ∈ 𝛽 and
(𝑎𝑛−1, 𝑎

′
𝑛) ↦→ (𝑏𝑛−1, 𝑏𝑛) is a partial isomorphism. In particular, because 𝑅(𝑏𝑛−1, 𝑏𝑛), we have

𝑅(𝑎𝑛−1, 𝑎
′
𝑛).

We already had 𝑅(𝑎𝑛−1, 𝑎𝑛), and 𝑎𝑛−1 has only one 𝑅-successor, so 𝑎𝑛 = 𝑎′𝑛. As we have
(𝑎′𝑛, 𝑏𝑛) ∈ 𝛽, this shows that (𝑎𝑛, 𝑏𝑛) ∈ 𝛽, thereby completing the induction step and therefore
proving the claim.

The remainder of the proof proceeds in the same way as the proof of Proposition 7, so we
omit it here. ⊣

Corollary 12. C2/FO2-separability is RE-complete.

D. 𝒜ℒ𝒞𝒬𝑢/𝒜ℒ𝒞𝑢-separation is 2ExpTime-complete

In this section, we prove the following:

Theorem 13. 𝒜ℒ𝒞𝒬𝑢/𝒜ℒ𝒞𝑢-(Craig) separation is 2ExpTime-complete.

We begin with the upper bound proof. Let 𝐿 be one of the fragments of 𝒜ℒ𝒞ℐ𝒬𝑢 defined in
Section A, 𝜚 a signature, and let 𝐶1, 𝐶2 be any 𝐿-concepts. To simplify presentation, we assume
that 𝐶1, 𝐶2 contain only one role name 𝑟 ∈ 𝜚. It is straightforward to extend the upper bound
proofs given in this and the next section to arbitrarily-many role names in and out of 𝜚.

Denote by sub(𝐶1, 𝐶2) the closure under single negation of the set of subconcepts in 𝐶1 and
𝐶2. By a type, 𝑡, we mean any subset of sub(𝐶1, 𝐶2) for which there exists a structure A with
some 𝑑 ∈ dom(A) such that 𝑡 = tp(A, 𝑑), where

tp(A, 𝑑) = {𝐶 ∈ sub(𝐶1, 𝐶2) | 𝑑 ∈ 𝐶A}

is the type realised by 𝑑 in A. Denote by Tp the set of all types. Clearly, |Tp| ≤ 2|𝐶1|+|𝐶2| and,
moreover, Tp can be computed in time exponential in |𝐶1| + |𝐶2| for all considered logics
(fragments of 𝒜ℒ𝒞ℐ𝒬𝑢).

A mosaic is a set 𝑀 of types. For structures A1,A2 and 𝑖 ∈ {1, 2}, the mosaic defined by
𝑑 ∈ dom(A𝑖) in A1,A2 is the set 𝑇 (𝑑), where

𝑇 (𝑑) = {tp(A𝑗 , 𝑒) | 𝑒 ∈ dom(A𝑗), A𝑖, 𝑑 ∼𝒜ℒ𝒞𝑢(𝜚) A𝑗 , 𝑒, 𝑗 = 1, 2}.

We then say that 𝑀 is a mosaic defined by A1,A2 if there exists 𝑑 ∈ dom(A1) ∪ dom(A2) such
that 𝑀 = 𝑇 (𝑑). Clearly, there are at most doubly exponentially many mosaics.

By Lemmas 5 and 3, we can prove the 2ExpTime upper bound of Theorem 13 by checking
in double-exponential time whether there exist pointed structures A1, 𝑑1 and A2, 𝑑2 such that

𝑑1 ∈ 𝐶A1
1 , 𝑑2 ∈ 𝐶A2

2 and A1, 𝑑1 ∼𝒜ℒ𝒞𝑢(𝜚) A2, 𝑑2, for 𝜚 = sig(𝐶1) ∩ sig(𝐶2). We do this
by means of a mosaic-elimination procedure whose aim is to determine all mosaics 𝑀 such
that every 𝑡 ∈𝑀 can be realised by mutually 𝒜ℒ𝒞𝑢(𝜚)-bisimilar elements of A1 and A2. To
formulate the elimination conditions, we define several compatibility and existential saturation
conditions between mosaics, which are similar to those used in standard type-elimination
procedures.

We say that types 𝑡1 and 𝑡2 are 𝑢-equivalent when ∃𝑢.𝐶 ∈ 𝑡1 iff ∃𝑢.𝐶 ∈ 𝑡2, for every
∃𝑢.𝐶 ∈ sub(𝐶1, 𝐶2).

Let 𝑀 be a mosaic and ℳ a set of mosaics. We call ℳ an existential witness for 𝑀 if there is
a copying function 𝑓 and a binary satisfying relation ℛ such that 𝑓 associates with every (𝑡′,𝑀 ′)
with 𝑡′ ∈𝑀 ′ a positive natural number 𝑓(𝑡′,𝑀 ′) and, for

• ∆ = {(𝑡,𝑀) | 𝑡 ∈𝑀} and

• Γ = {((𝑡′,𝑀 ′), 𝑗) | 𝑡′ ∈𝑀 ′, 𝑗 < 𝑓(𝑡′,𝑀 ′), 𝑀 ′ ∈ ℳ},

we have ℛ ⊆ ∆× Γ and the following conditions are satisfied:

• if (𝑡,𝑀)ℛ((𝑡′,𝑀 ′), 𝑗), then 𝑡 and 𝑡′ are 𝑢-equivalent;

• for any (≥𝑛 𝑟.𝐶) ∈ sub(𝐶1, 𝐶2) and (𝑡,𝑀) ∈ ∆, we have (≥𝑛 𝑟.𝐶) ∈ 𝑡 iff (𝑡,𝑀) has
at least 𝑛-many ℛ-successors ((𝑡′,𝑀 ′), 𝑗) with 𝐶 ∈ 𝑡′;

• for any (≤𝑛 𝑟.𝐶) ∈ sub(𝐶1, 𝐶2) and (𝑡,𝑀) ∈ ∆, we have (≤𝑛 𝑟.𝐶) ∈ 𝑡 iff (𝑡,𝑀) has
at most 𝑛-many ℛ-successors ((𝑡′,𝑀 ′), 𝑗) with 𝐶 ∈ 𝑡′;

• for any (𝑡,𝑀) ∈ ∆ and any 𝑀 ′ ∈ ℳ, there exists an ℛ-successor of (𝑡,𝑀) of the form
((𝑡′,𝑀 ′), 𝑗).

We can now define the mosaic elimination procedure. Let 𝒮 be a set of mosaics. We call 𝑀 ∈ 𝒮
bad in 𝒮 if it violates at least one of the following conditions:

1. 𝐴 ∈ 𝑡 iff 𝐴 ∈ 𝑡′, for all 𝐴 ∈ 𝜚 and all 𝑡, 𝑡′ ∈𝑀 ;

2. there exists a set ℳ of mosaics in 𝒮 such that ℳ is an existential witness for 𝑀 ;

3. if ∃𝑢.𝐶 ∈ 𝑡 ∈ 𝑀 , then there exists 𝑀 ′ ∈ 𝒮 such that 𝐶 ∈ 𝑡′ ∈ 𝑀 ′ and 𝑡, 𝑡′ are
𝑢-equivalent.

Lemma 14. Given a set 𝒮 of mosaics and 𝑀 ∈ 𝒮 , it can be decided in double-exponential time in
|𝐶1|+ |𝐶2| whether 𝑀 is bad in 𝒮 .

Let 𝒮0 be the set of all mosaics. Then we obtain the set 𝒮𝑖+1 from 𝒮𝑖, for 𝑖 ≥ 0, by eliminating
mosaics that are bad in 𝒮𝑖. Denote by 𝒮* the resulting set without bad mosaics, which can be
constructed in double-exponential time.

Lemma 15. The following conditions are equivalent:

1. 𝐶1 and 𝐶2 are satisfied in 𝒜ℒ𝒞𝑢(𝜚)-bisimilar pointed structures;

2. there is 𝑀 ∈ 𝒮* with 𝑡1, 𝑡2 ∈𝑀 such that 𝐶1 ∈ 𝑡1 and 𝐶2 ∈ 𝑇2.

Proof. (1 ⇒ 2) Suppose A1, 𝑑1 ∼𝒜ℒ𝒞𝑢(𝜚) A2, 𝑑2, 𝑑1 ∈ 𝐶A1
1 and 𝑑2 ∈ 𝐶A2

2 . Let 𝒮 be the set
of all mosaics defined by A1,A2. It is easy to see that 𝒮 does not contain any bad 𝑀 in 𝒮 , and
so 𝒮 ⊆ 𝒮*.
(2 ⇒ 1) We construct structures A1,A2 from 𝒮* and a mosaic 𝑀* ∈ 𝒮* with 𝑡*1, 𝑡

*
2 ∈ 𝑀*

such that 𝐶1 ∈ 𝑡*1 and 𝐶2 ∈ 𝑡*2. For every 𝑀 ∈ 𝒮*, take an existential witness ℳ𝑀 for 𝑀
with a copying function 𝐹𝑀 and a witnessing relation ℛ𝑀 ⊆ ∆𝑀 × Γ𝑀 . The domain of A𝑖
contains all words

𝑠 = (𝑡0,𝑀0)(𝑡1,𝑀1, 𝑖1) . . . (𝑡𝑛,𝑀𝑛, 𝑖𝑛) (1)

such that

• 𝑀0 ∈ 𝒮*;

• 𝑡0, 𝑡1, . . . , 𝑡𝑛, 𝑡*𝑖 are 𝑢-equivalent;

• 𝑡𝑗 ∈𝑀𝑗 for all 𝑗 ≤ 𝑛;

• 𝑀𝑗+1 ∈ ℳ𝑀𝑗 and 𝑖𝑗+1 < 𝑓𝑀𝑗 (𝑡𝑗+1,𝑀𝑗+1).

We next interpret the concept names 𝐴 by setting, for 𝑠 defined by (1), 𝑠 ∈ 𝐴A𝑖 iff 𝐴 ∈ 𝑡𝑛. We
let (𝑠, 𝑠′) ∈ 𝑟A𝑖 , for 𝑠 defined by (1) and

𝑠′ = (𝑡′0,𝑀
′
0)(𝑡

′
1,𝑀

′
1, 𝑖

′
1) · · · (𝑡′𝑚,𝑀 ′

𝑚, 𝑖
′
𝑚) ∈ dom(A𝑖), (2)

iff 𝑠 is an initial part of 𝑠′ with 𝑚 = 𝑛+ 1 and (𝑡𝑛,𝑀𝑛)ℛ𝑀𝑛(𝑡
′
𝑛+1,𝑀

′
𝑛+1, 𝑖

′
𝑛+1). It is not hard

to check that, for all 𝐶 ∈ sub(𝐶1, 𝐶2) and all 𝑠 given by (1), we have 𝑠 ∈ 𝐶A𝑖 iff 𝐶 ∈ 𝑡𝑛.
Finally, we define an 𝒜ℒ𝒞𝑢(𝜚)-bisimulation 𝛽 between A1 and A2 by setting, for 𝑠 given

by (1) and 𝑠′ by (2), 𝑠𝛽𝑠′ iff 𝑛 = 𝑚 and 𝑀𝑖 = 𝑀 ′
𝑖 for all 𝑖 ≤ 𝑛. One can show that 𝛽 is a

𝒜ℒ𝒞𝑢(𝜚)-bisimulation between A1 and A2, as required.

We now prove the 2ExpTime-lower bound, first for Craig-separation and then for separation.
The proof is by reduction of acceptance for alternating Turing machines and is very similar
to the proof that interpolant existence is 2ExpTime-hard for concept inclusions under 𝒜ℒ𝒞ℋ
ontologies given in [7].

An alternating Turing machine (ATM) is a tuple 𝑀 = (𝑄,Θ,Γ, 𝑞0,∆) where 𝑄 = 𝑄∃ ⊎𝑄∀
is a finite set of states partitioned into existential states 𝑄∃ and universal states 𝑄∀. Further, Θ
is the input alphabet and Γ is the tape alphabet that contains a blank symbol □ /∈ Θ, 𝑞0 ∈ 𝑄∀ is
the initial state, and ∆ ⊆ 𝑄×Γ×𝑄×Γ×{𝐿,𝑅} is the transition relation. We assume without
loss of generality that the set ∆(𝑞, 𝑎) := {(𝑞′, 𝑎′,𝑀) | (𝑞, 𝑎, 𝑞′, 𝑎′,𝑀) ∈ ∆} contains exactly
two or zero elements for every 𝑞 ∈ 𝑄 and 𝑎 ∈ Γ. Moreover, the state 𝑞′ must be from 𝑄∀ if
𝑞 ∈ 𝑄∃ and from 𝑄∃ otherwise, that is, existential and universal states alternate. Acceptance of
ATMs is defined in a slightly unusual way, without using accepting states. Intuitively, an ATM
accepts if it runs forever on all branches and rejects otherwise. More formally, a configuration
of an ATM is a word 𝑤𝑞𝑤′ with 𝑤,𝑤′ ∈ Γ* and 𝑞 ∈ 𝑄. We say that 𝑤𝑞𝑤′ is existential if 𝑞 is,
and likewise for universal. Successor configurations are defined in the usual way. Note that every

configuration has exactly zero or two successor configurations. A computation tree of an ATM
𝑀 on input 𝑤 is a (possibly infinite) tree whose nodes are labeled with configurations of 𝑀
such that

• the root is labeled with the initial configuration 𝑞0𝑤;

• if a node is labeled with an existential configuration 𝑤𝑞𝑤′, then it has a single successor
which is labeled with a successor configuration of 𝑤𝑞𝑤′;

• if a node is labeled with a universal configuration 𝑤𝑞𝑤′, then it has two successors which
are labeled with the two successor configurations of 𝑤𝑞𝑤′.

An ATM𝑀 accepts an input𝑤 if there is a computation tree of𝑀 on𝑤. Note that we can convert
any ATM 𝑀 in which acceptance is based on accepting states to our model by assuming that 𝑀
terminates on any input and then modifying it to enter an infinite loop from the accepting states.
It is well-known that there are 2𝑛-space bounded ATMs which recognize a 2ExpTime-hard
language [20], where 𝑛 is the length of the input 𝑤.

Let us fix such an ATM 𝑀 = (𝑄,Θ,Γ, 𝑞0,∆) and an input 𝑤 = 𝑎0 . . . 𝑎𝑛−1 of length 𝑛. We
aim to construct 𝐶1, 𝐶2 such that 𝑀 accepts 𝑤 iff 𝐶1, 𝐶2 are satisfied in 𝒜ℒ𝒞𝑢(𝜚)-bisimilar
pointed models, where

𝜚 = {𝑟, 𝑠, 𝑍,𝐵∀, 𝐵
1
∃, 𝐵

2
∃} ∪ {𝐴𝜎 | 𝜎 ∈ Γ ∪ (𝑄× Γ)}.

𝐶1 generates an 𝑟-chain of length 𝑛 as follows:

𝐶1 = ∃𝑟𝑛.⊤ ⊓ ∀𝑟𝑛.∀𝑟.⊥ ⊓
⋀︁

0≤𝑖<𝑛
∀𝑟𝑖(= 1 𝑟.⊤)

𝐶2 first generates a binary 𝑟-tree of depth 𝑛with leafs satisfying counter values from 0 to 2𝑛−1
represented by concepts names 𝐴0, . . . , 𝐴𝑛−1. Hence 𝐶1 contains the following conjuncts:

1. ∀𝑟𝑖.(= 2 𝑟.⊤) for 0 ≤ 𝑖 < 𝑛;

2. ∀𝑟𝑖.(∃𝑟.𝐴𝑖 ⊓ ∃𝑟.¬𝐴𝑖) for 0 ≤ 𝑖 < 𝑛;

3. ∀𝑟𝑖.
(︀
(𝐴𝑗 → ∀𝑟.𝐴𝑗) ⊓ (¬𝐴𝑗 → ∀𝑟.¬𝐴𝑗)

)︀
, for 0 ≤ 𝑗 < 𝑖 < 𝑛.

Next, we make a concept name 𝐿𝑅 true in all leafs of the tree

∀𝑟𝑛.𝐿𝑅

and start from the leafs 𝑠-trees with two counters, realised using concept names 𝑈𝑖 and 𝑉𝑖,
0 ≤ 𝑖 < 𝑛, and initialised to 0 and the value of the 𝐴0, . . . , 𝐴𝑛−1 counter, respectively:

1. ∀𝑢.(𝐿𝑅 → (𝑈 = 0));

2. ∀𝑢.(𝐿𝑅 → (𝐴𝑗 ↔ 𝑉𝑗)) for 0 ≤ 𝑗 < 𝑛;

3. ∀𝑢.(𝐿𝑅 → ∃𝑠.⊤).

Observe that if 𝑑 ∈ 𝐶A1
1 , 𝑒 ∈ 𝐶 ′

2
A2 , and A1, 𝑑 ∼𝒜ℒ𝒞𝑢(𝜚) A2, 𝑒 for 𝐶 ′

2 the conjuncts of 𝐶2

constructed up to now, then there is a node 𝑑′ in A1 which is reachable via an 𝑟-chain of length
𝑛 from 𝑑 and there are leafs 𝑒0, . . . , 𝑒2𝑛−1 ∈ 𝐿A2

𝑅 of the binary tree in A2 with root 𝑒 such that

A1, 𝑑
′ ∼𝒜ℒ𝒞𝑢(𝜚) A2, 𝑒0 ∼𝒜ℒ𝒞𝑢(𝜚) · · · ∼𝒜ℒ𝒞𝑢(𝜚) A2, 𝑒2𝑛−1.

Now we add further conjuncts to 𝐶2 that start from 𝐿𝑅 𝑠-trees encoding the computation of
𝑀 on input 𝑤 using the counters 𝑈 and 𝑉 in exactly the same way as in [7] such that the
following conditions are equivalent:

1. 𝑀 accepts 𝑤;

2. there exist structures A1 and A2 such that A1, 𝑑 ∼𝒜ℒ𝒞𝑢(𝜚) A2, 𝑒, for some 𝑑 ∈ 𝐶A1
1 and

𝑒 ∈ 𝐶A2
2 .

This completes the proof of 2ExpTime-hardness of Craig separation. To prove 2ExpTime-
hardness of separation, we replace all concept names 𝐴 in 𝐶2 that are not in 𝜚 by (= 2𝑟𝐴.⊤)
with𝑅𝐴 a fresh role name and denote the resulting concept by𝐷2. Let 𝜎 be the set of all concept
and role names in 𝐶1, 𝐷2. Then one can show that the following conditions are equivalent:

1. there exist structures A1 and A2 such that A1, 𝑑 ∼𝒜ℒ𝒞𝑢(𝜚) A2, 𝑒, for some 𝑑 ∈ 𝐶A1
1 and

𝑒 ∈ 𝐶A2
2 .

2. there exist structures A1 and A2 such that A1, 𝑑 ∼𝒜ℒ𝒞𝑢(𝜎) A2, 𝑒, for some 𝑑 ∈ 𝐶A1
1 and

𝑒 ∈ 𝐷A2
2 .

This complete the hardness proof. ⊣

E. 𝒜ℒ𝒞ℐ𝒬𝑢/𝒜ℒ𝒞ℐ𝑢 separation is 2ExpTime-complete

In this section, we prove the following:

Theorem 16. 𝒜ℒ𝒞ℐ𝒬𝑢/𝒜ℒ𝒞ℐ𝑢-(Craig) separation is 2ExpTime-complete.

The lower bound proof is essentially the same as in the previous section. Hence we focus
on the upper bound proof. Assume 𝒜ℒ𝒞ℐ𝒬𝑢-concepts 𝐶1, 𝐶2 and a signature 𝜚 are given. As
before, we assume that 𝐶1, 𝐶2 contain only one role name 𝑟 ∈ 𝜚. It is straightforward to extend
the upper bound proofs given in this section to arbitrarily many role names in and out of 𝜚.
We use the notion of types introduced in the previous section. Other notions such as that of a
mosaic are a bit different. Let 𝑚𝐶1,𝐶2 be the maximal parameter in 𝐶1, 𝐶2.

We first introduce the notion of an extended type as a pair (𝑡, 𝑃) with 𝑡 a type and 𝑃 a
set of expressions containing, for each type 𝑡′, exactly one expression of the form (= 𝑛 𝑟.𝑡′)
with 0 ≤ 𝑛 ≤ 𝑚𝐶1,𝐶2 or (> 𝑚𝐶1,𝐶2 𝑟.𝑡

′) and exactly one expression of the form (= 𝑛 𝑟−.𝑡′)
with 0 ≤ 𝑛 ≤ 𝑚𝐶1,𝐶2 or (> 𝑚𝐶1,𝐶2 𝑟

−.𝑡′). The semantics of these expressions is defined in
the obvious way. Note that 𝑡 and (= 𝑛 𝑠.𝑡′) with 𝑛 > 0 can only be satisfied if 𝑡 and 𝑡′ are
𝑢-equivalent.

For 𝑠 ∈ {𝑟, 𝑟−1}, an extended type specifies exactly how many 𝑠-successors there are that
satisfy type 𝑡′. In some places we only care about a coarser distinction, however, namely whether
the number of 𝑠-successors that have type 𝑡′ is greater than 0. We therefore write (> 0 𝑠.𝑡′) ∈ 𝑃
as a shorthand for ‘(= 𝑛 𝑠.𝑡′) ∈ 𝑃 for some 1 ≤ 𝑛 ≤ 𝑚𝐶1,𝐶2 or (> 𝑚𝐶1,𝐶2 𝑠.𝑡

′) ∈ 𝑃 ’.
The extended type (tp(A, 𝑑), e(A, 𝑑,𝐷)) realised in A at a pair (𝑑,𝐷) with 𝑑 ∈ dom(A) and

𝐷 ⊆ dom(A) is defined by setting

• (= 𝑛 𝑠.𝑡′) ∈ e(A, 𝑑,𝐷) if 𝑛 ≤ 𝑚𝐶1,𝐶2 is the number of 𝑑′ ∈ 𝐷 with (𝑑, 𝑑′) ∈ 𝑠A such
that 𝑡′ = tp(A, 𝑑′);

• (> 𝑚𝐶1,𝐶2 𝑠.𝑡′) ∈ e(A, 𝑑,𝐷) if the number of 𝑑′ ∈ 𝐷 with (𝑑, 𝑑′) ∈ 𝑠A such that
𝑡′ = tp(A, 𝑑′) is larger than 𝑚𝐶1,𝐶2 .

An extended type (𝑡, 𝑃) is called a root if 𝑛 = 0 for all (= 𝑛 𝑠.𝑡′) ∈ 𝑃 and 𝑃 contains no
(> 𝑚𝐶1,𝐶2𝑠.𝑡

′).
We are going to construct bisimilar models that are (almost) tree-shaped. When constructing

these models, we distinguish between types that are realised in a parent node and types that are
realised in child nodes. Hence we define a two-way extended type as a tuple of the form (𝑡, 𝐸)
with 𝐸 = (𝐸𝑢𝑝, 𝐸𝑑𝑜𝑤𝑛), where (𝑡, 𝐸𝑢𝑝) and (𝑡, 𝐸𝑑𝑜𝑤𝑛) are extended types.

Given 𝑑 ∈ A and 𝐷 ⊆ dom(A), the two-way extended type realised in A at (𝑑,𝐷), is defined
as

tw(A, 𝑑,𝐷) = (tp(A, 𝑑), e(A, 𝑑,𝐷), e(A, 𝑑, dom(A) ∖𝐷))

We next aim at spelling out when adding up the number of witnesses for the number re-
strictions in 𝐸𝑢𝑝 and 𝐸𝑑𝑜𝑤𝑛 ensures that we satisfy the number restrictions in 𝑡. Assume
𝑃 ∈ {𝐸𝑢𝑝, 𝐸𝑑𝑜𝑤𝑛} is given. The 𝑠-profile of 𝑃 , 𝑃𝑟𝑠(𝑃) contains for every 𝐶 ∈ sub(𝐶1, 𝐶2)

• (= 𝑛 𝑠.𝐶) if 𝑛 is the sum over all 𝑘 with (= 𝑘 𝑠.𝑡′) ∈ 𝑃 and 𝐶 ∈ 𝑡′;

• (> 𝑚𝐶1,𝐶2 𝑠.𝐶) if the sum above exceeds 𝑚𝐶1,𝐶2 or (> 𝑚𝐶1,𝐶2 𝑠.𝑡
′) ∈ 𝑃 for some 𝑡′

with 𝐶 ∈ 𝑡′.

The joint 𝑠-profile of 𝐸𝑢𝑝, 𝐸𝑑𝑜𝑤𝑛, 𝑃𝑟𝑠(𝐸𝑢𝑝, 𝐸𝑑𝑜𝑤𝑛), contains for 𝐶 ∈ sub(𝐶1, 𝐶2)

• (= 𝑛 𝑠.𝐶) if 𝑛 = 𝑛1 + 𝑛2 ≤ 𝑚𝐶1,𝐶2 for (= 𝑛1 𝑠.𝐶) in the 𝑠-profile of 𝐸𝑢𝑝 and
(= 𝑛2 𝑠.𝐶) in the 𝑠-profile of 𝐸𝑑𝑜𝑤𝑛;

• (> 𝑚𝐶1,𝐶2 𝑠.𝐶) otherwise

We call (𝑡, 𝐸𝑢𝑝, 𝐸𝑑𝑜𝑤𝑛) consistent if for 𝑠 ∈ {𝑟, 𝑟−}

• if (≥ 𝑛 𝑠.𝐶) ∈ 𝑡 and (= 𝑛′ 𝑠.𝐶) ∈ 𝑃𝑟𝑠(𝐸𝑢𝑝, 𝐸𝑑𝑜𝑤𝑛), then 𝑛′ ≥ 𝑛,

• if (≤ 𝑛 𝑠.𝐶) ∈ 𝑡 and (= 𝑛′ 𝑠.𝐶) ∈ 𝑃𝑟𝑠(𝐸𝑢𝑝, 𝐸𝑑𝑜𝑤𝑛), then 𝑛′ ≤ 𝑛,

• if (≤ 𝑛 𝑠.𝐶) ∈ 𝑡, then (> 𝑚𝐶1,𝐶2 𝑠.𝐶) ̸∈ 𝑃𝑟𝑠(𝐸𝑢𝑝, 𝐸𝑑𝑜𝑤𝑛).

• if (> 0 𝑠.𝑡′) occurs in 𝐸𝑢𝑝 ∪ 𝐸𝑑𝑜𝑤𝑛, then 𝑡 and 𝑡′ are 𝑢-equivalent.

Clearly any realised two-way extended type tw(A, 𝑑,𝐷) is consistent.
A mosaic 𝑀 is a set of consistent two-way extended types. A mosaic is a root if (𝑡, 𝐸𝑢𝑝) is a

root for all (𝑡, 𝐸𝑢𝑝, 𝐸𝑑𝑜𝑤𝑛) ∈ 𝑚.
For structures A1,A2 and 𝑖 ∈ {1, 2}, the mosaic defined by (𝑑, 𝑑′) with 𝑑, 𝑑′ ∈ dom(A𝑖) for

some 𝑖 ∈ {1, 2} in A1,A2, is defined as

𝑇 (𝑑, 𝑑′) = {tw(A𝑗 , 𝑒,𝐷) | 𝑒 ∈ dom(A𝑗),A𝑖, 𝑑 ∼𝒜ℒ𝒞ℐ𝑢,𝜚 A𝑗 , 𝑒, 𝑗 ∈ {1, 2}}},

for 𝐷 = {𝑒′ ∈ dom(A𝑗) | A𝑖, 𝑒′ ∼𝒜ℒ𝒞ℐ𝑢,𝜚 A𝑗 , 𝑑
′}, for 𝑗 = 1, 2.

We say that a mosaic 𝑀 of two-way extended types is a mosaic defined by A1,A2 if there
exist 𝑑, 𝑑′ ∈ dom(A1) ∪ dom(A) such that 𝑚 = (𝑇 (𝑑, 𝑑′).

Observe that such a mosaic is a root iff there do not exist 𝑑, 𝑑′ defining 𝑚 with (𝑑, 𝑑′) ∈ 𝑠A1

for some 𝑠 ∈ {𝑟, 𝑟−}.
Given a mosaic𝑀 , we now provide criteria for when a set ℳ of mosaics provides appropriate

witnesses for the number restrictions in𝐸𝑑𝑜𝑤𝑛 for all two-way extended types (𝑡, 𝐸𝑢𝑝, 𝐸𝑑𝑜𝑤𝑛) ∈
𝑀 . For extended types (𝑡, 𝑃) and (𝑡′, 𝑃 ′), we write (𝑡, 𝑃) →𝑠 (𝑡

′, 𝑃 ′) and say that (𝑡, 𝑃) and
(𝑡′, 𝑃 ′) are 𝑠-coherent if (> 0 𝑠.𝑡′) ∈ 𝑃 and (> 0 𝑠−1.𝑡) ∈ 𝑃 ′ and 𝑡, 𝑡′ are 𝑢-equivalent.
Intuitively, 𝑠-coherence captures that we can draw an 𝑠-edge between nodes representing (𝑡, 𝑃)
and (𝑡′, 𝑃 ′). For two-way extended types (𝑡, 𝐸) and (𝑡′, 𝐸′) we write (𝑡, 𝐸) →𝑠 (𝑡

′, 𝐸′) and
say that they are 𝑠-coherent if (𝑡, 𝐸𝑑𝑜𝑤𝑛) →𝑠 (𝑡

′, 𝐸′
𝑢𝑝).

Let𝑀 be a mosaic and ℳ a set of mosaics, in what follows we assume the two-way extended
types they contain are consistent. Then ℳ is a syntactic existential witness for 𝑀 if there are
relations 𝑟, 𝑟−1 ⊆𝑀 × {((𝑡′, 𝐸′),𝑀 ′) | (𝑡′, 𝐸′) ∈𝑀 ′} such that for every 𝑠 ∈ {𝑟, 𝑟−1}

1. if ((𝑡, 𝐸), ((𝑡′, 𝐸′),𝑀 ′)) ∈ 𝑠 then (𝑡, 𝐸) →𝑠 (𝑡
′, 𝐸′),

2. for every 𝑀 ′ ∈ ℳ, either

• for every (𝑡, 𝐸) ∈𝑀 there is some (𝑡′, 𝐸′) ∈𝑀 ′ such that ((𝑡, 𝐸), ((𝑡′, 𝐸′),𝑀 ′)) ∈
𝑠 and

• for every (𝑡′, 𝐸′) ∈𝑀 ′ there is some (𝑡, 𝐸) ∈𝑀 such that ((𝑡, 𝐸), ((𝑡′, 𝐸′),𝑀 ′)) ∈
𝑠,

in which case we say that 𝑀 ′ is an 𝑠-successor of 𝑀 , or

• for every (𝑡, 𝐸) ∈𝑀 and every (𝑡′, 𝐸′) ∈𝑀 ′, ((𝑡, 𝐸), ((𝑡′, 𝐸′),𝑀 ′)) ̸∈ 𝑠

in which case 𝑀 ′ is not an 𝑠-successor of 𝑀 ,

3. for every (𝑡, 𝐸) ∈𝑀 , if (= 𝑛 𝑠.𝑡′) ∈ 𝐸𝑑𝑜𝑤𝑛 or (> 𝑚𝐶1,𝐶2 𝑠.𝑡
′) ∈ 𝐸𝑑𝑜𝑤𝑛 then there are

𝐸′ and 𝑀 ′ such that ((𝑡, 𝐸), ((𝑡′, 𝐸′),𝑀 ′)) ∈ 𝑠,

4. for every𝑀 ′ ∈ ℳ and every (𝑡′, 𝐸′) ∈𝑀 ′, if (= 𝑛 𝑠−1.𝑡) ∈ 𝐸′
𝑢𝑝 or (> 𝑚𝐶1,𝐶2 𝑠

−1.𝑡) ∈
𝐸𝑢𝑝, then there is some (𝑡, 𝐸) ∈𝑀 such that ((𝑡, 𝐸), ((𝑡′, 𝐸′),𝑀 ′)) ∈ 𝑠.

5. for every ((𝑡, 𝐸), ((𝑡′, 𝐸′),𝑀 ′)) ∈ 𝑠, there is a function 𝑓 that assigns to each 𝑠-successor
𝑀 ′′ of 𝑀 an extended type (𝑡′′, 𝐸′′) ∈𝑀 ′′ such that

• 𝑓(𝑀 ′) = (𝑡′, 𝐸′),

• if (= 𝑛 𝑠.𝑡′′) ∈ 𝐸𝑑𝑜𝑤𝑛 then |{𝑀 ′′ | ∃𝐸′′ : 𝑓(𝑀 ′′) = (𝑡′′, 𝐸′′)}| ≤ 𝑛.

We next provide a definition of existential witnesses that is closer to the intended semantics
than syntactic existential witnesses. We call ℳ an existential witness for𝑀 if there are relations
𝑟, 𝑟−1 ⊆ ∆ × Γ, where ∆ = {((𝑡, 𝐸), 𝑗) | 𝑗 < 𝜔, (𝑡, 𝐸) ∈ 𝑀} and Γ = {((𝑡′, 𝐸′), 𝑗,𝑀 ′) |
𝑗 < 𝜔, (𝑡′, 𝐸′) ∈𝑀 ′,𝑀 ′ ∈ ℳ} such that for every 𝑠 ∈ {𝑟, 𝑟−1},

• if ((𝑡, 𝐸), 𝑗) ∈ ∆ and (= 𝑛 𝑠.𝑡′) ∈ 𝐸𝑑𝑜𝑤𝑛 then there are exactly 𝑛 different 𝐸′, 𝑘 and 𝑀 ′

such that ((𝑡′, 𝐸′), 𝑘,𝑀 ′) is an 𝑠-successor of ((𝑡, 𝐸), 𝑗),

• if ((𝑡, 𝐸), 𝑗) ∈ ∆ and (> 𝑚𝐶1,𝐶2 𝑠.𝑡
′) ∈ 𝐸𝑑𝑜𝑤𝑛 then there are more than𝑚𝐶1,𝐶2 different

𝐸′, 𝑘 and 𝑀 ′ such that ((𝑡′, 𝐸′), 𝑘,𝑀 ′) is an 𝑠-successor of ((𝑡, 𝐸), 𝑗),

• if ((𝑡′, 𝐸′), 𝑘,𝑀 ′) ∈ Γ and (= 𝑛 𝑠−1.𝑡) ∈ 𝐸′
𝑢𝑝, then there are exactly 𝑛 different 𝐸 and

𝑗 such that ((𝑡′, 𝐸′), 𝑘,𝑀 ′) is an 𝑠-successor of ((𝑡, 𝐸), 𝑗),

• if ((𝑡′, 𝐸′), 𝑘,𝑀 ′) ∈ Γ and (> 𝑚𝐶1,𝐶2 𝑠−1.𝑡) ∈ 𝐸′
𝑢𝑝, then there are more than 𝑚

different 𝐸 and 𝑗 such that ((𝑡′, 𝐸′), 𝑘,𝑀 ′) is an 𝑠-successor of ((𝑡, 𝐸), 𝑗),

• if ((𝑡, 𝐸), 𝑗) ∈ ∆ has an 𝑠-successor ((𝑡′, 𝐸′), 𝑘,𝑀 ′) ∈ Γ then for every (𝑡*, 𝐸*), 𝑗*) ∈ ∆
there are 𝑡′*, 𝐸′* and 𝑘* such that ((𝑡′*, 𝐸′*), 𝑘*,𝑀 ′) is an 𝑠-successor of ((𝑡*, 𝐸*), 𝑗*),

• if ((𝑡′, 𝐸′), 𝑘,𝑀 ′) ∈ Γ has an 𝑠-predecessor ((𝑡, 𝐸), 𝑗) ∈ ∆ then for every
((𝑡′*, 𝐸′*), 𝑘*,𝑀 ′) ∈ Γ there are 𝑡* and 𝑗* such that ((𝑡′*, 𝐸′*), 𝑘*,𝑀 ′) is an 𝑠-successor
of ((𝑡*, 𝐸*), 𝑗*).

Lemma 17. If ℳ is a syntactic existential witness for 𝑀 then ℳ is an existential witness for 𝑀 .

Proof. Let 𝑟, 𝑟−1 be relations witnessing the fact that ℳ is a syntactic existential witness
for 𝑀 , and enumerate all elements of Γ ∪∆. We will add 𝑟 and 𝑟−1 edges for each 𝑥 ∈ Γ ∪∆
in enumeration order. Throughout the process, we will keep invariant the property that, by the
time we reach 𝑥 ∈ Γ∪∆, there will be at most one 𝑟 or 𝑟−1 edge to or from 𝑥 already. We first
treat the two cases where 𝑥 does not have any edges yet, then the two cases where one edge
has already been added.
Case 1: Suppose 𝑥 = ((𝑡, 𝐸), 𝑗) ∈ ∆ and no edges from 𝑥 have been added yet. For every

𝑠 ∈ {𝑟, 𝑟−1}, do the following.
Let ℳ𝑠 ⊆ ℳ be the set of 𝑠-successors of 𝑀 . Take any 𝑀 ′ ∈ ℳ𝑠. Then there is some

(𝑡′, 𝐸′) ∈ 𝑀 ′ such that ((𝑡, 𝐸), ((𝑡′, 𝐸′),𝑀 ′)) ∈ 𝑠. Let 𝑓 be the assignment function for
((𝑡, 𝐸), ((𝑡′, 𝐸′),𝑀 ′)) ∈ 𝑠, and let ℰ = {((𝑡′′, 𝐸′′),𝑀 ′′) | 𝑓(𝑀 ′′) = (𝑡′′, 𝐸′′)}.

Consider any 𝑡′′ such that (= 𝑛𝑠.𝑡′′) ∈ 𝐸𝑑𝑜𝑤𝑛. It is a property of 𝑓 that there are at
most 𝑛 elements in ℰ that have a 𝑡′′ component. If there are less than 𝑛 such elements, take
any ((𝑡′′, 𝐸′′),𝑀 ′′) such that ((𝑡, 𝐸), ((𝑡′′, 𝐸′′),𝑀 ′′)) ∈ 𝑠, and add enough copies of this
((𝑡′′, 𝐸′′),𝑀 ′′) to ℰ to make the total number of elements with a 𝑡′′ component exactly 𝑛. We
turn ℰ into a multi-set by doing this. Note that 𝑡′′, 𝐸′′,𝑀 ′′ with the required property exist by
condition 3 of syntactic existential witness.

Similarly, if (> 𝑚𝐶1,𝐶2 𝑠.𝑡′′) ∈ 𝐸𝑑𝑜𝑤𝑛 and there are ≤ 𝑀𝐶1,𝐶2 elements in ℰ with 𝑡′′

component, add copies of ((𝑡′′, 𝐸′′),𝑀 ′′) until we have more than 𝑚𝐶1,𝐶2 such elements.

Now, for every ((𝑡′, 𝐸′),𝑀 ′) ∈ ℰ , add an 𝑠-edge from 𝑥 = ((𝑡, 𝐸), 𝑗) to the lowest (in the
enumeration) element ((𝑡′, 𝐸′), 𝑘,𝑀 ′) ∈ Γ that does not yet have any edges to it.

Case 2: Suppose 𝑥 = ((𝑡′, 𝐸′), 𝑘,𝑀 ′) ∈ Γ and no edges to 𝑥 have been added yet. For every
𝑠 ∈ {𝑟, 𝑟−1}, do the following.

If (= 𝑛 𝑠−1.𝑡) ∈ 𝐸′
𝑢𝑝 or (> 𝑚𝐶1,𝐶2 𝑠−1.𝑡) ∈ 𝐸′

𝑢𝑝, let (𝑡, 𝐸) be such that
((𝑡, 𝐸), ((𝑡′𝐸′),𝑀 ′)) ∈ 𝑠. Create 𝑠 edges to 𝑥 from the first 𝑛 (if (= 𝑛 𝑠−1.𝑡) ∈ 𝐸′

𝑢𝑝) or
the first 𝑚𝐶1,𝐶2 + 1 (if (> 𝑚𝐶1,𝐶2 𝑠

−1.𝑡) ∈ 𝐸′
𝑢𝑝) elements of the form ((𝑡, 𝐸), 𝑗) ∈ ∆ that do

not yet have any edges going from them.
Case 3: Suppose 𝑥 = ((𝑡, 𝐸), 𝑗) ∈ ∆ and there is already an 𝑠 edge from 𝑥 to

((𝑡′, 𝐸′), 𝑘,𝑀 ′) ∈ Γ. Add edges for 𝑠−1 as in case 1. With regard to 𝑠, add edges like in
case 1 except that instead of taking any 𝑠-successor we now take the successor ((𝑡′, 𝐸′),𝑀 ′) as
a starting point, and take the already existing 𝑠 edge from ((𝑡, 𝐸), 𝑗) to ((𝑡′, 𝐸′), 𝑘,𝑀 ′) instead
of one of the edges that we would otherwise add.

Case 4: Suppose 𝑥 = ((𝑡′, 𝐸′), 𝑘,𝑀 ′) ∈ Γ and there is already an 𝑠 edge from ((𝑡, 𝐸), 𝑗) to
𝑥. Add edges for 𝑠−1 as in case 2. For 𝑠, do the same except we take the edge from ((𝑡, 𝐸), 𝑗)
to 𝑥 instead of one edge that would otherwise be added.

It is immediate from the construction of 𝑟 and 𝑟−1 that the number restriction conditions of
an existential witness are satisfied. The bisimilarity conditions follow from ℳ being a syntactic
existential witness. ⊣

The converse direction should be obvious.

Lemma 18. If ℳ is a existential witness for 𝑀 then ℳ is a syntactic existential witness for 𝑀 .

We are going to construct bisimilar models starting with a root mosaic, then satisfying number
restrictions in the mosaic by adding existential witnesses, then satisfying number restrictions
in the 𝐸𝑑𝑜𝑤𝑛-part of the fresh mosaics in existential witnesses, and so on.

Extended types (𝑡, 𝑃) and (𝑡′, 𝑃 ′) are called profile-equivalent if 𝑡 = 𝑡′ and𝑃𝑟𝑠(𝑃) = 𝑃𝑟𝑠(𝑃
′)

for 𝑠 ∈ {𝑟, 𝑟−}. Two-way extended types (𝑡, 𝐸𝑢𝑝, 𝐸𝑑𝑜𝑤𝑛) and (𝑡′, 𝐸′
𝑢𝑝, 𝐸

′
𝑑𝑜𝑤𝑛) are

• up profile-equivalent if (𝑡, 𝐸𝑢𝑝) and (𝑡′, 𝐸′
𝑢𝑝) are profile-equivalent;

• down profile-equivalent if (𝑡, 𝐸𝑑𝑜𝑤𝑛) and (𝑡′, 𝐸′
𝑑𝑜𝑤𝑛) are profile-equivalent;

We say that mosaics 𝑀 , 𝑀 ′ are

• down profile-equivalent if for any (𝑡, 𝐸𝑢𝑝, 𝐸𝑑𝑜𝑤𝑛) ∈𝑀 there exists (𝑡′, 𝐸′
𝑢𝑝, 𝐸

′
𝑑𝑜𝑤𝑛) ∈𝑀 ′

which is down profile-equivalent and vice versa;

• up profile-equivalent if for any (𝑡, 𝐸𝑢𝑝, 𝐸𝑑𝑜𝑤𝑛) ∈𝑀 there exists (𝑡′, 𝐸′
𝑢𝑝, 𝐸

′
𝑑𝑜𝑤𝑛) ∈𝑀 ′

which is up profile-equivalent and vice versa.

• down/up profile-equivalent if for any (𝑡, 𝐸𝑢𝑝, 𝐸𝑑𝑜𝑤𝑛) ∈𝑀 there exists (𝑡′, 𝐸′
𝑢𝑝, 𝐸

′
𝑑𝑜𝑤𝑛) ∈

𝑀 ′ such that (𝑡, 𝐸𝑑𝑜𝑤𝑛) and (𝑡′, 𝐸′
𝑢𝑝) are profile-equivalent and vice versa.

Lemma 19. Assume that ℳ is a syntactic existential witness for 𝑀 , and let {𝑟, 𝑟−1} be the
witnessing relations. Let ℳ′ ⊆ ℳ be such that for every 𝑠 ∈ {𝑟, 𝑟−1}, every 𝑀 ′ ∈ ℳ ∖ℳ′,
every (𝑡, 𝐸) ∈ 𝑀 and every (𝑡′, 𝐸′) ∈ 𝑀 ′ such that 𝑀 ′ is an 𝑠-successor of 𝑀 and (𝑡, 𝐸) →𝑠

(𝑡′, 𝐸′) there are some 𝑀 ′′ ∈ ℳ′ and (𝑡′, 𝐸′′) ∈ 𝑀 ′′ such that 𝑀 ′′ is an 𝑠-successor of 𝑀 and
(𝑡, 𝐸) →𝑠 (𝑡

′, 𝐸′′).
Then ℳ′ is also a syntactic existential witness for 𝑀 .

Proof. We obtain witnessing relations {𝑟′, 𝑟′−1} for 𝑀 and ℳ′ be replacing any edge
((𝑡, 𝐸), ((𝑡′, 𝐸′),𝑀 ′)) ∈ 𝑠 where 𝑀 ′ ∈ ℳ ∖ℳ′ by the edge ((𝑡, 𝐸), ((𝑡′, 𝐸′′),𝑀 ′′)). ⊣

Lemma 20. Assume that ℳ is a syntactic existential witness for 𝑀 , and let {𝑟, 𝑟−1} be the
witnessing relations. Let ℳ′ be obtainable from ℳ be replacing some 𝑀 ′ ∈ ℳ by any 𝑀 ′′ with
the properties that (i) 𝑀 ′′ ⊆ 𝑀 ′ and (ii) for every 𝑠 ∈ {𝑟, 𝑟−1}, every (𝑡, 𝐸) ∈ 𝑀 and every
(𝑡′, 𝐸′) ∈𝑀 ′, if (𝑡, 𝐸) →𝑠 (𝑡

′, 𝐸′) then there is a (𝑡′, 𝐸′′) ∈𝑀 ′′ such that (𝑡, 𝐸) →𝑠 (𝑡
′, 𝐸′′).

Then ℳ′ is also a syntactic existential witness for 𝑀 .

Proof. We obtain witnessing relations {𝑟′, 𝑟′−1} for 𝑀 and ℳ′ be replacing any edge
((𝑡, 𝐸), ((𝑡′, 𝐸′),𝑀 ′)) ∈ 𝑠 by the edge ((𝑡, 𝐸), ((𝑡′, 𝐸′′),𝑀 ′)). ⊣

Lemma 21. Assume that ℳ is a syntactic existential witness for 𝑀 , and let {𝑟, 𝑟−1} be the
witnessing relations. Let 𝑀* ⊆ 𝑀 be such that for every 𝑠 ∈ {𝑟, 𝑟−1}, every 𝑀 ′ ∈ ℳ, every
(𝑡, 𝐸) ∈ 𝑀 and (𝑡′, 𝐸′) ∈ 𝑀 ′, if ((𝑡, 𝐸), ((𝑡′, 𝐸′),𝑀 ′)) ∈ 𝑠 then there is some (𝑡, 𝐸*) ∈ 𝑀*

such that ((𝑡, 𝐸*), ((𝑡′, 𝐸′),𝑀 ′)) ∈ 𝑠.
Then ℳ is a syntactic existential witness for 𝑀*.

Proof. The witnessing relations 𝑟* and 𝑟*−1 are simply the restrictions of 𝑟 and 𝑟−1 to𝑀*.⊣

Lemma 22. Assume that ℳ is a syntactic existential witness for 𝑀 . Then there are ℳ′ and
𝑀* ⊆𝑀 such that for any 𝑁 ′ ∈ ℳ′ there exists 𝑀 ′ ∈ ℳ with 𝑁 ′ ⊆𝑀 ′ such that

• ℳ′ is a syntactic existential witness for 𝑀 ′;

• |ℳ′| ≤ 𝐾1, where 𝐾1 is exponential in |𝐶1|+ |𝐶2|;

• |𝑀*| ≤ 𝐾2, where 𝐾2 is exponential in |𝐶1|+ |𝐶2|;

• for all 𝑁 ′ ∈ ℳ′, |𝑁 ′| ≤ 𝐾3, where 𝐾3 is exponential in |𝐶1|+ |𝐶2|;

• 𝑀 and 𝑀* are up profile-equivalent;

• for every 𝑁 ′ ∈ ℳ′ there exists a down profile-equivalent 𝑀 ′ ∈ ℳ.

Proof. For any 𝑀 ′ ∈ ℳ, let 𝑁 ′ ⊆ 𝑀 ′ be such that (i) for every (𝑡′, 𝐸′) ∈ 𝑀 ′ there is a
down profile-equivalent (𝑡′, 𝐸′′) ∈ 𝑁 ′, (ii) for every 𝑡, if there is a (𝑡′, 𝐸′) ∈ 𝑀 ′ such that
(> 0𝑠.𝑡′) ∈ 𝐸′

𝑢𝑝 then there is a (𝑡′, 𝐸′′) ∈ 𝑁 ′ such that (> 0𝑠.𝑡′) ∈ 𝐸′′
𝑢𝑝 and (iii) 𝑁 ′ is at most

exponential in size. Such 𝑁 ′ exists because there are at most exponentially many profiles and
exponentially many types, and we need at most one witness for each.

Let 𝒩 be the result of replacing every 𝑀 ′ ∈ ℳ by the corresponding 𝑁 ′. By Lemma 20, 𝒩
is a syntactic existential witness for 𝑀 . Let 𝑟, 𝑟−1 be the witnessing relations.

Now, let ℳ′ be a subset of 𝒩 such that (i) for every every 𝑠 ∈ {𝑟, 𝑟−1}, every 𝑀 ′ ∈ 𝒩 ∖ℳ′,
every (𝑡, 𝐸) ∈𝑀 and every (𝑡′, 𝐸′) ∈𝑀 ′ such that 𝑀 ′ is an 𝑠-successor of 𝑀 and (𝑡, 𝐸) →𝑠

(𝑡′, 𝐸′) there are some 𝑀 ′′ ∈ ℳ′ and (𝑡′, 𝐸′′) ∈𝑀 ′′ such that 𝑀 ′′ is an 𝑠-successor of 𝑀 and
(𝑡, 𝐸) →𝑠 (𝑡

′, 𝐸′′) and (ii) ℳ′ is at most exponential in size. Such ℳ′ exists because for every
𝑠 ∈ {𝑟, 𝑟−1} and every 𝑡, 𝑡′ we need only one witnessing mosaic. Furthermore, by Lemma 19,
ℳ′ is a syntactic existential witness for 𝑀 .

Now, let 𝑀* be a subset of 𝑀 such that (i) for every (𝑡, 𝐸) ∈ 𝑀 there is an up profile-
equivalent (𝑡, 𝐸*) ∈ 𝑀*, (ii) for every 𝑠 ∈ {𝑟, 𝑟−1} and every ((𝑡, 𝐸), ((𝑡′, 𝐸′),𝑀 ′)) ∈ 𝑠,
there is a ((𝑡, 𝐸*), ((𝑡′, 𝐸′),𝑀 ′)) ∈ 𝑠 with (𝑡, 𝐸*) ∈ 𝑀* and (iii) 𝑀* is at most exponential
in size. such 𝑀* exists because there are at most exponentially-many profiles and exponen-
tially many 𝑡 and ((𝑡′, 𝐸′),𝑀 ′), and hence we need at most exponentially-many 𝐸* such that
((𝑡, 𝐸*), ((𝑡′, 𝐸′),𝑀 ′)) ∈ 𝑠. By Lemma 21, ℳ′ is a syntactic existential witness for 𝑀*. ⊣

Next we define how existential witnesses are extracted from bisimilar models. We now return
to the view of mosaics as tuples (𝑇1, 𝑇2). Assume A1, 𝑑1 ∼𝒜ℒ𝒞ℐ𝑢(𝜚) A2, 𝑑2. Consider (𝑑, 𝑑′)
with 𝑑, 𝑑′ ∈ dom(A𝑖) realising a mosaic 𝑀 . Then let 𝐹𝑑,𝑑′ be the set of pairs (𝑓, 𝑑) such that

• (𝑑, 𝑓) ∈ 𝑠A𝑖 for some 𝑠 ∈ {𝑟, 𝑟−};

• A𝑖, 𝑓 ̸∼𝒜ℒ𝒞ℐ𝑢(𝜚) A𝑖, 𝑑
′.

Let ℳ be the set of mosaics realised by pairs in 𝐹𝑑,𝑑′ . It is straightforward to show that ℳ is
an existential witness for 𝑀 . We say that ℳ is a existential witness defined by A1,A2 for 𝑀 .
(Note that there can be many existential witnesses for one and the same 𝑀 defined by A1,A2

as 𝑀 could be realised in many different ways.)
We are now in a position to give the mosaic elimination procedure. Let 𝒮0 be the set of all

mosaics 𝑀 containing only consistent two-way extended types and with |𝑀 | ≤ (𝐾2 +𝐾3)
2.

Clearly 𝒮0 can be computed in double exponential time in |𝐶1|+ |𝐶2|.
Let 𝒮 ⊆ 𝒮0. We call 𝑀 ∈ 𝒮 bad in 𝒮 if it violates at least one of the following conditions:

1. 𝐴 ∈ 𝑡 iff 𝐴 ∈ 𝑡′ for all 𝐴 ∈ 𝜚 and all (𝑡, 𝐸), (𝑡′, 𝐸′) ∈𝑀 ;

2. there exists a set ℳ ⊆ 𝒮 with |ℳ| ≤ 𝐾1 such that ℳ is a syntactic existential witness
for 𝑀 .

3. ∃𝑢.𝐶 ∈ 𝑡 for some (𝑡, 𝐸) ∈𝑀 then there exists a root mosaic 𝑀 ′ ∈ 𝒮 such that 𝐶 ∈ 𝑡′

for some (𝑡′, 𝐸′) ∈𝑀 such that 𝑡 and 𝑡′ are 𝑢-equivalent.

We compute a sequence 𝒮0,𝒮1, . . ., where we obtain, for 𝑖 ≥ 0, the set 𝒮𝑖+1 from 𝒮𝑖 by
eliminating all mosaics that are bad in 𝒮𝑖. Let 𝒮* be the set of mosaics where the sequence
stabilises. Clearly 𝒮* is obtained from 𝒮0 in at most double exponential time.

Lemma 23. The following conditions are equivalent:

1. 𝐶1, 𝐶2 are satisfied in 𝒜ℒ𝒞ℐ𝑢(𝜚)-bisimilar pointed structures.

2. There is a root mosaic 𝑀 ∈ 𝒮* and (𝑡1, 𝐸1), (𝑡2, 𝐸2) ∈𝑀 with 𝐶1 ∈ 𝑡1 and 𝐶2 ∈ 𝑇2.

Proof. Assume Point 1 holds. Assume A1, 𝑑1 ∼𝒜ℒ𝒞ℐ𝑢(𝜚) A2, 𝑑2 and 𝑑1 ∈ 𝐶A1
1 and 𝑑2 ∈ 𝐶A2

2 .
Consider the set of all pairs 𝑝 = (𝑀,ℳ𝑀) such that ℳ𝑀 is an existential witness for 𝑀

defined by A1,A2. Next apply Lemma 22 to these pairs and obtain the pairs (𝑀𝑝,ℳ𝑝
𝑀). We

call any 𝑀𝑝 down-good (as we have found the relevant witnesses for number restrictions in
children) and all mosaics in any ℳ𝑝

𝑀 up-good (as we have found the relevant witnesses for
number restrictions in parents). Now define for any up-good 𝑀1 and down-good 𝑀2 which
are up/down profile equivalent a fresh mosaic 𝑀𝑀1,𝑀2 by setting (𝑡, 𝐸𝑢𝑝, 𝐸𝑑𝑜𝑤𝑛) ∈𝑀𝑀1,𝑀2

iff there are (𝑡, 𝐸𝑢𝑝, 𝐸
′
𝑑𝑜𝑤𝑛) ∈𝑀1 and (𝑡, 𝐸′

𝑢𝑝, 𝐸𝑑𝑜𝑤𝑛) ∈𝑀2 such that (𝑡, 𝐸′
𝑑𝑜𝑤𝑛) and (𝑡, 𝐸′

𝑢𝑝)
are profile equivalent. Let 𝒮 be the set of all these mosaics. Then by construction 𝒮 ⊆ 𝒮0 and
𝒮 does not contain any mosaics that are bad in 𝒮 . Hence 𝒮 ⊆ 𝒮* and Point 2 follows.

Conversely, assume that Point 2 holds. We construct structures A1,A2 from 𝒮* and the root
mosaic 𝑀* ∈ 𝒮* with (𝑡*1, 𝐸

*
1), (𝑡

*
2, 𝐸

*
2) ∈𝑀* with 𝐶1 ∈ 𝑡*1 and 𝐶2 ∈ 𝑡*2.

Take for every 𝑀 ∈ 𝒮* an existential witness ℳ𝑀 ⊆ 𝒮* for 𝑀 and witnessing relations
𝑟𝑀 , 𝑟

−1
𝑀 ⊆ ∆𝑀 × Γ𝑀 .

The domain of A𝑖 contains all words

𝑠 = ((𝑡0, 𝐸0), 𝑗0,𝑀0)((𝑡1, 𝐸1), 𝑗1,𝑀1) · · · ((𝑡𝑛, 𝐸𝑛), 𝑗𝑛,𝑀𝑛) (3)

such that

• 𝑀0 ∈ 𝒮* is a root mosaic;

• 𝑡0, 𝑡1, . . . , 𝑡𝑛, 𝑡*𝑖 are all 𝑢-equivalent;

• 𝑗ℓ < 𝜔, for all ℓ ≤ 𝑛;

• (𝑡ℓ, 𝐸ℓ) ∈𝑀ℓ, for all ℓ ≤ 𝑛;

• 𝑀ℓ+1 ∈ ℳ𝑀ℓ
, for all ℓ < 𝑛.

We next interpret the concept names 𝐴 by setting for 𝑠 of the form (3), 𝑠 ∈ 𝐴A𝑖 if 𝐴 ∈ 𝑡𝑛. We
let (𝑠, 𝑠′) ∈ 𝑟A𝑖 for 𝑠 of the form (3) and

𝑠′ = ((𝑡′0, 𝐸
′
0), 𝑗

′
0,𝑀

′
0)((𝑡

′
1, 𝐸

′
1), 𝑗

′
1,𝑀

′
1) · · · ((𝑡′𝑚, 𝐸′

𝑚), 𝑗
′
𝑚,𝑀

′
𝑚) ∈ dom(A𝑖) (4)

if 𝑠 is an initial part of 𝑠′ with 𝑚 = 𝑛+ 1 and

• ((𝑡𝑛, 𝐸𝑛), 𝑗𝑛,𝑀𝑛)𝑟𝑀𝑛((𝑡
′
𝑛+1, 𝐸

′
𝑛+1), 𝑗

′
𝑛+1,𝑀

′
𝑛+1) or

• ((𝑡′𝑛+1, 𝐸
′
𝑛+1), 𝑗

′
𝑛+1,𝑀

′
𝑛+1)𝑟

−1
𝑀𝑛

((𝑡𝑛, 𝐸𝑛), 𝑗𝑛,𝑀𝑛).

One can now prove by induction on the construction of 𝐶 the following

Claim. For all 𝐶 ∈ sub(𝐶1, 𝐶2) and all 𝑠 given by (3), 𝑠 ∈ 𝐶A𝑖 iff 𝐶 ∈ 𝑡𝑛.

We define the 𝒜ℒ𝒞ℐ𝑢(𝜚)-bisimulation 𝛽 by setting for 𝑠 of the form (3) and 𝑠′ of the form
(4), 𝑠𝛽𝑠′ iff 𝑛 = 𝑚 and 𝑀𝑖 =𝑀 ′

𝑖 for all 𝑖 ≤ 𝑛.

Claim. 𝛽 is a 𝒜ℒ𝒞ℐ𝑢(𝜚)-bisimulation between A1 and A2

This finishes the proof of Point 1. ⊣

	1 Introduction
	2 Logics
	3 Deciding Separation
	4 Related Work
	5 Discussion
	A Logics
	B Separation and Bisimulation
	C Undecidable Separation
	C.1 ALCOIQ/ALCOI-separation is undecidable.
	C.2 C2/FO2-separation is undecidable

	D ALCQu/ALCu-separation is 2ExpTime-complete
	E ALCIQu/ALCIu separation is 2ExpTime-complete

