
Parametric Polymorphism in Java
Java Generics

KLM

Department of Computer Science and Information Systems
Birkbeck, University of London

keith@dcs.bbk.ac.uk



Overview

Java Generics

Motivation

Parameterised classes

Parameterised methods

wildcards

Upper bounded
Lower bounded
Unbounded

KLM (Birkbeck DCS) Parametric Polymorphism in Java 2 / 51



Cast Exceptions at Runtime I

public class OldBox {

Object data;

public OldBox(Object data) {

this.data = data;

}

public Object getData() {

return data;

}

}

KLM (Birkbeck DCS) Parametric Polymorphism in Java 3 / 51



Cast Exceptions at Runtime II

public class OldBoxDriver {

public static void main(String[] args) {

OldBox intBox = new OldBox(42);

int x = (Integer) intBox.getData();

OldBox strBox = new OldBox("Hello");

String s = (String) strBox.getData();

int y = (Integer) strBox.getData();

intBox = strBox;

}

}

ClassCastException!

Compiles but fails at runtime

KLM (Birkbeck DCS) Parametric Polymorphism in Java 4 / 51



Naive Solution I

Different types of boxes

public class IntBox {

Integer data;

public IntBox(Integer data) {

this.data = data;

}

public Integer getData() {

return data;

}

}

KLM (Birkbeck DCS) Parametric Polymorphism in Java 5 / 51



Naive Solution II

public class StrBox {

String data;

public StrBox(String data) {

this.data = data;

}

public String getData() {

return data;

}

}

KLM (Birkbeck DCS) Parametric Polymorphism in Java 6 / 51



Naive Solution III

public class FooBox {

Foo data;

public FooBox(Foo data) {

this.data = data;

}

public Foo getData() {

return data;

}

}

KLM (Birkbeck DCS) Parametric Polymorphism in Java 7 / 51



Naive Solution IV

public class BoxDriver {

public static void main(String[] args) {

IntBox intBox = new IntBox(42);

int x = intBox.getData();

StrBox strBox = new StrBox("Hello");

String s = strBox.getData();

int y = (Integer) strBox.getData();

intBox = strBox;

}

}

Infinite many classes possible.
The errors caught by compiler.

KLM (Birkbeck DCS) Parametric Polymorphism in Java 8 / 51



Passing Parameters to Methods I

If we consider the way in which we deal with differing parameters
being passed to methods perhaps we can get a clue as to how to
deal with this problem?

KLM (Birkbeck DCS) Parametric Polymorphism in Java 9 / 51



Passing Parameters to Methods II

public abstract class Sum {

public static int sum_0_1() {

return (0 + 1);

}

public static int sum_15_22() {

return (15 + 22);

}

}

public class SumMain {

public static void main(String[] args) {

int j = Sum.sum_0_1();

// ...

int k = Sum.sum_15_22();

}

}

Bad — infinite number of methods

KLM (Birkbeck DCS) Parametric Polymorphism in Java 10 / 51



Passing Parameters to Methods III

public abstract class NewSum {

public static int

sum(int m, int n) {

return (m + n);

}

}

public class NewSumMain {

public static void

main(String[] args) {

int j = NewSum.sum(0, 1);

// ...

int k = NewSum.sum(15, 22);

}

}

Pass parameters to methods

KLM (Birkbeck DCS) Parametric Polymorphism in Java 11 / 51



Java Generics — key ideas

Parameterise type definitions

classes and methods

Provide type safety

compiler performs type checking

prevent runtime cast errors

KLM (Birkbeck DCS) Parametric Polymorphism in Java 12 / 51



Java Generics provoke(d) controversy

“. . .Yet, the Generics syntax is invasive, and the im-
plementation is worse. In an age when more and more
experts assert that dynamic typing leads to simpler ap-
plications and productive programmers, Java developers
are learning how to build stronger enforcement for static
types.”

from Beyond Java by Bruce Tate

KLM (Birkbeck DCS) Parametric Polymorphism in Java 13 / 51



Parameterised Classes I

public class OldBox {

Object data;

public OldBox(Object data) {

this.data = data;

}

public Object getData() {

return data;

}

}

We want the box to hold a specific class — abstractly
represented

Object does not work as we have seen earlier

Possible solution — parameterise the class definition

KLM (Birkbeck DCS) Parametric Polymorphism in Java 14 / 51



Parameterised Classes II

public class Box<T> {

T data;

public Box(T data) {

this.data = data;

}

public T getData() {

return data;

}

}

T refers to a particular type

The constructor takes an object of type T, not any object

To use this class, T must be replaced with a specific class

KLM (Birkbeck DCS) Parametric Polymorphism in Java 15 / 51



Parameterised Classes III

Usage:

Box<Integer> intBox = new Box<Integer>(42);

int x = intBox.getData();//no cast needed

Box<String> strBox = new Box<String>("Hello");

String s = strBox.getData();//no cast needed

which also results in the following lines not compiling anymore:

String s = (String) intBox.getData();

int y = (Integer) strBox.getData();

intBox = strBox;

So now the runtime errors have been “moved” to compile time
errors

KLM (Birkbeck DCS) Parametric Polymorphism in Java 16 / 51



Parameterised Classes IV

Parameterised classes are used for:

container classes (which hold, but do not process data)

all the collections framework classes in Java (since Java 5.0)

KLM (Birkbeck DCS) Parametric Polymorphism in Java 17 / 51



Parameterised Classes V

A class can have multiple parameters, e.g.:

public class Things<A,B,C> { ... }

Sub-classing of parameterised classes is available:

extending a particular type

class IntBox extends Box<Integer> { ... }

extending a parameterised type

class SpecialBox<T> extends Box<T> { ... }

KLM (Birkbeck DCS) Parametric Polymorphism in Java 18 / 51



Parameterised Classes VI

The following assignment is legal:

Box<String> sb = new SpecialBox<String>("Hello");

as SpecialBox<String> is a subclass of Box<String>

KLM (Birkbeck DCS) Parametric Polymorphism in Java 19 / 51



Parameterised classes in methods I

A parameterised class is a type just like any other class.

It can be used in method input types and return types, e.g:

Box<String> aMethod(int i, Box<Integer> b) { ... }

KLM (Birkbeck DCS) Parametric Polymorphism in Java 20 / 51



Parameterised classes in methods II

If a class is parameterised, that type parameter can be used
for any type declaration in that class, e.g.:
public class Box<E> {

E data;

public Box(E data) {

this.data = data;

}

public E getData() {

return data;

}

public void copyFrom(Box<E> b) {

this.data = b.getData();

}

}

which results in the availability of an infinite number of types
of Boxes just by writing a single class definition

KLM (Birkbeck DCS) Parametric Polymorphism in Java 21 / 51



Summary. . .

Type safety violations (using casts)

Parameterised classes solve this problem

Provide type safety which is enforced by the compiler

Particularly useful for container classes

A parameterised class is just another type

and now onto bounded parameterised classes and methods

KLM (Birkbeck DCS) Parametric Polymorphism in Java 22 / 51



Bounded parameterised types I

Sometimes we want restricted parameterisation of classes

For example, we want a box, called MathBox that holds only
Number objects

We cannot use Box<E> because E could be anything

We want to restrict E to be a subclass of Number

KLM (Birkbeck DCS) Parametric Polymorphism in Java 23 / 51



Bounded parameterised types II

public class MathBox<E extends Number> extends Box<Number> {

public MathBox(E data) {

super(data);

}

public double sqrt() {

return Math.sqrt(getData().doubleValue());

}

}

KLM (Birkbeck DCS) Parametric Polymorphism in Java 24 / 51



Bounded parameterised types III

The <E extends Number> syntax means that the type
parameter of MathBox must be a subclass of the Number class

We say that the type parameter is bounded

new MathBox<Integer>(5); //Legal

new MathBox<Double>(32.1); //Legal

new MathBox<String>(^^e2^^80^^9cNo good!^^e2^^80^^9d); //Illegal

KLM (Birkbeck DCS) Parametric Polymorphism in Java 25 / 51



Bounded parameterised types IV

Inside a parameterised class, the type parameter serves as a
valid type, e.g.:

public class OuterClass<T> {

private class InnerClass<E extends T> {

...

}

...

}

Note: The <A extends B> syntax is valid even if B is an
interface

KLM (Birkbeck DCS) Parametric Polymorphism in Java 26 / 51



Bounded parameterised types V

As Java allows multiple inheritance of interfaces we can use
this in our bounded parameterised type, e.g.:

<T extends A & B & C & ...>

For instance:

interface A { ... }

interface B { ... }

class MultiBounds<T extends A & B> { ... }

KLM (Birkbeck DCS) Parametric Polymorphism in Java 27 / 51



Summary. . .

Parameterised classes

Bounded parameterised types (to restrict parameter types)

and now onto parameterised methods

KLM (Birkbeck DCS) Parametric Polymorphism in Java 28 / 51



Parameterised Methods I

Adding type safety to methods that operate on different types
Consider the following class:

public class Foo {

//Foo is not parameterised

public <T> T aMethod(T x) {

// will not compile without <T>

// to indicate that this is a

// parameterised method.

return x;

}

public static void main(String[] args) {

Foo foo = new Foo();

int k = foo.aMethod(5);

String s = foo.aMethod("abc");

}

}

How do we fix foo and vary the parameter to aMethod()?

KLM (Birkbeck DCS) Parametric Polymorphism in Java 29 / 51



Parameterised Methods II

public class Bar<T> {

//Bar is parameterized

public T aMethod(T x) {

return x;

}

public static void main(String[] args) {

Bar<Integer> bar = new Bar<Integer>();

int k = bar.aMethod(5);

String s = bar.aMethod("abc");

//Compilation error here

}

}

Once a Bar<T> is fixed we are locked to a specific T

KLM (Birkbeck DCS) Parametric Polymorphism in Java 30 / 51



Summary. . .

Parameterised classes

Bounded parameterised types

Parameterised methods

and now onto wildcards

KLM (Birkbeck DCS) Parametric Polymorphism in Java 31 / 51



Wildcards I

Come in different varieties. . .

Bounded

Upper

Lower

Unbounded

KLM (Birkbeck DCS) Parametric Polymorphism in Java 32 / 51



Wildcards II

We start to run into some new issues when we do some things
that seem normal

Consider the following case:

Box<Number> numBox = new Box<Integer>(31);

The compiler issues the error message Incompatible Type

This is because numBox can hold only a Number object and
nothing else (which includes Integer which is a subclass of
Number)

KLM (Birkbeck DCS) Parametric Polymorphism in Java 33 / 51



Wildcards III

So what is the solution?

Box< ? extends Number> numBox = new Box<Integer>(31);

This formalism is known as an upper bounded wildcard
because it defines a type that is bounded by the specified
superclass

//We can rewrite copyFrom() so that it can take a box

//that contains data that is a subclass of E and

//store it to a Box<E> object

public class BoxUpper<E> {

E data;

public void copyFrom(Box<? extends E> b) {

this.data = b.getData();

}

}

KLM (Birkbeck DCS) Parametric Polymorphism in Java 34 / 51



Wildcards IV

Upper bounded wildcard example

KLM (Birkbeck DCS) Parametric Polymorphism in Java 35 / 51



Wildcards V

The next formalism we consider is the lower bounded wildcard

Suppose we want to write a copyTo() that copies data in the
opposite direction to copyFrom

copyTo() copies information from the host object to the
given object, i.e.,

public void copyTo(Box<E> b){

b.data = this.getData();

}

This code fragment is fine as long as b and the target are
boxes of exactly the same type.

KLM (Birkbeck DCS) Parametric Polymorphism in Java 36 / 51



Wildcards VI

If we consider that b could be a box of an object that is a
superclass of E then we need something like. . .

public void copyTo(Box< ? super E > b) {

b.data = this.getData();

}

where b.data() is a superclass of this.data()

KLM (Birkbeck DCS) Parametric Polymorphism in Java 37 / 51



Wildcards VII

Lower bounded wildcard example

KLM (Birkbeck DCS) Parametric Polymorphism in Java 38 / 51



Wildcards VIII

and finally. . . Unbounded Wildcards

We use these when any type parameter will work

This is represented as <?>

Examples:

Box<?> b1 = new Box<Integer>(31);

Box<?> b2 = new Box<String>("Hello");

b1 = b2;

KLM (Birkbeck DCS) Parametric Polymorphism in Java 39 / 51



Wildcards IX

Unbounded wildcard example

KLM (Birkbeck DCS) Parametric Polymorphism in Java 40 / 51



Wildcards X

Note: Wildcard capture

In the above example the compiler can figure out exactly
what type b1 is by considering the right hand side of the
assignment.

This capturing of type information means
1 The type on the left hand side of the assignment does not

need to be specified
2 The compiler can do additional type checks because it knows

the type of b1 (in this example)

KLM (Birkbeck DCS) Parametric Polymorphism in Java 41 / 51



Wildcards XI

KLM (Birkbeck DCS) Parametric Polymorphism in Java 42 / 51



Wildcards XII

Josh Bloch’s Bounded Wildcards Rules

Use <? extends T> when parameterised instance is a
producer of T (for reading/input)

Use <? super T> when parameterised instance is a consumer
of T (for writing output)

KLM (Birkbeck DCS) Parametric Polymorphism in Java 43 / 51



How it all works — Type Erasure. . . I

Reminder:

Java Generics implement parametric polymorphism

Parametric: the type parameter (e.g., <T>)

Polymorphism: can take many forms

However if we are going to program with these types we need
to understand how the language rules apply to them
otherwise we might get a little shock!

Java Generics are implemented using type erasure, which
leads to some interesting issues. . .

KLM (Birkbeck DCS) Parametric Polymorphism in Java 44 / 51



How it all works — Type Erasure. . . II

Rather than change every JVM between Java 1.0 and the
Java 1.5 (when generics were introduced) they chose to use
erasure

After the compiler does its type checking, it discards the
generics; the JVM never sees this information

Which works something like this:

Type information between angle brackets is thrown out, e.g.,
List<String> → List

Uses of type variables are replaced by their upper bound
(usually Object)

Casts are inserted to preserve type correctness

KLM (Birkbeck DCS) Parametric Polymorphism in Java 45 / 51



How it all works — Type Erasure. . . III

The Pros and Cons of type erasure

Good Backward compatibility is maintained, so you can still
use legacy (non-generic) code (e.g., libraries)

Bad You cannot find out what type a generic class is using
at runtime

public class Example<T> {

void method(Object item) {

if (item instanceof T) { ... } // Compiler error!

T anotherItem = new T(); // Compiler error!

T[] itemArray = new T[10]; // Compiler error!

}

}

KLM (Birkbeck DCS) Parametric Polymorphism in Java 46 / 51



Using Legacy Code in Generic Code

What if we have some generic code dealing with Fruit but I
want to call the following legacy library method:

Smoothie makeSmoothie(String name, List fruits);

We can pass in a generic List<Fruit> for the fruits
parameter, which has the raw type List

But why?

That seems unsafe. . .

makeSmoothie() could put a Vegetable in the list, and that
might not taste too good!

KLM (Birkbeck DCS) Parametric Polymorphism in Java 47 / 51



Raw Types and Generic Types

List does not mean List<Object> because then we could
not pass in a List<Fruit>

List does not mean List<?> either, because then we could
not assign a List to a List<Fruit> (which is legal)

We need both of these to work for generic code so that we
can interoperate with legacy code

Raw types basically work like wildcard types, just that they
are not checked as stringently (they will probably generate an
unchecked warning)

KLM (Birkbeck DCS) Parametric Polymorphism in Java 48 / 51



The problem with legacy code

As the lead developer for Java Generics put it. . .

“Calling legacy code from generic code is inherently dan-
gerous; once you mix generic code with nongeneric legacy
code, all the safety guarantees that the generic type system
usually provides are void. However, you are still better o
than you were without using generics at all. At least you
know the code on your end is consistent.”

Gilad Bracha

KLM (Birkbeck DCS) Parametric Polymorphism in Java 49 / 51



Summary

Parameterised classes and methods

Type safety

Horrendous syntax and (perhaps) dodgy semantics

KLM (Birkbeck DCS) Parametric Polymorphism in Java 50 / 51



KLM (Birkbeck DCS) Parametric Polymorphism in Java 51 / 51


