

Unobtrusive Tracking and Context Awareness: Challenges and Trade-offs

George Roussos Birkbeck College, University of London g.roussos@bbk.ac.uk

LONDON'S EVENING UNIVERSITY

www.dcs.bbk.ac.uk/~gr

What's inside a mobile phone?

Image credit: IHS/zdnet.com

Smartphone Sensors

Image credit: techinsights.com

Recording data

Sensor	Data
accelerometer	x- y- z-coordinate of acceleration (m ² /s) 4.999093, 10.620679, 0.45010993
GPS	latitude, longitude, speed, heading 46.81006, -92.08174, 18, SW
proximity	distance from object (cm) 32
compass	x- y- z-axis geomagnetic field strength (μT) 31.869, 45.739, 23,195

From observations to events

observation	event	context
longitude, latitude	at work	Geo-located map of significant places / points of interest
acceleration	cooking	Statistical model of activity profiles
phone call to specific number	chatting with friend	Contact list, social media profile
proximity 30cm BLE profile observed	hanging out with friend	Fingerprint map of BLE, statistical model of collocation

Context awareness is critical

- Data recording provide low-level information which in itself is not enough to identify significant events for the person using the phone
- Context of use is critical for the interpretation of data
- Without context, data observations are meaningless
- Understanding context has been the objective of 20+ years of pervasive computing research

Bettini et. al "A survey of context modelling and reasoning techniques" Pervasive and Mobile Computing, Volume 6, Issue 2, April 2010, pp. 161-180

Emotion Sense app

- Un-obstructive/passive background sensor recording **and** self-reporting
- Toolkit for comprehensive monitoring of all sensors on the phone
- Approach: use ML to learn how to infer context from data observations
- Discover routines
- Relate routines to mental-wellbeing
- Predict mood from passively monitored data

Servia-Rodríguez et. al "Mobile sensing at the service of mental well-being: a large-scale longitudinal study" Proc. WWW17, Computational Health Track, Perth, Australia. April 2017

Open Source Library https://github.com/emotionsense

Findings

- Feb 2013 to Jan 2016
- 40k downloads, 11k provided data
- Effective way to measure activity level, environmental noise, messaging and phone calls
- Associate self-reported mood and sensor data i.e. environment (microphone), activity (accelerometer), and sociability (messages and phone calls)
- Varied performance by sensor but typically possible for less than 40%

Constraining context

- Clinical assessment of motor symptoms of Parkinson's Disease
- Part III of the UPDRS
- Certified as Class I Medical Device
- Clinical evidence so needs to be objective, comprehensive, consistent **and** acceptable
- Unsupervised assessment at home
- Unable to assess performance consistently using continuous passive monitoring

Findings

- Solution: constrain context i.e. measure during specific prescribed movements, 17 tests from UPDRS
- Support unsupervised operation:
- Use ML to ensure movements were carried out according to the guidance
- Full test duration for PwP ~25 minutes
- Reduce duration of test to less than 4 minutes
 - Learn which test are significant for the individual
- UPDRS too coarse-grain to capture motor performance variations

Learn which tests provide data features that are most predictive of overall performance for a specific patient

Aggregating many measurements over a week and using descriptive statistics of the distribution is a better way to characterise PD progression.

Summary

- Smartphones and wearables offer unique opportunities for frequent observation of populations at scale
- Passive observation gives good results for simple events such as activity levels, significant places and similar
- Passive observation is promising but currently significantly limited when more complex events are relevant e.g. emotional state
- Typically these limitations are due to the lack of context to interpret the data
- Especially for clinical use, constraining the context is necessary and this typically means moving away from passive approaches