
Automated Reasoning for Static Program Analysis

Carsten Fuhs

Birkbeck, University of London

SAT / SMT / AR Summer School 2024

Nancy, France

29 June 2024

https://www.dcs.bbk.ac.uk/~carsten/satsmtar2024/

https://www.dcs.bbk.ac.uk/~carsten/satsmtar2024/

Quality Assurance for Software by Program Analysis

Two approaches:

Dynamic analysis:
Run the program on example inputs (testing).
+ goal: find errors
---- requires good choice of test cases
---- in general no guarantee for absence of errors

Static analysis:
Analyse the program text without actually running the program.
+ can prove (verify) correctness of the program
−→ important for safety-critical applications
−→ motivating example: first flight of Ariane 5 rocket in 1996

https://www.youtube.com/watch?v=PK_yguLapgA

https://en.wikipedia.org/wiki/Ariane_5_Flight_501

---- manual static analysis requires high effort and expertise
⇒ for broad applicability:

Use automatic reasoning for static analysis!

2/111

https://www.youtube.com/watch?v=PK_yguLapgA
https://en.wikipedia.org/wiki/Ariane_5_Flight_501

Quality Assurance for Software by Program Analysis

Two approaches:
Dynamic analysis:
Run the program on example inputs (testing).
+ goal: find errors
---- requires good choice of test cases
---- in general no guarantee for absence of errors

Static analysis:
Analyse the program text without actually running the program.
+ can prove (verify) correctness of the program
−→ important for safety-critical applications
−→ motivating example: first flight of Ariane 5 rocket in 1996

https://www.youtube.com/watch?v=PK_yguLapgA

https://en.wikipedia.org/wiki/Ariane_5_Flight_501

---- manual static analysis requires high effort and expertise
⇒ for broad applicability:

Use automatic reasoning for static analysis!

2/111

https://www.youtube.com/watch?v=PK_yguLapgA
https://en.wikipedia.org/wiki/Ariane_5_Flight_501

Quality Assurance for Software by Program Analysis

Two approaches:
Dynamic analysis:
Run the program on example inputs (testing).
+ goal: find errors
---- requires good choice of test cases
---- in general no guarantee for absence of errors

Static analysis:
Analyse the program text without actually running the program.
+ can prove (verify) correctness of the program
−→ important for safety-critical applications
−→ motivating example: first flight of Ariane 5 rocket in 1996

https://www.youtube.com/watch?v=PK_yguLapgA

https://en.wikipedia.org/wiki/Ariane_5_Flight_501

---- manual static analysis requires high effort and expertise
⇒ for broad applicability:

Use automatic reasoning for static analysis!
2/111

https://www.youtube.com/watch?v=PK_yguLapgA
https://en.wikipedia.org/wiki/Ariane_5_Flight_501

Static Analysis: the User’s Perspective (1/2)

For the user (programmer): Use static analysis tools as “black boxes”.

What properties of programs do we want to analyse?

Termination
−→ will my program give an output for all inputs in finitely many steps?

(Quantitative) Resource Use aka Complexity
−→ how many steps will my program need in the worst case? (runtime complexity)
−→ how large can my data become? (size complexity)

Equivalence. Do two programs always produce the same result?
−→ correctness of refactoring
−→ translation validation for compilers

Confluence. For languages with non-deterministic rules/commands:
Does one program always produce the same result?

Confluence is a property that establishes the global determinism
of a computation despite possible local non-determinism.
[Hristakiev, PhD thesis ’17]
−→ does the order of applying compiler optimisation rules matter?

3/111

Static Analysis: the User’s Perspective (1/2)

For the user (programmer): Use static analysis tools as “black boxes”.

What properties of programs do we want to analyse?

Termination
−→ will my program give an output for all inputs in finitely many steps?

(Quantitative) Resource Use aka Complexity
−→ how many steps will my program need in the worst case? (runtime complexity)
−→ how large can my data become? (size complexity)

Equivalence. Do two programs always produce the same result?
−→ correctness of refactoring
−→ translation validation for compilers

Confluence. For languages with non-deterministic rules/commands:
Does one program always produce the same result?

Confluence is a property that establishes the global determinism
of a computation despite possible local non-determinism.
[Hristakiev, PhD thesis ’17]
−→ does the order of applying compiler optimisation rules matter?

3/111

Static Analysis: the User’s Perspective (1/2)

For the user (programmer): Use static analysis tools as “black boxes”.

What properties of programs do we want to analyse?

Termination
−→ will my program give an output for all inputs in finitely many steps?

(Quantitative) Resource Use aka Complexity
−→ how many steps will my program need in the worst case? (runtime complexity)
−→ how large can my data become? (size complexity)

Equivalence. Do two programs always produce the same result?
−→ correctness of refactoring
−→ translation validation for compilers

Confluence. For languages with non-deterministic rules/commands:
Does one program always produce the same result?

Confluence is a property that establishes the global determinism
of a computation despite possible local non-determinism.
[Hristakiev, PhD thesis ’17]
−→ does the order of applying compiler optimisation rules matter?

3/111

Static Analysis: the User’s Perspective (1/2)

For the user (programmer): Use static analysis tools as “black boxes”.

What properties of programs do we want to analyse?

Termination
−→ will my program give an output for all inputs in finitely many steps?

(Quantitative) Resource Use aka Complexity
−→ how many steps will my program need in the worst case? (runtime complexity)
−→ how large can my data become? (size complexity)

Equivalence. Do two programs always produce the same result?
−→ correctness of refactoring
−→ translation validation for compilers

Confluence. For languages with non-deterministic rules/commands:
Does one program always produce the same result?

Confluence is a property that establishes the global determinism
of a computation despite possible local non-determinism.
[Hristakiev, PhD thesis ’17]
−→ does the order of applying compiler optimisation rules matter?

3/111

Static Analysis: the User’s Perspective (1/2)

For the user (programmer): Use static analysis tools as “black boxes”.

What properties of programs do we want to analyse?

Termination
−→ will my program give an output for all inputs in finitely many steps?

(Quantitative) Resource Use aka Complexity
−→ how many steps will my program need in the worst case? (runtime complexity)
−→ how large can my data become? (size complexity)

Equivalence. Do two programs always produce the same result?
−→ correctness of refactoring
−→ translation validation for compilers

Confluence. For languages with non-deterministic rules/commands:
Does one program always produce the same result?

Confluence is a property that establishes the global determinism
of a computation despite possible local non-determinism.
[Hristakiev, PhD thesis ’17]
−→ does the order of applying compiler optimisation rules matter?

3/111

Static Analysis: the User’s Perspective (1/2)

For the user (programmer): Use static analysis tools as “black boxes”.

What properties of programs do we want to analyse?

Termination
−→ will my program give an output for all inputs in finitely many steps?

(Quantitative) Resource Use aka Complexity
−→ how many steps will my program need in the worst case? (runtime complexity)
−→ how large can my data become? (size complexity)

Equivalence. Do two programs always produce the same result?
−→ correctness of refactoring
−→ translation validation for compilers

Confluence. For languages with non-deterministic rules/commands:
Does one program always produce the same result?

Confluence is a property that establishes the global determinism
of a computation despite possible local non-determinism.
[Hristakiev, PhD thesis ’17]
−→ does the order of applying compiler optimisation rules matter?

3/111

Static Analysis: the User’s Perspective (1/2)

For the user (programmer): Use static analysis tools as “black boxes”.

What properties of programs do we want to analyse?

Termination
−→ will my program give an output for all inputs in finitely many steps?

(Quantitative) Resource Use aka Complexity
−→ how many steps will my program need in the worst case? (runtime complexity)
−→ how large can my data become? (size complexity)

Equivalence. Do two programs always produce the same result?
−→ correctness of refactoring
−→ translation validation for compilers

Confluence. For languages with non-deterministic rules/commands:
Does one program always produce the same result?

Confluence is a property that establishes the global determinism
of a computation despite possible local non-determinism.
[Hristakiev, PhD thesis ’17]
−→ does the order of applying compiler optimisation rules matter?

3/111

Static Analysis: the User’s Perspective (1/2)

For the user (programmer): Use static analysis tools as “black boxes”.

What properties of programs do we want to analyse?

Termination
−→ will my program give an output for all inputs in finitely many steps?

(Quantitative) Resource Use aka Complexity
−→ how many steps will my program need in the worst case? (runtime complexity)
−→ how large can my data become? (size complexity)

Equivalence. Do two programs always produce the same result?
−→ correctness of refactoring
−→ translation validation for compilers

Confluence. For languages with non-deterministic rules/commands:
Does one program always produce the same result?

Confluence is a property that establishes the global determinism
of a computation despite possible local non-determinism.
[Hristakiev, PhD thesis ’17]
−→ does the order of applying compiler optimisation rules matter?

−→
−→

Ask me in the coffee break!

3/111

Static analysis: the user’s perspective (2/2)

Safety properties.
Partial Correctness
−→ will my program always produce the right result?

Assertions by the programmer.
assert x > 0;

−→ will this always be true?
Memory Safety
−→ are my memory accesses always legal?

int* x = NULL; *x = 42;
−→ undefined behaviour!
−→ replacing all files on the computer with cat GIFs
−→ information leaks (Heartbleed OpenSSL attack)
−→ non-termination

Note: All these properties are undecidable!
⇒ use automatable sufficient criteria in practice

4/111

Static analysis: the user’s perspective (2/2)

Safety properties.
Partial Correctness
−→ will my program always produce the right result?

Assertions by the programmer.
assert x > 0;

−→ will this always be true?

Memory Safety
−→ are my memory accesses always legal?

int* x = NULL; *x = 42;
−→ undefined behaviour!
−→ replacing all files on the computer with cat GIFs
−→ information leaks (Heartbleed OpenSSL attack)
−→ non-termination

Note: All these properties are undecidable!
⇒ use automatable sufficient criteria in practice

4/111

Static analysis: the user’s perspective (2/2)

Safety properties.
Partial Correctness
−→ will my program always produce the right result?

Assertions by the programmer.
assert x > 0;

−→ will this always be true?
Memory Safety
−→ are my memory accesses always legal?

int* x = NULL; *x = 42;

−→ undefined behaviour!
−→ replacing all files on the computer with cat GIFs
−→ information leaks (Heartbleed OpenSSL attack)
−→ non-termination

Note: All these properties are undecidable!
⇒ use automatable sufficient criteria in practice

4/111

Static analysis: the user’s perspective (2/2)

Safety properties.
Partial Correctness
−→ will my program always produce the right result?

Assertions by the programmer.
assert x > 0;

−→ will this always be true?
Memory Safety
−→ are my memory accesses always legal?

int* x = NULL; *x = 42;
−→ undefined behaviour!

−→ replacing all files on the computer with cat GIFs
−→ information leaks (Heartbleed OpenSSL attack)
−→ non-termination

Note: All these properties are undecidable!
⇒ use automatable sufficient criteria in practice

4/111

Static analysis: the user’s perspective (2/2)

Safety properties.
Partial Correctness
−→ will my program always produce the right result?

Assertions by the programmer.
assert x > 0;

−→ will this always be true?
Memory Safety
−→ are my memory accesses always legal?

int* x = NULL; *x = 42;
−→ undefined behaviour!
−→ replacing all files on the computer with cat GIFs

−→ information leaks (Heartbleed OpenSSL attack)
−→ non-termination

Note: All these properties are undecidable!
⇒ use automatable sufficient criteria in practice

4/111

Static analysis: the user’s perspective (2/2)

Safety properties.
Partial Correctness
−→ will my program always produce the right result?

Assertions by the programmer.
assert x > 0;

−→ will this always be true?
Memory Safety
−→ are my memory accesses always legal?

int* x = NULL; *x = 42;
−→ undefined behaviour!
−→ replacing all files on the computer with cat GIFs
−→ information leaks (Heartbleed OpenSSL attack)

−→ non-termination

Note: All these properties are undecidable!
⇒ use automatable sufficient criteria in practice

4/111

Static analysis: the user’s perspective (2/2)

Safety properties.
Partial Correctness
−→ will my program always produce the right result?

Assertions by the programmer.
assert x > 0;

−→ will this always be true?
Memory Safety
−→ are my memory accesses always legal?

int* x = NULL; *x = 42;
−→ undefined behaviour!
−→ replacing all files on the computer with cat GIFs
−→ information leaks (Heartbleed OpenSSL attack)
−→ non-termination

Note: All these properties are undecidable!
⇒ use automatable sufficient criteria in practice

4/111

Static analysis: the user’s perspective (2/2)

Safety properties.
Partial Correctness
−→ will my program always produce the right result?

Assertions by the programmer.
assert x > 0;

−→ will this always be true?
Memory Safety
−→ are my memory accesses always legal?

int* x = NULL; *x = 42;
−→ undefined behaviour!
−→ replacing all files on the computer with cat GIFs
−→ information leaks (Heartbleed OpenSSL attack)
−→ non-termination

Note: All these properties are undecidable!
⇒ use automatable sufficient criteria in practice

4/111

. . . since 2001

Program analysis tool developed in Aachen, London, Innsbruck, . . .

Fully automated, hundreds of techniques for termination, time complexity bounds, . . .
Highly configurable via strategy language
Proofs usually have many steps −→ construct proof tree
Founding tool of Termination Competition, since 2004
Initially: analyse termination of term rewrite systems (TRSs), later also complexity bounds
Since 2006 more input languages: Prolog, Haskell, Java, C (via LLVM)

1 dedicated program analysis by symbolic execution and abstraction
2 extract

constrained

rewrite system

(constraints in integer arithmetic)

3 termination of

constrained

rewrite system ⇒ termination of program

︸ ︷︷ ︸
Frontends

︸ ︷︷ ︸
Backend

5/111

. . . since 2001

Program analysis tool developed in Aachen, London, Innsbruck, . . .
Fully automated, hundreds of techniques for termination, time complexity bounds, . . .

Highly configurable via strategy language
Proofs usually have many steps −→ construct proof tree
Founding tool of Termination Competition, since 2004
Initially: analyse termination of term rewrite systems (TRSs), later also complexity bounds
Since 2006 more input languages: Prolog, Haskell, Java, C (via LLVM)

1 dedicated program analysis by symbolic execution and abstraction
2 extract

constrained

rewrite system

(constraints in integer arithmetic)

3 termination of

constrained

rewrite system ⇒ termination of program

Termination

Complexity

Non-Termination

︸ ︷︷ ︸
Frontends

︸ ︷︷ ︸
Backend

5/111

. . . since 2001

Program analysis tool developed in Aachen, London, Innsbruck, . . .
Fully automated, hundreds of techniques for termination, time complexity bounds, . . .
Highly configurable via strategy language

Proofs usually have many steps −→ construct proof tree
Founding tool of Termination Competition, since 2004
Initially: analyse termination of term rewrite systems (TRSs), later also complexity bounds
Since 2006 more input languages: Prolog, Haskell, Java, C (via LLVM)

1 dedicated program analysis by symbolic execution and abstraction
2 extract

constrained

rewrite system

(constraints in integer arithmetic)

3 termination of

constrained

rewrite system ⇒ termination of program

Termination

Complexity

Non-Termination

︸ ︷︷ ︸
Frontends

︸ ︷︷ ︸
Backend

5/111

. . . since 2001

Program analysis tool developed in Aachen, London, Innsbruck, . . .
Fully automated, hundreds of techniques for termination, time complexity bounds, . . .
Highly configurable via strategy language
Proofs usually have many steps −→ construct proof tree

Founding tool of Termination Competition, since 2004
Initially: analyse termination of term rewrite systems (TRSs), later also complexity bounds
Since 2006 more input languages: Prolog, Haskell, Java, C (via LLVM)

1 dedicated program analysis by symbolic execution and abstraction
2 extract

constrained

rewrite system

(constraints in integer arithmetic)

3 termination of

constrained

rewrite system ⇒ termination of program

Termination

Complexity

Non-Termination

︸ ︷︷ ︸
Frontends

︸ ︷︷ ︸
Backend

5/111

. . . since 2001

Program analysis tool developed in Aachen, London, Innsbruck, . . .
Fully automated, hundreds of techniques for termination, time complexity bounds, . . .
Highly configurable via strategy language
Proofs usually have many steps −→ construct proof tree
Founding tool of Termination Competition, since 2004
Initially: analyse termination of term rewrite systems (TRSs), later also complexity bounds

Since 2006 more input languages: Prolog, Haskell, Java, C (via LLVM)

1 dedicated program analysis by symbolic execution and abstraction
2 extract

constrained

rewrite system

(constraints in integer arithmetic)

3 termination of

constrained

rewrite system ⇒ termination of program

TRS
Termination

Complexity

Non-Termination

︸ ︷︷ ︸
Frontends

︸ ︷︷ ︸
Backend

5/111

. . . since 2001

Program analysis tool developed in Aachen, London, Innsbruck, . . .
Fully automated, hundreds of techniques for termination, time complexity bounds, . . .
Highly configurable via strategy language
Proofs usually have many steps −→ construct proof tree
Founding tool of Termination Competition, since 2004
Initially: analyse termination of term rewrite systems (TRSs), later also complexity bounds
Since 2006 more input languages: Prolog, Haskell, Java, C (via LLVM)

1 dedicated program analysis by symbolic execution and abstraction
2 extract

constrained

rewrite system

(constraints in integer arithmetic)

3 termination of

constrained

rewrite system ⇒ termination of program

Java

C

Haskell

Prolog

TRS
Termination

Complexity

Non-Termination︸ ︷︷ ︸
Frontends

︸ ︷︷ ︸
Backend

5/111

. . . since 2001

Program analysis tool developed in Aachen, London, Innsbruck, . . .
Fully automated, hundreds of techniques for termination, time complexity bounds, . . .
Highly configurable via strategy language
Proofs usually have many steps −→ construct proof tree
Founding tool of Termination Competition, since 2004
Initially: analyse termination of term rewrite systems (TRSs), later also complexity bounds
Since 2006 more input languages: Prolog, Haskell, Java, C (via LLVM)

1 dedicated program analysis by symbolic execution and abstraction

2 extract

constrained

rewrite system

(constraints in integer arithmetic)

3 termination of

constrained

rewrite system ⇒ termination of program

Java

C

Haskell

Prolog

Symbolic
Execution

Graph

TRS
Termination

Complexity

Non-Termination︸ ︷︷ ︸
Frontends

︸ ︷︷ ︸
Backend

5/111

. . . since 2001

Program analysis tool developed in Aachen, London, Innsbruck, . . .
Fully automated, hundreds of techniques for termination, time complexity bounds, . . .
Highly configurable via strategy language
Proofs usually have many steps −→ construct proof tree
Founding tool of Termination Competition, since 2004
Initially: analyse termination of term rewrite systems (TRSs), later also complexity bounds
Since 2006 more input languages: Prolog, Haskell, Java, C (via LLVM)

1 dedicated program analysis by symbolic execution and abstraction
2 extract

constrained

rewrite system

(constraints in integer arithmetic)
3 termination of

constrained

rewrite system ⇒ termination of program

Java

C

Haskell

Prolog

Symbolic
Execution

Graph

TRS
Termination

Complexity

Non-Termination︸ ︷︷ ︸
Frontends

︸ ︷︷ ︸
Backend

5/111

. . . since 2001

Program analysis tool developed in Aachen, London, Innsbruck, . . .
Fully automated, hundreds of techniques for termination, time complexity bounds, . . .
Highly configurable via strategy language
Proofs usually have many steps −→ construct proof tree
Founding tool of Termination Competition, since 2004
Initially: analyse termination of term rewrite systems (TRSs), later also complexity bounds
Since 2006 more input languages: Prolog, Haskell, Java, C (via LLVM)

1 dedicated program analysis by symbolic execution and abstraction
2 extract

constrained

rewrite system

(constraints in integer arithmetic)

3 termination of

constrained

rewrite system ⇒ termination of program

Java

C

Haskell

Prolog

Symbolic
Execution

Graph

TRS
Termination

Complexity

Non-Termination︸ ︷︷ ︸
Frontends

︸ ︷︷ ︸
Backend

5/111

. . . since 2001

Program analysis tool developed in Aachen, London, Innsbruck, . . .
Fully automated, hundreds of techniques for termination, time complexity bounds, . . .
Highly configurable via strategy language
Proofs usually have many steps −→ construct proof tree
Founding tool of Termination Competition, since 2004
Initially: analyse termination of term rewrite systems (TRSs), later also complexity bounds
Since 2006 more input languages: Prolog, Haskell, Java, C (via LLVM)

1 dedicated program analysis by symbolic execution and abstraction
2 extract constrained rewrite system (constraints in integer arithmetic)
3 termination of constrained rewrite system ⇒ termination of program

Java

C

Haskell

Prolog

Symbolic
Execution

Graph

(int-)TRS
Termination

Complexity

Non-Termination︸ ︷︷ ︸
Frontends

︸ ︷︷ ︸
Backend

5/111

What is Static Program Analysis About?

Goal: (Automatically) prove whether a given program P has (un)desirable property
Approach: Often in two phases

Front-End
Input: Program in Java, C, Prolog, Haskell, . . .
Output: Mathematical representation amenable to automated analysis (usually some kind of
transition system)
Often over-approximation, preserves the property of interest

Back-End
Performs the analysis of the desired property

⇒ Result carries over to original program

6/111

What is Static Program Analysis About?

Goal: (Automatically) prove whether a given program P has (un)desirable property
Approach: Often in two phases

Front-End
Input: Program in Java, C, Prolog, Haskell, . . .
Output: Mathematical representation amenable to automated analysis (usually some kind of
transition system)
Often over-approximation, preserves the property of interest

Back-End
Performs the analysis of the desired property

⇒ Result carries over to original program

6/111

What is Static Program Analysis About?

Goal: (Automatically) prove whether a given program P has (un)desirable property
Approach: Often in two phases

Front-End
Input: Program in Java, C, Prolog, Haskell, . . .
Output: Mathematical representation amenable to automated analysis (usually some kind of
transition system)
Often over-approximation, preserves the property of interest

Back-End
Performs the analysis of the desired property

⇒ Result carries over to original program

6/111

I. Termination Analysis

7/111

Why Analyse Termination?

1 Program: produces result (no spec needed!)

2 Input handler: system reacts

3 Mathematical proof: the induction is valid

4 Biological process: reaches a stable state

Variations of the same problem:
2 special case of 1

3 can be interpreted as 1

4 probabilistic version of 1

2011: PHP and Java issues with floating-point number parser
http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/

http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/

8/111

http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/

Why Analyse Termination?

1 Program: produces result (no spec needed!)

2 Input handler: system reacts

3 Mathematical proof: the induction is valid

4 Biological process: reaches a stable state

Variations of the same problem:
2 special case of 1

3 can be interpreted as 1

4 probabilistic version of 1

2011: PHP and Java issues with floating-point number parser
http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/

http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/

8/111

http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/

Why Analyse Termination?

1 Program: produces result (no spec needed!)

2 Input handler: system reacts

3 Mathematical proof: the induction is valid

4 Biological process: reaches a stable state

Variations of the same problem:
2 special case of 1

3 can be interpreted as 1

4 probabilistic version of 1

2011: PHP and Java issues with floating-point number parser
http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/

http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/

8/111

http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/

Why Analyse Termination?

1 Program: produces result (no spec needed!)

2 Input handler: system reacts

3 Mathematical proof: the induction is valid

4 Biological process: reaches a stable state

Variations of the same problem:
2 special case of 1

3 can be interpreted as 1

4 probabilistic version of 1

2011: PHP and Java issues with floating-point number parser
http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/

http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/

8/111

http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/

Why Analyse Termination?

1 Program: produces result (no spec needed!)

2 Input handler: system reacts

3 Mathematical proof: the induction is valid

4 Biological process: reaches a stable state

Variations of the same problem:
2 special case of 1

3 can be interpreted as 1

4 probabilistic version of 1

2011: PHP and Java issues with floating-point number parser
http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/

http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/

8/111

http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/

Why Analyse Termination?

1 Program: produces result (no spec needed!)

2 Input handler: system reacts

3 Mathematical proof: the induction is valid

4 Biological process: reaches a stable state

Variations of the same problem:
2 special case of 1

3 can be interpreted as 1

4 probabilistic version of 1

2011: PHP and Java issues with floating-point number parser
http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/

http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/

8/111

http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/

Why Analyse Termination?

1 Program: produces result (no spec needed!)

2 Input handler: system reacts

3 Mathematical proof: the induction is valid

4 Biological process: reaches a stable state

Variations of the same problem:
2 special case of 1

3 can be interpreted as 1

4 probabilistic version of 1

2011: PHP and Java issues with floating-point number parser
http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/

http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/

8/111

http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/
http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/

The Bad News

Theorem (Turing 1936)
The question if a given program terminates on a fixed input is undecidable.

We want to solve the (harder) question if a given program terminates on all inputs.
That’s not even semi-decidable!
But, fear not . . .

9/111

The Bad News

Theorem (Turing 1936)
The question if a given program terminates on a fixed input is undecidable.

We want to solve the (harder) question if a given program terminates on all inputs.

That’s not even semi-decidable!
But, fear not . . .

9/111

The Bad News

Theorem (Turing 1936)
The question if a given program terminates on a fixed input is undecidable.

We want to solve the (harder) question if a given program terminates on all inputs.
That’s not even semi-decidable!

But, fear not . . .

9/111

The Bad News

Theorem (Turing 1936)
The question if a given program terminates on a fixed input is undecidable.

We want to solve the (harder) question if a given program terminates on all inputs.
That’s not even semi-decidable!
But, fear not . . .

9/111

Termination Analysis, Classically

Turing 1949

“Finally the checker has to verify that the process comes to an end. [...] This may take the form of a
quantity which is asserted to decrease continually and vanish when the machine stops.”

1 Find ranking function f (“quantity”)

2 Prove f to have a lower bound (“vanish when the machine stops”)

3 Prove that f decreases over time

Example (Does this program terminate for all x ∈ Z?)
while x > 0:

x = x − 1

10/111

Termination Analysis, Classically

Turing 1949

“Finally the checker has to verify that the process comes to an end. [...] This may take the form of a
quantity which is asserted to decrease continually and vanish when the machine stops.”

1 Find ranking function f (“quantity”)

2 Prove f to have a lower bound (“vanish when the machine stops”)

3 Prove that f decreases over time

Example (Does this program terminate for all x ∈ Z?)
while x > 0:

x = x − 1

10/111

Termination Analysis, Classically

Turing 1949

“Finally the checker has to verify that the process comes to an end. [...] This may take the form of a
quantity which is asserted to decrease continually and vanish when the machine stops.”

1 Find ranking function f (“quantity”)

2 Prove f to have a lower bound (“vanish when the machine stops”)

3 Prove that f decreases over time

Example (Does this program terminate for all x ∈ Z?)
while x > 0:

x = x − 1

10/111

Termination Analysis, Classically

Turing 1949

“Finally the checker has to verify that the process comes to an end. [...] This may take the form of a
quantity which is asserted to decrease continually and vanish when the machine stops.”

1 Find ranking function f (“quantity”)

2 Prove f to have a lower bound (“vanish when the machine stops”)

3 Prove that f decreases over time

Example (Does this program terminate for all x ∈ Z?)
while x > 0:

x = x − 1

10/111

Termination Analysis, Classically

Turing 1949

“Finally the checker has to verify that the process comes to an end. [...] This may take the form of a
quantity which is asserted to decrease continually and vanish when the machine stops.”

1 Find ranking function f (“quantity”)

2 Prove f to have a lower bound (“vanish when the machine stops”)

3 Prove that f decreases over time

Example (Does this program terminate for all x ∈ Z?)
while x > 0:

x = x − 1

10/111

Termination Analysis, in the Era of Automated Reasoning

Question: Does program P terminate?

Approach: Encode termination proof template to logical constraint ϕ,

Approach:

ask SMT solver
−→ SMT = SATisfiability Modulo Theories, solve constraints like

b > 0 ∧ (4 a b− 7 b2 > 1 ∨ 3 a+ c ≥ b3)

Answer:
1 ϕ satisfiable, model M (e.g., a = 3, b = 1, c = 1):
⇒ P terminating, M fills in the gaps in the termination proof

2 ϕ unsatisfiable:
⇒ termination status of P unknown
⇒ try a different template (proof technique)

In practice:
Encode only one proof step at a time
−→ try to prove only part of the program terminating
Repeat until the whole program is proved terminating

11/111

Termination Analysis, in the Era of Automated Reasoning

Question: Does program P terminate?

Approach: Encode termination proof template to logical constraint ϕ,

Approach:

ask SMT solver

−→ SMT = SATisfiability Modulo Theories, solve constraints like

b > 0 ∧ (4 a b− 7 b2 > 1 ∨ 3 a+ c ≥ b3)

Answer:
1 ϕ satisfiable, model M (e.g., a = 3, b = 1, c = 1):
⇒ P terminating, M fills in the gaps in the termination proof

2 ϕ unsatisfiable:
⇒ termination status of P unknown
⇒ try a different template (proof technique)

In practice:
Encode only one proof step at a time
−→ try to prove only part of the program terminating
Repeat until the whole program is proved terminating

11/111

Termination Analysis, in the Era of Automated Reasoning

Question: Does program P terminate?

Approach: Encode termination proof template to logical constraint ϕ,

Approach:

ask SMT solver
−→ SMT = SATisfiability Modulo Theories, solve constraints like

b > 0 ∧ (4 a b− 7 b2 > 1 ∨ 3 a+ c ≥ b3)

Answer:
1 ϕ satisfiable, model M (e.g., a = 3, b = 1, c = 1):
⇒ P terminating, M fills in the gaps in the termination proof

2 ϕ unsatisfiable:
⇒ termination status of P unknown
⇒ try a different template (proof technique)

In practice:
Encode only one proof step at a time
−→ try to prove only part of the program terminating
Repeat until the whole program is proved terminating

11/111

Termination Analysis, in the Era of Automated Reasoning

Question: Does program P terminate?

Approach: Encode termination proof template to logical constraint ϕ,

Approach:

ask SMT solver
−→ SMT = SATisfiability Modulo Theories, solve constraints like

b > 0 ∧ (4 a b− 7 b2 > 1 ∨ 3 a+ c ≥ b3)

Answer:

1 ϕ satisfiable, model M (e.g., a = 3, b = 1, c = 1):
⇒ P terminating, M fills in the gaps in the termination proof

2 ϕ unsatisfiable:
⇒ termination status of P unknown
⇒ try a different template (proof technique)

In practice:
Encode only one proof step at a time
−→ try to prove only part of the program terminating
Repeat until the whole program is proved terminating

11/111

Termination Analysis, in the Era of Automated Reasoning

Question: Does program P terminate?

Approach: Encode termination proof template to logical constraint ϕ,

Approach:

ask SMT solver
−→ SMT = SATisfiability Modulo Theories, solve constraints like

b > 0 ∧ (4 a b− 7 b2 > 1 ∨ 3 a+ c ≥ b3)

Answer:
1 ϕ satisfiable, model M (e.g., a = 3, b = 1, c = 1):
⇒ P terminating, M fills in the gaps in the termination proof

2 ϕ unsatisfiable:
⇒ termination status of P unknown
⇒ try a different template (proof technique)

In practice:
Encode only one proof step at a time
−→ try to prove only part of the program terminating
Repeat until the whole program is proved terminating

11/111

Termination Analysis, in the Era of Automated Reasoning

Question: Does program P terminate?

Approach: Encode termination proof template to logical constraint ϕ,

Approach:

ask SMT solver
−→ SMT = SATisfiability Modulo Theories, solve constraints like

b > 0 ∧ (4 a b− 7 b2 > 1 ∨ 3 a+ c ≥ b3)

Answer:
1 ϕ satisfiable, model M (e.g., a = 3, b = 1, c = 1):
⇒ P terminating, M fills in the gaps in the termination proof

2 ϕ unsatisfiable:
⇒ termination status of P unknown
⇒ try a different template (proof technique)

In practice:
Encode only one proof step at a time
−→ try to prove only part of the program terminating
Repeat until the whole program is proved terminating

11/111

Termination Analysis, in the Era of Automated Reasoning

Question: Does program P terminate?

Approach: Encode termination proof template to logical constraint ϕ,

Approach:

ask SMT solver
−→ SMT = SATisfiability Modulo Theories, solve constraints like

b > 0 ∧ (4 a b− 7 b2 > 1 ∨ 3 a+ c ≥ b3)

Answer:
1 ϕ satisfiable, model M (e.g., a = 3, b = 1, c = 1):
⇒ P terminating, M fills in the gaps in the termination proof

2 ϕ unsatisfiable:
⇒ termination status of P unknown
⇒ try a different template (proof technique)

In practice:
Encode only one proof step at a time
−→ try to prove only part of the program terminating
Repeat until the whole program is proved terminating

11/111

Termination Proving in the Back-End and in the Front-End

Back-End:
1 Term Rewrite Systems (TRSs)
2 Imperative Programs (as Integer Transition Systems, ITSs)
3 Both together! Logically Constrained Term Rewrite Systems

Front-End: processing practical programming languages
Example: Java

12/111

Termination Proving in the Back-End and in the Front-End

Back-End:
1 Term Rewrite Systems (TRSs)
2 Imperative Programs (as Integer Transition Systems, ITSs)
3 Both together! Logically Constrained Term Rewrite Systems

Front-End: processing practical programming languages
Example: Java

12/111

I.1 Termination Analysis of Term Rewrite
Systems

13/111

What’s Term Rewriting?

Syntactic approach for reasoning in equational first-order logic

Core functional programming language without many restrictions (and features) of “real” FP:
first-order (usually)
no fixed evaluation strategy −→ non-determinism!
no fixed order of rules to apply (Haskell: top to bottom) −→ non-determinism!
untyped (unless you really want types)
no pre-defined data structures (integers, arrays, . . .)

14/111

What’s Term Rewriting?

Syntactic approach for reasoning in equational first-order logic

Core functional programming language without many restrictions (and features) of “real” FP:
first-order (usually)
no fixed evaluation strategy −→ non-determinism!
no fixed order of rules to apply (Haskell: top to bottom) −→ non-determinism!
untyped (unless you really want types)
no pre-defined data structures (integers, arrays, . . .)

14/111

What’s Term Rewriting?

Syntactic approach for reasoning in equational first-order logic

Core functional programming language without many restrictions (and features) of “real” FP:

first-order (usually)
no fixed evaluation strategy −→ non-determinism!
no fixed order of rules to apply (Haskell: top to bottom) −→ non-determinism!
untyped (unless you really want types)
no pre-defined data structures (integers, arrays, . . .)

14/111

What’s Term Rewriting?

Syntactic approach for reasoning in equational first-order logic

Core functional programming language without many restrictions (and features) of “real” FP:
first-order (usually)
no fixed evaluation strategy −→ non-determinism!
no fixed order of rules to apply (Haskell: top to bottom) −→ non-determinism!
untyped (unless you really want types)
no pre-defined data structures (integers, arrays, . . .)

14/111

Show Me an Example!

Represent natural numbers by terms (inductively defined data structure):

0, s(0), s(s(0)), . . .

Example (A Term Rewrite System (TRS) for Division)

R =

minus(x, 0) −→ x

minus(s(x), s(y)) −→ minus(x, y)

quot(0, s(y)) −→ 0

quot(s(x), s(y)) −→ s(quot(minus(x, y), s(y)))

Calculation:

minus(s(s(0)), s(0)) −→R minus(s(0), 0) −→R s(0)

15/111

Show Me an Example!

Represent natural numbers by terms (inductively defined data structure):

0, s(0), s(s(0)), . . .

Example (A Term Rewrite System (TRS) for Division)

R =

minus(x, 0) −→ x

minus(s(x), s(y)) −→ minus(x, y)

quot(0, s(y)) −→ 0

quot(s(x), s(y)) −→ s(quot(minus(x, y), s(y)))

Calculation:

minus(s(s(0)), s(0)) −→R minus(s(0), 0) −→R s(0)

15/111

Show Me an Example!

Represent natural numbers by terms (inductively defined data structure):

0, s(0), s(s(0)), . . .

Example (A Term Rewrite System (TRS) for Division)

R =

minus(x, 0) −→ x

minus(s(x), s(y)) −→ minus(x, y)

quot(0, s(y)) −→ 0

quot(s(x), s(y)) −→ s(quot(minus(x, y), s(y)))

Calculation:

minus(s(s(0)), s(0)) −→R minus(s(0), 0) −→R s(0)

15/111

Why Care about Termination of Term Rewriting?

Termination needed by theorem provers

Translate program P with inductive data structures (trees) to TRS, represent data structures as
terms

⇒ Termination of TRS implies termination of P

Logic programming: Prolog
[van Raamsdonk, ICLP ’97; Schneider-Kamp et al, TOCL ’09; Giesl et al, PPDP ’12]

(Lazy) functional programming: Haskell [Giesl et al, TOPLAS ’11]

Object-oriented programming: Java [Otto et al, RTA ’10]

16/111

Why Care about Termination of Term Rewriting?

Termination needed by theorem provers

Translate program P with inductive data structures (trees) to TRS, represent data structures as
terms

⇒ Termination of TRS implies termination of P

Logic programming: Prolog
[van Raamsdonk, ICLP ’97; Schneider-Kamp et al, TOCL ’09; Giesl et al, PPDP ’12]

(Lazy) functional programming: Haskell [Giesl et al, TOPLAS ’11]

Object-oriented programming: Java [Otto et al, RTA ’10]

16/111

Why Care about Termination of Term Rewriting?

Termination needed by theorem provers

Translate program P with inductive data structures (trees) to TRS, represent data structures as
terms

⇒ Termination of TRS implies termination of P

Logic programming: Prolog
[van Raamsdonk, ICLP ’97; Schneider-Kamp et al, TOCL ’09; Giesl et al, PPDP ’12]

(Lazy) functional programming: Haskell [Giesl et al, TOPLAS ’11]

Object-oriented programming: Java [Otto et al, RTA ’10]

16/111

Why Care about Termination of Term Rewriting?

Termination needed by theorem provers

Translate program P with inductive data structures (trees) to TRS, represent data structures as
terms

⇒ Termination of TRS implies termination of P

Logic programming: Prolog
[van Raamsdonk, ICLP ’97; Schneider-Kamp et al, TOCL ’09; Giesl et al, PPDP ’12]

(Lazy) functional programming: Haskell [Giesl et al, TOPLAS ’11]

Object-oriented programming: Java [Otto et al, RTA ’10]

16/111

Why Care about Termination of Term Rewriting?

Termination needed by theorem provers

Translate program P with inductive data structures (trees) to TRS, represent data structures as
terms

⇒ Termination of TRS implies termination of P

Logic programming: Prolog
[van Raamsdonk, ICLP ’97; Schneider-Kamp et al, TOCL ’09; Giesl et al, PPDP ’12]

(Lazy) functional programming: Haskell [Giesl et al, TOPLAS ’11]

Object-oriented programming: Java [Otto et al, RTA ’10]

16/111

Example (Division)

R =

minus(x, 0) −→ x

minus(s(x), s(y)) −→ minus(x, y)

quot(0, s(y)) −→ 0

quot(s(x), s(y)) −→ s(quot(minus(x, y), s(y)))

DP =

minus](s(x), s(y)) −→ minus](x, y)

quot](s(x), s(y)) −→ minus](x, y)

quot](s(x), s(y)) −→ quot](minus(x, y), s(y))

Term rewriting: Evaluate terms by applying rules from R

minus(s(s(0)), s(0)) −→R minus(s(0), 0) −→R s(0)

Termination: No infinite evaluation sequences t1 −→R t2 −→R t3 −→R . . .
Show termination using Dependency Pairs

17/111

Example (Division)

R =

minus(x, 0) −→ x

minus(s(x), s(y)) −→ minus(x, y)

quot(0, s(y)) −→ 0

quot(s(x), s(y)) −→ s(quot(minus(x, y), s(y)))

DP =

minus](s(x), s(y)) −→ minus](x, y)

quot](s(x), s(y)) −→ minus](x, y)

quot](s(x), s(y)) −→ quot](minus(x, y), s(y))

Term rewriting: Evaluate terms by applying rules from R

minus(s(s(0)), s(0)) −→R minus(s(0), 0) −→R s(0)

Termination: No infinite evaluation sequences t1 −→R t2 −→R t3 −→R . . .

Show termination using Dependency Pairs

17/111

Example (Division)

R =

minus(x, 0) −→ x

minus(s(x), s(y)) −→ minus(x, y)

quot(0, s(y)) −→ 0

quot(s(x), s(y)) −→ s(quot(minus(x, y), s(y)))

DP =

minus](s(x), s(y)) −→ minus](x, y)

quot](s(x), s(y)) −→ minus](x, y)

quot](s(x), s(y)) −→ quot](minus(x, y), s(y))

Term rewriting: Evaluate terms by applying rules from R

minus(s(s(0)), s(0)) −→R minus(s(0), 0) −→R s(0)

Termination: No infinite evaluation sequences t1 −→R t2 −→R t3 −→R . . .
Show termination using Dependency Pairs

17/111

Example (Division)

R =

minus(x, 0) −→ x

minus(s(x), s(y)) −→ minus (x, y)

quot(0, s(y)) −→ 0

quot(s(x), s(y)) −→ s(quot (minus (x, y), s(y)))

DP =

minus](s(x), s(y)) −→ minus](x, y)

quot](s(x), s(y)) −→ minus](x, y)

quot](s(x), s(y)) −→ quot](minus(x, y), s(y))

Dependency Pairs [Arts, Giesl, TCS ’00]

For TRS R build dependency pairs DP (∼ function calls)
Show: No ∞ call sequence with DP (eval of DP’s args via R)
Dependency Pair Framework [Giesl et al, JAR ’06] (simplified):

while DP 6= ∅ :

find well-founded order � with DP ∪R ⊆ %
delete s −→ t with s � t from DP

Find � automatically and efficiently

17/111

Example (Division)

R =

minus(x, 0) −→ x

minus(s(x), s(y)) −→ minus (x, y)

quot(0, s(y)) −→ 0

quot(s(x), s(y)) −→ s(quot (minus (x, y), s(y)))

DP =

minus](s(x), s(y)) −→ minus](x, y)

quot](s(x), s(y)) −→ minus](x, y)

quot](s(x), s(y)) −→ quot](minus(x, y), s(y))

Dependency Pairs [Arts, Giesl, TCS ’00]
For TRS R build dependency pairs DP (∼ function calls)
Show: No ∞ call sequence with DP (eval of DP’s args via R)

Dependency Pair Framework [Giesl et al, JAR ’06] (simplified):

while DP 6= ∅ :

find well-founded order � with DP ∪R ⊆ %
delete s −→ t with s � t from DP

Find � automatically and efficiently

17/111

Example (Division)

R =

minus(x, 0) −→ x

minus(s(x), s(y)) −→ minus(x, y)

quot(0, s(y)) −→ 0

quot(s(x), s(y)) −→ s(quot(minus(x, y), s(y)))

DP =

minus](s(x), s(y)) −→ minus](x, y)

quot](s(x), s(y)) −→ minus](x, y)

quot](s(x), s(y)) −→ quot](minus(x, y), s(y))

Dependency Pairs [Arts, Giesl, TCS ’00]
For TRS R build dependency pairs DP (∼ function calls)
Show: No ∞ call sequence with DP (eval of DP’s args via R)
Dependency Pair Framework [Giesl et al, JAR ’06] (simplified):

while DP 6= ∅ :

find well-founded order � with DP ∪R ⊆ %
delete s −→ t with s � t from DP

Find � automatically and efficiently

17/111

Example (Division)

R =

minus(x, 0) −→ x

minus(s(x), s(y)) −→ minus(x, y)

quot(0, s(y)) −→ 0

quot(s(x), s(y)) −→ s(quot(minus(x, y), s(y)))

DP =

minus](s(x), s(y)) −→ minus](x, y)

quot](s(x), s(y)) −→ minus](x, y)

quot](s(x), s(y)) −→ quot](minus(x, y), s(y))

Dependency Pairs [Arts, Giesl, TCS ’00]
For TRS R build dependency pairs DP (∼ function calls)
Show: No ∞ call sequence with DP (eval of DP’s args via R)
Dependency Pair Framework [Giesl et al, JAR ’06] (simplified):
while DP 6= ∅ :

find well-founded order � with DP ∪R ⊆ %
delete s −→ t with s � t from DP

Find � automatically and efficiently

17/111

Example (Division)

R =

minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

DP =

minus](s(x), s(y)) % minus](x, y)

quot](s(x), s(y)) % minus](x, y)
quot](s(x), s(y)) % quot](minus(x, y), s(y))

Dependency Pairs [Arts, Giesl, TCS ’00]
For TRS R build dependency pairs DP (∼ function calls)
Show: No ∞ call sequence with DP (eval of DP’s args via R)
Dependency Pair Framework [Giesl et al, JAR ’06] (simplified):
while DP 6= ∅ :

find well-founded order � with DP ∪R ⊆ %

delete s −→ t with s � t from DP
Find � automatically and efficiently

17/111

Example (Division)

R =

minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

DP =

minus](s(x), s(y))

(
%

)
minus](x, y)

quot](s(x), s(y))
(
%

)
minus](x, y)

quot](s(x), s(y))
(
%

)
quot](minus(x, y), s(y))

Dependency Pairs [Arts, Giesl, TCS ’00]
For TRS R build dependency pairs DP (∼ function calls)
Show: No ∞ call sequence with DP (eval of DP’s args via R)
Dependency Pair Framework [Giesl et al, JAR ’06] (simplified):
while DP 6= ∅ :

find well-founded order � with DP ∪R ⊆ %
delete s −→ t with s � t from DP

Find � automatically and efficiently

17/111

Example (Division)

R =

minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

DP =

minus](s(x), s(y))

(
%

)
minus](x, y)

quot](s(x), s(y))
(
%

)
minus](x, y)

quot](s(x), s(y))
(
%

)
quot](minus(x, y), s(y))

Dependency Pairs [Arts, Giesl, TCS ’00]
For TRS R build dependency pairs DP (∼ function calls)
Show: No ∞ call sequence with DP (eval of DP’s args via R)
Dependency Pair Framework [Giesl et al, JAR ’06] (simplified):
while DP 6= ∅ :

find well-founded order � with DP ∪R ⊆ %
delete s −→ t with s � t from DP

Find � automatically and efficiently
17/111

Polynomial Interpretations

Get � via polynomial interpretations [·] over N [Lankford ’75]

Example

∀x, y. x+ 1 = [

minus(s(x), s(y))

]

%

[

minus(x, y)

] = x

Use [·] with
[minus](x1, x2) = x1

[s](x1) = x1 + 1

Extend to terms:
[x] = x

[f(t1, . . . , tn)] = [f]([t1], . . . , [tn])

� boils down to > over N

18/111

Polynomial Interpretations

Get � via polynomial interpretations [·] over N [Lankford ’75]

Example

∀x, y. x+ 1 = [

minus(s(x), s(y))

]

%

[

minus(x, y)

] = x

Use [·] with
[minus](x1, x2) = x1

[s](x1) = x1 + 1

Extend to terms:
[x] = x

[f(t1, . . . , tn)] = [f]([t1], . . . , [tn])

� boils down to > over N

18/111

Polynomial Interpretations

Get � via polynomial interpretations [·] over N [Lankford ’75]

Example

∀x, y. x+ 1 = [minus(s(x), s(y))] ≥ [minus(x, y)] = x

Use [·] with
[minus](x1, x2) = x1

[s](x1) = x1 + 1

Extend to terms:
[x] = x

[f(t1, . . . , tn)] = [f]([t1], . . . , [tn])

� boils down to > over N

18/111

Example (Constraints for Division)

R =

minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

DP =

minus](s(x), s(y))

(
%

)
minus](x, y)

quot](s(x), s(y))
(
%

)
minus](x, y)

quot](s(x), s(y))
(
%

)
quot](minus(x, y), s(y))

Use interpretation [·] over N with

[quot]](x1, x2) = x1 . [quot](x1, x2) = x1 + x2
[minus]](x1, x2) = x1 [minus](x1, x2) = x1

[0] = 0 [s](x1) = x1 + 1

y order solves all constraints

y DP = ∅
y termination of division algorithm proved �

19/111

Example (Constraints for Division)

R =

minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

DP =

minus](s(x), s(y)) � minus](x, y)

quot](s(x), s(y)) � minus](x, y)
quot](s(x), s(y)) � quot](minus(x, y), s(y))

Use interpretation [·] over N with

[quot]](x1, x2) = x1 . [quot](x1, x2) = x1 + x2
[minus]](x1, x2) = x1 [minus](x1, x2) = x1

[0] = 0 [s](x1) = x1 + 1

y order solves all constraints

y DP = ∅
y termination of division algorithm proved �

19/111

Example (Constraints for Division)

R =

minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

DP =

minus](s(x), s(y)) � minus](x, y)

quot](s(x), s(y)) � minus](x, y)
quot](s(x), s(y)) � quot](minus(x, y), s(y))

Use interpretation [·] over N with

[quot]](x1, x2) = x1 . [quot](x1, x2) = x1 + x2
[minus]](x1, x2) = x1 [minus](x1, x2) = x1

[0] = 0 [s](x1) = x1 + 1

y order solves all constraints
y DP = ∅
y termination of division algorithm proved �

19/111

Example (Constraints for Division)

R =

minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

DP =

minus](s(x), s(y)) � minus](x, y)

quot](s(x), s(y)) � minus](x, y)
quot](s(x), s(y)) � quot](minus(x, y), s(y))

Use interpretation [·] over N with

[quot]](x1, x2) = x1 . [quot](x1, x2) = x1 + x2
[minus]](x1, x2) = x1 [minus](x1, x2) = x1

[0] = 0 [s](x1) = x1 + 1

y order solves all constraints
y DP = ∅
y termination of division algorithm proved �

19/111

Remark

Polynomial interpretations play several roles for program analysis:

Ranking function: [quot]] and [minus]]

Summary: [quot] and [minus]

Abstraction (aka norm) for data structures: [0] and [s]

Example (Constraints for Division)

R =

minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

DP =

minus](s(x), s(y)) � minus](x, y)

quot](s(x), s(y)) � minus](x, y)
quot](s(x), s(y)) � quot](minus(x, y), s(y))

Use interpretation [·] over N with

[quot]](x1, x2) = x1 . [quot](x1, x2) = x1 + x2
[minus]](x1, x2) = x1 [minus](x1, x2) = x1

[0] = 0 [s](x1) = x1 + 1

y order solves all constraints
y DP = ∅
y termination of division algorithm proved �

19/111

Remark

Polynomial interpretations play several roles for program analysis:

Ranking function: [quot]] and [minus]]

Summary: [quot] and [minus]

Abstraction (aka norm) for data structures: [0] and [s]

Example (Constraints for Division)

R =

minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

DP =

minus](s(x), s(y)) � minus](x, y)

quot](s(x), s(y)) � minus](x, y)
quot](s(x), s(y)) � quot](minus(x, y), s(y))

Use interpretation [·] over N with

[quot]](x1, x2) = x1 . [quot](x1, x2) = x1 + x2
[minus]](x1, x2) = x1 [minus](x1, x2) = x1

[0] = 0 [s](x1) = x1 + 1

y order solves all constraints
y DP = ∅
y termination of division algorithm proved �

19/111

Remark

Polynomial interpretations play several roles for program analysis:

Ranking function: [quot]] and [minus]]

Summary: [quot] and [minus]

Abstraction (aka norm) for data structures: [0] and [s]

Example (Constraints for Division)

R =

minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

DP =

minus](s(x), s(y)) � minus](x, y)

quot](s(x), s(y)) � minus](x, y)
quot](s(x), s(y)) � quot](minus(x, y), s(y))

Use interpretation [·] over N with

[quot]](x1, x2) = x1 . [quot](x1, x2) = x1 + x2
[minus]](x1, x2) = x1 [minus](x1, x2) = x1

[0] = 0 [s](x1) = x1 + 1

y order solves all constraints
y DP = ∅
y termination of division algorithm proved �

19/111

Remark

Polynomial interpretations play several roles for program analysis:

Ranking function: [quot]] and [minus]]

Summary: [quot] and [minus]

Abstraction (aka norm) for data structures: [0] and [s]

Automation

Task: Solve minus(s(x), s(y)) % minus(x, y)

1 Fix template polynomials with parametric coefficients, get interpretation template:

[minus](x, y) = am + bm x+ cm y, [s](x) = as + bs x

2 From term constraint to polynomial constraint:

s % t y [s] ≥ [t]

Here: ∀x, y. (as bm + as cm) + (bs bm − bm)x+ (bs cm − cm) y ≥ 0

3 Eliminate ∀x, y by absolute positiveness criterion [Hong, Jakuš, JAR ’98]:

Here: as bm + as cm ≥ 0 ∧ bs bm − bm ≥ 0 ∧ bs cm − cm ≥ 0

Non-linear constraints, even for linear interpretations

Task: Show satisfiability of non-linear constraints over N (−→ SMT solver!)
y Prove termination of given term rewrite system

20/111

Automation

Task: Solve minus(s(x), s(y)) % minus(x, y)

1 Fix template polynomials with parametric coefficients, get interpretation template:

[minus](x, y) = am + bm x+ cm y, [s](x) = as + bs x

2 From term constraint to polynomial constraint:

s % t y [s] ≥ [t]

Here: ∀x, y. (as bm + as cm) + (bs bm − bm)x+ (bs cm − cm) y ≥ 0

3 Eliminate ∀x, y by absolute positiveness criterion [Hong, Jakuš, JAR ’98]:

Here: as bm + as cm ≥ 0 ∧ bs bm − bm ≥ 0 ∧ bs cm − cm ≥ 0

Non-linear constraints, even for linear interpretations

Task: Show satisfiability of non-linear constraints over N (−→ SMT solver!)
y Prove termination of given term rewrite system

20/111

Automation

Task: Solve minus(s(x), s(y)) % minus(x, y)

1 Fix template polynomials with parametric coefficients, get interpretation template:

[minus](x, y) = am + bm x+ cm y, [s](x) = as + bs x

2 From term constraint to polynomial constraint:

s % t y [s] ≥ [t]

Here: ∀x, y. (as bm + as cm) + (bs bm − bm)x+ (bs cm − cm) y ≥ 0

3 Eliminate ∀x, y by absolute positiveness criterion [Hong, Jakuš, JAR ’98]:

Here: as bm + as cm ≥ 0 ∧ bs bm − bm ≥ 0 ∧ bs cm − cm ≥ 0

Non-linear constraints, even for linear interpretations

Task: Show satisfiability of non-linear constraints over N (−→ SMT solver!)
y Prove termination of given term rewrite system

20/111

Automation

Task: Solve minus(s(x), s(y)) % minus(x, y)

1 Fix template polynomials with parametric coefficients, get interpretation template:

[minus](x, y) = am + bm x+ cm y, [s](x) = as + bs x

2 From term constraint to polynomial constraint:

s % t y [s] ≥ [t]

Here: ∀x, y. (as bm + as cm) + (bs bm − bm)x+ (bs cm − cm) y ≥ 0

3 Eliminate ∀x, y by absolute positiveness criterion [Hong, Jakuš, JAR ’98]:

Here: as bm + as cm ≥ 0 ∧ bs bm − bm ≥ 0 ∧ bs cm − cm ≥ 0

Non-linear constraints, even for linear interpretations

Task: Show satisfiability of non-linear constraints over N (−→ SMT solver!)
y Prove termination of given term rewrite system

20/111

Automation

Task: Solve minus(s(x), s(y)) % minus(x, y)

1 Fix template polynomials with parametric coefficients, get interpretation template:

[minus](x, y) = am + bm x+ cm y, [s](x) = as + bs x

2 From term constraint to polynomial constraint:

s % t y [s] ≥ [t]

Here: ∀x, y. (as bm + as cm) + (bs bm − bm)x+ (bs cm − cm) y ≥ 0

3 Eliminate ∀x, y by absolute positiveness criterion [Hong, Jakuš, JAR ’98]:

Here: as bm + as cm ≥ 0 ∧ bs bm − bm ≥ 0 ∧ bs cm − cm ≥ 0

Non-linear constraints, even for linear interpretations

Task: Show satisfiability of non-linear constraints over N (−→ SMT solver!)
y Prove termination of given term rewrite system

20/111

Automation

Task: Solve minus(s(x), s(y)) % minus(x, y)

1 Fix template polynomials with parametric coefficients, get interpretation template:

[minus](x, y) = am + bm x+ cm y, [s](x) = as + bs x

2 From term constraint to polynomial constraint:

s % t y [s] ≥ [t]

Here: ∀x, y. (as bm + as cm) + (bs bm − bm) x+ (bs cm − cm) y ≥ 0

3 Eliminate ∀x, y by absolute positiveness criterion [Hong, Jakuš, JAR ’98]:

Here: as bm + as cm ≥ 0 ∧ bs bm − bm ≥ 0 ∧ bs cm − cm ≥ 0

Non-linear constraints, even for linear interpretations

Task: Show satisfiability of non-linear constraints over N (−→ SMT solver!)
y Prove termination of given term rewrite system

20/111

Automation

Task: Solve minus(s(x), s(y)) % minus(x, y)

1 Fix template polynomials with parametric coefficients, get interpretation template:

[minus](x, y) = am + bm x+ cm y, [s](x) = as + bs x

2 From term constraint to polynomial constraint:

s % t y [s] ≥ [t]

Here: ∀x, y. (as bm + as cm) + (bs bm − bm)x+ (bs cm − cm) y ≥ 0

3 Eliminate ∀x, y by absolute positiveness criterion [Hong, Jakuš, JAR ’98]:

Here: as bm + as cm ≥ 0 ∧ bs bm − bm ≥ 0 ∧ bs cm − cm ≥ 0

Non-linear constraints, even for linear interpretations

Task: Show satisfiability of non-linear constraints over N (−→ SMT solver!)
y Prove termination of given term rewrite system

20/111

Automation

Task: Solve minus(s(x), s(y)) % minus(x, y)

1 Fix template polynomials with parametric coefficients, get interpretation template:

[minus](x, y) = am + bm x+ cm y, [s](x) = as + bs x

2 From term constraint to polynomial constraint:

s % t y [s] ≥ [t]

Here: ∀x, y. (as bm + as cm) + (bs bm − bm)x+ (bs cm − cm) y ≥ 0

3 Eliminate ∀x, y by absolute positiveness criterion [Hong, Jakuš, JAR ’98]:

Here: as bm + as cm ≥ 0 ∧ bs bm − bm ≥ 0 ∧ bs cm − cm ≥ 0

Non-linear constraints, even for linear interpretations

Task: Show satisfiability of non-linear constraints over N (−→ SMT solver!)
y Prove termination of given term rewrite system

20/111

Non-Linear Constraint Solving

Satisfiability of non-linear SMT formulas over N undecidable (Hilbert’s 10th problem)
Restrict unknowns to finite domain {0, . . . , n}
Problem NP-complete

Approach [Fuhs et al, SAT ’07]
Encode non-linear SMT formula to pure SAT
−→ bit-blasting for QF_NIA
Use SAT solver to get solution
Eager Approach to SMT, but any SMT solver will do!
Observation: if a model over N exists, usually small n suffices (e.g., n = 3)

21/111

Non-Linear Constraint Solving

Satisfiability of non-linear SMT formulas over N undecidable (Hilbert’s 10th problem)
Restrict unknowns to finite domain {0, . . . , n}
Problem NP-complete

Approach [Fuhs et al, SAT ’07]
Encode non-linear SMT formula to pure SAT
−→ bit-blasting for QF_NIA
Use SAT solver to get solution
Eager Approach to SMT, but any SMT solver will do!
Observation: if a model over N exists, usually small n suffices (e.g., n = 3)

21/111

Extensions of Polynomial Interpretations

Polynomials with negative coefficients and max-operator
[Hirokawa, Middeldorp, IC ’07; Fuhs et al, SAT ’07, RTA ’08]

can model behaviour of functions more closely: [pred](x1) = max(x1 − 1, 0)
automation via encoding to non-linear constraints, more complex Boolean structure

Polynomials over Q+ and R+ [Lucas, RAIRO ’05]
non-integer coefficients increase proving power
SMT-based automation [Fuhs et al, AISC ’08; Zankl, Middeldorp, LPAR ’10; Borralleras et al,
JAR ’12]

Matrix interpretations [Endrullis, Waldmann, Zantema, JAR ’08]
linear interpretation to vectors over Nk, coefficients are matrices
useful for deeply nested terms
automation: constraints with more complex atoms
several flavours: plus-times-semiring, max-plus-semiring [Koprowski, Waldmann, Acta Cyb. ’09], . . .
generalisation to tuple interpretations [Kop, Vale, FSCD ’21; Yamada, JAR ’22]

. . .

22/111

Extensions of Polynomial Interpretations

Polynomials with negative coefficients and max-operator
[Hirokawa, Middeldorp, IC ’07; Fuhs et al, SAT ’07, RTA ’08]

can model behaviour of functions more closely: [pred](x1) = max(x1 − 1, 0)
automation via encoding to non-linear constraints, more complex Boolean structure

Polynomials over Q+ and R+ [Lucas, RAIRO ’05]
non-integer coefficients increase proving power
SMT-based automation [Fuhs et al, AISC ’08; Zankl, Middeldorp, LPAR ’10; Borralleras et al,
JAR ’12]

Matrix interpretations [Endrullis, Waldmann, Zantema, JAR ’08]
linear interpretation to vectors over Nk, coefficients are matrices
useful for deeply nested terms
automation: constraints with more complex atoms
several flavours: plus-times-semiring, max-plus-semiring [Koprowski, Waldmann, Acta Cyb. ’09], . . .
generalisation to tuple interpretations [Kop, Vale, FSCD ’21; Yamada, JAR ’22]

. . .

22/111

Extensions of Polynomial Interpretations

Polynomials with negative coefficients and max-operator
[Hirokawa, Middeldorp, IC ’07; Fuhs et al, SAT ’07, RTA ’08]

can model behaviour of functions more closely: [pred](x1) = max(x1 − 1, 0)
automation via encoding to non-linear constraints, more complex Boolean structure

Polynomials over Q+ and R+ [Lucas, RAIRO ’05]
non-integer coefficients increase proving power
SMT-based automation [Fuhs et al, AISC ’08; Zankl, Middeldorp, LPAR ’10; Borralleras et al,
JAR ’12]

Matrix interpretations [Endrullis, Waldmann, Zantema, JAR ’08]
linear interpretation to vectors over Nk, coefficients are matrices
useful for deeply nested terms
automation: constraints with more complex atoms
several flavours: plus-times-semiring, max-plus-semiring [Koprowski, Waldmann, Acta Cyb. ’09], . . .
generalisation to tuple interpretations [Kop, Vale, FSCD ’21; Yamada, JAR ’22]

. . .

22/111

Extensions of Polynomial Interpretations

Polynomials with negative coefficients and max-operator
[Hirokawa, Middeldorp, IC ’07; Fuhs et al, SAT ’07, RTA ’08]

can model behaviour of functions more closely: [pred](x1) = max(x1 − 1, 0)
automation via encoding to non-linear constraints, more complex Boolean structure

Polynomials over Q+ and R+ [Lucas, RAIRO ’05]
non-integer coefficients increase proving power
SMT-based automation [Fuhs et al, AISC ’08; Zankl, Middeldorp, LPAR ’10; Borralleras et al,
JAR ’12]

Matrix interpretations [Endrullis, Waldmann, Zantema, JAR ’08]
linear interpretation to vectors over Nk, coefficients are matrices
useful for deeply nested terms
automation: constraints with more complex atoms
several flavours: plus-times-semiring, max-plus-semiring [Koprowski, Waldmann, Acta Cyb. ’09], . . .
generalisation to tuple interpretations [Kop, Vale, FSCD ’21; Yamada, JAR ’22]

. . .
22/111

SAT and SMT Solving for Path Orders

Path orders: based on precedences on function symbols

Knuth-Bendix Order [Knuth, Bendix, CPAA ’70]
−→ polynomial time algorithm [Korovin, Voronkov, IC ’03]
−→ SMT encoding [Zankl, Hirokawa, Middeldorp, JAR ’09]

Lexicographic Path Order [Kamin, Lévy, Unpublished Manuscript ’80] and
Recursive Path Order [Dershowitz, Manna, CACM ’79; Dershowitz, TCS ’82]
−→ SAT encoding [Codish et al, JAR ’11]

Weighted Path Order [Yamada, Kusakari, Sakabe, SCP ’15]
−→ SMT encoding

23/111

SAT and SMT Solving for Path Orders

Path orders: based on precedences on function symbols

Knuth-Bendix Order [Knuth, Bendix, CPAA ’70]
−→ polynomial time algorithm [Korovin, Voronkov, IC ’03]
−→ SMT encoding [Zankl, Hirokawa, Middeldorp, JAR ’09]

Lexicographic Path Order [Kamin, Lévy, Unpublished Manuscript ’80] and
Recursive Path Order [Dershowitz, Manna, CACM ’79; Dershowitz, TCS ’82]
−→ SAT encoding [Codish et al, JAR ’11]

Weighted Path Order [Yamada, Kusakari, Sakabe, SCP ’15]
−→ SMT encoding

23/111

SAT and SMT Solving for Path Orders

Path orders: based on precedences on function symbols

Knuth-Bendix Order [Knuth, Bendix, CPAA ’70]
−→ polynomial time algorithm [Korovin, Voronkov, IC ’03]
−→ SMT encoding [Zankl, Hirokawa, Middeldorp, JAR ’09]

Lexicographic Path Order [Kamin, Lévy, Unpublished Manuscript ’80] and
Recursive Path Order [Dershowitz, Manna, CACM ’79; Dershowitz, TCS ’82]
−→ SAT encoding [Codish et al, JAR ’11]

Weighted Path Order [Yamada, Kusakari, Sakabe, SCP ’15]
−→ SMT encoding

23/111

Automation of the Order Search (1/2)

Dependency Pair Framework (simplified):

while DP 6= ∅ :
find well-founded order � with DP ∪R ⊆ %
delete s −→ t with s � t from DP

Implementation
Launch several concurrent instances of the order search.
Each one uses different parameters (e.g., type of order, degree, max. coefficient, . . .).
SAT/SMT solver launched as external process on file/stdin.
First SATISFIABLE answer wins, kill all other instances.
If internal timeout elapses (or everyone says UNSATISFIABLE):
−→ kill all search instances; retry with larger search space.

In addition: try non-SAT/SMT-based techniques
−→ decompose problem into Strongly Connected Components, prove non-termination, . . .

24/111

Automation of the Order Search (1/2)

Dependency Pair Framework (simplified):

while DP 6= ∅ :
find well-founded order � with DP ∪R ⊆ %
delete s −→ t with s � t from DP

Implementation
Launch several concurrent instances of the order search.
Each one uses different parameters (e.g., type of order, degree, max. coefficient, . . .).
SAT/SMT solver launched as external process on file/stdin.
First SATISFIABLE answer wins, kill all other instances.
If internal timeout elapses (or everyone says UNSATISFIABLE):
−→ kill all search instances; retry with larger search space.

In addition: try non-SAT/SMT-based techniques
−→ decompose problem into Strongly Connected Components, prove non-termination, . . .

24/111

Automation of the Order Search (1/2)

Dependency Pair Framework (simplified):

while DP 6= ∅ :
find well-founded order � with DP ∪R ⊆ %
delete s −→ t with s � t from DP

Implementation
Launch several concurrent instances of the order search.

Each one uses different parameters (e.g., type of order, degree, max. coefficient, . . .).
SAT/SMT solver launched as external process on file/stdin.
First SATISFIABLE answer wins, kill all other instances.
If internal timeout elapses (or everyone says UNSATISFIABLE):
−→ kill all search instances; retry with larger search space.

In addition: try non-SAT/SMT-based techniques
−→ decompose problem into Strongly Connected Components, prove non-termination, . . .

24/111

Automation of the Order Search (1/2)

Dependency Pair Framework (simplified):

while DP 6= ∅ :
find well-founded order � with DP ∪R ⊆ %
delete s −→ t with s � t from DP

Implementation
Launch several concurrent instances of the order search.
Each one uses different parameters (e.g., type of order, degree, max. coefficient, . . .).

SAT/SMT solver launched as external process on file/stdin.
First SATISFIABLE answer wins, kill all other instances.
If internal timeout elapses (or everyone says UNSATISFIABLE):
−→ kill all search instances; retry with larger search space.

In addition: try non-SAT/SMT-based techniques
−→ decompose problem into Strongly Connected Components, prove non-termination, . . .

24/111

Automation of the Order Search (1/2)

Dependency Pair Framework (simplified):

while DP 6= ∅ :
find well-founded order � with DP ∪R ⊆ %
delete s −→ t with s � t from DP

Implementation
Launch several concurrent instances of the order search.
Each one uses different parameters (e.g., type of order, degree, max. coefficient, . . .).
SAT/SMT solver launched as external process on file/stdin.

First SATISFIABLE answer wins, kill all other instances.
If internal timeout elapses (or everyone says UNSATISFIABLE):
−→ kill all search instances; retry with larger search space.

In addition: try non-SAT/SMT-based techniques
−→ decompose problem into Strongly Connected Components, prove non-termination, . . .

24/111

Automation of the Order Search (1/2)

Dependency Pair Framework (simplified):

while DP 6= ∅ :
find well-founded order � with DP ∪R ⊆ %
delete s −→ t with s � t from DP

Implementation
Launch several concurrent instances of the order search.
Each one uses different parameters (e.g., type of order, degree, max. coefficient, . . .).
SAT/SMT solver launched as external process on file/stdin.
First SATISFIABLE answer wins, kill all other instances.

If internal timeout elapses (or everyone says UNSATISFIABLE):
−→ kill all search instances; retry with larger search space.

In addition: try non-SAT/SMT-based techniques
−→ decompose problem into Strongly Connected Components, prove non-termination, . . .

24/111

Automation of the Order Search (1/2)

Dependency Pair Framework (simplified):

while DP 6= ∅ :
find well-founded order � with DP ∪R ⊆ %
delete s −→ t with s � t from DP

Implementation
Launch several concurrent instances of the order search.
Each one uses different parameters (e.g., type of order, degree, max. coefficient, . . .).
SAT/SMT solver launched as external process on file/stdin.
First SATISFIABLE answer wins, kill all other instances.
If internal timeout elapses (or everyone says UNSATISFIABLE):
−→ kill all search instances; retry with larger search space.

In addition: try non-SAT/SMT-based techniques
−→ decompose problem into Strongly Connected Components, prove non-termination, . . .

24/111

Automation of the Order Search (1/2)

Dependency Pair Framework (simplified):

while DP 6= ∅ :
find well-founded order � with DP ∪R ⊆ %
delete s −→ t with s � t from DP

Implementation
Launch several concurrent instances of the order search.
Each one uses different parameters (e.g., type of order, degree, max. coefficient, . . .).
SAT/SMT solver launched as external process on file/stdin.
First SATISFIABLE answer wins, kill all other instances.
If internal timeout elapses (or everyone says UNSATISFIABLE):
−→ kill all search instances; retry with larger search space.

In addition: try non-SAT/SMT-based techniques
−→ decompose problem into Strongly Connected Components, prove non-termination, . . .

24/111

Automation of the Order Search (2/2)

Requirements on SAT/SMT solver:
return model quickly (at most 5–10 seconds)
performance for unsatisfiable instances not really important

Current SAT solver of choice in AProVE: MiniSat 2.2 [Eén, Sörensson, SAT ’03]
(version from around 2008; finds models quickly)

Survey among tool authors (Aug/Sep 2022):
https://lists.rwth-aachen.de/hyperkitty/list/termtools@lists.rwth-aachen.de/thread/

FNDNU5Y7TGXYXX34YWKFO2ICSRT6M3ME/

25/111

https://lists.rwth-aachen.de/hyperkitty/list/termtools@lists.rwth-aachen.de/thread/FNDNU5Y7TGXYXX34YWKFO2ICSRT6M3ME/
https://lists.rwth-aachen.de/hyperkitty/list/termtools@lists.rwth-aachen.de/thread/FNDNU5Y7TGXYXX34YWKFO2ICSRT6M3ME/

Automation of the Order Search (2/2)

Requirements on SAT/SMT solver:
return model quickly (at most 5–10 seconds)
performance for unsatisfiable instances not really important

Current SAT solver of choice in AProVE: MiniSat 2.2 [Eén, Sörensson, SAT ’03]
(version from around 2008; finds models quickly)

Survey among tool authors (Aug/Sep 2022):
https://lists.rwth-aachen.de/hyperkitty/list/termtools@lists.rwth-aachen.de/thread/

FNDNU5Y7TGXYXX34YWKFO2ICSRT6M3ME/

25/111

https://lists.rwth-aachen.de/hyperkitty/list/termtools@lists.rwth-aachen.de/thread/FNDNU5Y7TGXYXX34YWKFO2ICSRT6M3ME/
https://lists.rwth-aachen.de/hyperkitty/list/termtools@lists.rwth-aachen.de/thread/FNDNU5Y7TGXYXX34YWKFO2ICSRT6M3ME/

Further Techniques and Settings for TRSs

Proving non-termination (an infinite run is possible)
[Giesl, Thiemann, Schneider-Kamp, FroCoS ’05; Payet, TCS ’08; Zankl et al, SOFSEM ’10;
Emmes, Enger, Giesl, IJCAR ’12; . . .]

Specific rewrite strategies: innermost, outermost, context-sensitive rewriting [Lucas, ACM
Comput. Surv. ’20], . . .
Higher-order rewriting: functional variables, higher types, β-reduction [Kop, PhD thesis ’12]

map(F ,Cons(x, xs)) −→ Cons(F (x),map(F , xs))

Probabilistic term rewriting: (Positive/Strong) Almost Sure Termination
[Avanzini, Dal Lago, Yamada, SCP ’20; Kassing, Giesl, CADE ’23]
Complexity analysis [Hirokawa, Moser, IJCAR ’08; Noschinski, Emmes, Giesl, JAR ’13; . . .]
Can re-use termination machinery to infer and prove statements like “runtime complexity of this
TRS is in O(n3)”

26/111

Further Techniques and Settings for TRSs

Proving non-termination (an infinite run is possible)
[Giesl, Thiemann, Schneider-Kamp, FroCoS ’05; Payet, TCS ’08; Zankl et al, SOFSEM ’10;
Emmes, Enger, Giesl, IJCAR ’12; . . .]
Specific rewrite strategies: innermost, outermost, context-sensitive rewriting [Lucas, ACM
Comput. Surv. ’20], . . .

Higher-order rewriting: functional variables, higher types, β-reduction [Kop, PhD thesis ’12]
map(F ,Cons(x, xs)) −→ Cons(F (x),map(F , xs))

Probabilistic term rewriting: (Positive/Strong) Almost Sure Termination
[Avanzini, Dal Lago, Yamada, SCP ’20; Kassing, Giesl, CADE ’23]
Complexity analysis [Hirokawa, Moser, IJCAR ’08; Noschinski, Emmes, Giesl, JAR ’13; . . .]
Can re-use termination machinery to infer and prove statements like “runtime complexity of this
TRS is in O(n3)”

26/111

Further Techniques and Settings for TRSs

Proving non-termination (an infinite run is possible)
[Giesl, Thiemann, Schneider-Kamp, FroCoS ’05; Payet, TCS ’08; Zankl et al, SOFSEM ’10;
Emmes, Enger, Giesl, IJCAR ’12; . . .]
Specific rewrite strategies: innermost, outermost, context-sensitive rewriting [Lucas, ACM
Comput. Surv. ’20], . . .
Higher-order rewriting: functional variables, higher types, β-reduction [Kop, PhD thesis ’12]

map(F ,Cons(x, xs)) −→ Cons(F (x),map(F , xs))

Probabilistic term rewriting: (Positive/Strong) Almost Sure Termination
[Avanzini, Dal Lago, Yamada, SCP ’20; Kassing, Giesl, CADE ’23]
Complexity analysis [Hirokawa, Moser, IJCAR ’08; Noschinski, Emmes, Giesl, JAR ’13; . . .]
Can re-use termination machinery to infer and prove statements like “runtime complexity of this
TRS is in O(n3)”

26/111

Further Techniques and Settings for TRSs

Proving non-termination (an infinite run is possible)
[Giesl, Thiemann, Schneider-Kamp, FroCoS ’05; Payet, TCS ’08; Zankl et al, SOFSEM ’10;
Emmes, Enger, Giesl, IJCAR ’12; . . .]
Specific rewrite strategies: innermost, outermost, context-sensitive rewriting [Lucas, ACM
Comput. Surv. ’20], . . .
Higher-order rewriting: functional variables, higher types, β-reduction [Kop, PhD thesis ’12]

map(F ,Cons(x, xs)) −→ Cons(F (x),map(F , xs))

Probabilistic term rewriting: (Positive/Strong) Almost Sure Termination
[Avanzini, Dal Lago, Yamada, SCP ’20; Kassing, Giesl, CADE ’23]

Complexity analysis [Hirokawa, Moser, IJCAR ’08; Noschinski, Emmes, Giesl, JAR ’13; . . .]
Can re-use termination machinery to infer and prove statements like “runtime complexity of this
TRS is in O(n3)”

26/111

Further Techniques and Settings for TRSs

Proving non-termination (an infinite run is possible)
[Giesl, Thiemann, Schneider-Kamp, FroCoS ’05; Payet, TCS ’08; Zankl et al, SOFSEM ’10;
Emmes, Enger, Giesl, IJCAR ’12; . . .]
Specific rewrite strategies: innermost, outermost, context-sensitive rewriting [Lucas, ACM
Comput. Surv. ’20], . . .
Higher-order rewriting: functional variables, higher types, β-reduction [Kop, PhD thesis ’12]

map(F ,Cons(x, xs)) −→ Cons(F (x),map(F , xs))

Probabilistic term rewriting: (Positive/Strong) Almost Sure Termination
[Avanzini, Dal Lago, Yamada, SCP ’20; Kassing, Giesl, CADE ’23]
Complexity analysis [Hirokawa, Moser, IJCAR ’08; Noschinski, Emmes, Giesl, JAR ’13; . . .]
Can re-use termination machinery to infer and prove statements like “runtime complexity of this
TRS is in O(n3)”

26/111

SMT Solvers from Termination Analysis

Annual SMT-COMP, division QF_NIA (Quantifier-Free Non-linear Integer Arithmetic)

Year Winner
2009 Barcelogic-QF_NIA
2010 MiniSmt

(spin-off of TTT2)

2011 AProVE
2012 no QF_NIA
2013 no SMT-COMP
2014 AProVE
2015 AProVE
2016 Yices
.

⇒ Termination provers can also be successful SMT solvers!

(disclaimer: Z3 participated only hors concours)

27/111

SMT Solvers from Termination Analysis

Annual SMT-COMP, division QF_NIA (Quantifier-Free Non-linear Integer Arithmetic)

Year Winner
2009 Barcelogic-QF_NIA
2010 MiniSmt (spin-off of TTT2)
2011 AProVE
2012 no QF_NIA
2013 no SMT-COMP
2014 AProVE
2015 AProVE
2016 Yices
.

⇒ Termination provers can also be successful SMT solvers!

(disclaimer: Z3 participated only hors concours)

27/111

SMT Solvers from Termination Analysis

Annual SMT-COMP, division QF_NIA (Quantifier-Free Non-linear Integer Arithmetic)

Year Winner
2009 Barcelogic-QF_NIA
2010 MiniSmt (spin-off of TTT2)
2011 AProVE
2012 no QF_NIA
2013 no SMT-COMP
2014 AProVE
2015 AProVE
2016 Yices
.

⇒ Termination provers can also be successful SMT solvers!

(disclaimer: Z3 participated only hors concours)

27/111

The Termination Competition (termCOMP) (1/3)

https://termination-portal.org/wiki/Termination_Competition

28/111

https://termination-portal.org/wiki/Termination_Competition

The Termination Competition (termCOMP) (1/3)

https://termination-portal.org/wiki/Termination_Competition
28/111

https://termination-portal.org/wiki/Termination_Competition

The Termination Competition (termCOMP) (2/3)

termCOMP 2022 participants (2024 similar):
AProVE (RWTH Aachen, Birkbeck U London, U Innsbruck, . . .)
iRankFinder (UC Madrid)
LoAT (RWTH Aachen)
Matchbox (HTWK Leipzig)
Mu-Term (UP Valencia)
MultumNonMulta (BA Saarland)
NaTT (AIST Tokyo)
NTI+cTI (U Réunion)
SOL (Gunma U)
TcT (U Innsbruck, INRIA Sophia Antipolis)
TTT2 (U Innsbruck)
Ultimate Automizer (U Freiburg)
Wanda (RU Nijmegen)

29/111

The Termination Competition (termCOMP) (3/3)

Benchmark set: Termination Problem DataBase (TPDB)
https://termination-portal.org/wiki/TPDB
−→ 1000s of termination and complexity problems

Timeout: 300 seconds
Run on StarExec platform [Stump, Sutcliffe, Tinelli, IJCAR ’14]
Categories for proving (non-)termination and for inferring upper/lower complexity bounds for
different programming languages
Part of the Olympic Games at the Federated Logic Conference

30/111

https://termination-portal.org/wiki/TPDB

The Termination Competition (termCOMP) (3/3)

Benchmark set: Termination Problem DataBase (TPDB)
https://termination-portal.org/wiki/TPDB
−→ 1000s of termination and complexity problems
Timeout: 300 seconds

Run on StarExec platform [Stump, Sutcliffe, Tinelli, IJCAR ’14]
Categories for proving (non-)termination and for inferring upper/lower complexity bounds for
different programming languages
Part of the Olympic Games at the Federated Logic Conference

30/111

https://termination-portal.org/wiki/TPDB

The Termination Competition (termCOMP) (3/3)

Benchmark set: Termination Problem DataBase (TPDB)
https://termination-portal.org/wiki/TPDB
−→ 1000s of termination and complexity problems
Timeout: 300 seconds
Run on StarExec platform [Stump, Sutcliffe, Tinelli, IJCAR ’14]

Categories for proving (non-)termination and for inferring upper/lower complexity bounds for
different programming languages
Part of the Olympic Games at the Federated Logic Conference

30/111

https://termination-portal.org/wiki/TPDB

The Termination Competition (termCOMP) (3/3)

Benchmark set: Termination Problem DataBase (TPDB)
https://termination-portal.org/wiki/TPDB
−→ 1000s of termination and complexity problems
Timeout: 300 seconds
Run on StarExec platform [Stump, Sutcliffe, Tinelli, IJCAR ’14]
Categories for proving (non-)termination and for inferring upper/lower complexity bounds for
different programming languages

Part of the Olympic Games at the Federated Logic Conference

30/111

https://termination-portal.org/wiki/TPDB

The Termination Competition (termCOMP) (3/3)

Benchmark set: Termination Problem DataBase (TPDB)
https://termination-portal.org/wiki/TPDB
−→ 1000s of termination and complexity problems
Timeout: 300 seconds
Run on StarExec platform [Stump, Sutcliffe, Tinelli, IJCAR ’14]
Categories for proving (non-)termination and for inferring upper/lower complexity bounds for
different programming languages
Part of the Olympic Games at the Federated Logic Conference

30/111

https://termination-portal.org/wiki/TPDB

Input for Automated Tools

Web interfaces available:
AProVE: https://aprove.informatik.rwth-aachen.de/interface
iRankFinder: http://irankfinder.loopkiller.com:8081/

Mu-Term: http://zenon.dsic.upv.es/muterm/index.php/web-interface/

TTT2: http://colo6-c703.uibk.ac.at/ttt2/web/

Input format for termination of TRSs:
(VAR x y)
(RULES
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

)

31/111

https://aprove.informatik.rwth-aachen.de/interface
http://irankfinder.loopkiller.com:8081/
http://zenon.dsic.upv.es/muterm/index.php/web-interface/
http://colo6-c703.uibk.ac.at/ttt2/web/

Input for Automated Tools

Web interfaces available:
AProVE: https://aprove.informatik.rwth-aachen.de/interface
iRankFinder: http://irankfinder.loopkiller.com:8081/

Mu-Term: http://zenon.dsic.upv.es/muterm/index.php/web-interface/

TTT2: http://colo6-c703.uibk.ac.at/ttt2/web/

Input format for termination of TRSs:
(VAR x y)
(RULES
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

)

31/111

https://aprove.informatik.rwth-aachen.de/interface
http://irankfinder.loopkiller.com:8081/
http://zenon.dsic.upv.es/muterm/index.php/web-interface/
http://colo6-c703.uibk.ac.at/ttt2/web/

I.2 Termination Analysis of Programs on
Integers

32/111

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

`0:

if (x ≥ 0)

`1:

while (x 6= 0)

`2:

x = x − 1;

Does this program terminate?
(x ranges over Z)

Example (Equivalent Translation to an Integer Transition System, cf. [McCarthy, CACM ’60])

`0(x) −→ `1(x) [x ≥ 0]

`0(x) −→ `3(x) [x < 0]

`1(x) −→ `2(x) [x 6= 0]

`2(x) −→ `1(x− 1)

`1(x) −→ `3(x) [x = 0]

Oh no! `1(−1) −→ `2(−1) −→ `1(−2) −→ `2(−2) −→ `1(−3) −→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2 (exercise)

33/111

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

`0:

if (x ≥ 0)

`1:

while (x 6= 0)

`2:

x = x − 1;

Does this program terminate?
(x ranges over Z)

Example (Equivalent Translation to an Integer Transition System, cf. [McCarthy, CACM ’60])

`0(x) −→ `1(x) [x ≥ 0]

`0(x) −→ `3(x) [x < 0]

`1(x) −→ `2(x) [x 6= 0]

`2(x) −→ `1(x− 1)

`1(x) −→ `3(x) [x = 0]

Oh no! `1(−1) −→ `2(−1) −→ `1(−2) −→ `2(−2) −→ `1(−3) −→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2 (exercise)

33/111

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

`0: if (x ≥ 0)
`1: while (x 6= 0)
`2: x = x − 1;

Does this program terminate?
(x ranges over Z)

Example (Equivalent Translation to an Integer Transition System, cf. [McCarthy, CACM ’60])

`0(x) −→ `1(x) [x ≥ 0]

`0(x) −→ `3(x) [x < 0]

`1(x) −→ `2(x) [x 6= 0]

`2(x) −→ `1(x− 1)

`1(x) −→ `3(x) [x = 0]

Oh no! `1(−1) −→ `2(−1) −→ `1(−2) −→ `2(−2) −→ `1(−3) −→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2 (exercise)

33/111

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

`0: if (x ≥ 0)
`1: while (x 6= 0)
`2: x = x − 1;

Does this program terminate?
(x ranges over Z)

Example (Equivalent Translation to an Integer Transition System, cf. [McCarthy, CACM ’60])

`0(x) −→ `1(x) [x ≥ 0]

`0(x) −→ `3(x) [x < 0]

`1(x) −→ `2(x) [x 6= 0]

`2(x) −→ `1(x− 1)

`1(x) −→ `3(x) [x = 0]

Oh no! `1(−1) −→ `2(−1) −→ `1(−2) −→ `2(−2) −→ `1(−3) −→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2 (exercise)

33/111

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

`0: if (x ≥ 0)
`1: while (x 6= 0)
`2: x = x − 1;

Does this program terminate?
(x ranges over Z)

Example (Equivalent Translation to an Integer Transition System, cf. [McCarthy, CACM ’60])

`0(x) −→ `1(x) [x ≥ 0]

`0(x) −→ `3(x) [x < 0]

`1(x) −→ `2(x) [x 6= 0]

`2(x) −→ `1(x− 1)

`1(x) −→ `3(x) [x = 0]

Oh no! `1(−1) −→ `2(−1) −→ `1(−2) −→ `2(−2) −→ `1(−3) −→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z

⇒ Find invariant x ≥ 0 at `1, `2 (exercise)

33/111

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

`0: if (x ≥ 0)
`1: while (x 6= 0)
`2: x = x − 1;

Does this program terminate?
(x ranges over Z)

Example (Equivalent Translation to an Integer Transition System, cf. [McCarthy, CACM ’60])

`0(x) −→ `1(x) [x ≥ 0]

`0(x) −→ `3(x) [x < 0]

`1(x) −→ `2(x) [x 6= 0]

`2(x) −→ `1(x− 1)

`1(x) −→ `3(x) [x = 0]

Oh no! `1(−1) −→ `2(−1) −→ `1(−2) −→ `2(−2) −→ `1(−3) −→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2 (exercise)

33/111

Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

`0: if (x ≥ 0)
`1: while (x 6= 0)
`2: x = x − 1;

Does this program terminate?
(x ranges over Z)

Example (Equivalent Translation to an Integer Transition System, cf. [McCarthy, CACM ’60])

`0(x) −→ `1(x) [x ≥ 0]

`0(x) −→ `3(x) [x < 0]

`1(x) −→ `2(x) [x 6= 0 ∧ x ≥ 0]

`2(x) −→ `1(x− 1) [x ≥ 0]

`1(x) −→ `3(x) [x = 0 ∧ x ≥ 0]

Oh no! `1(−1) −→ `2(−1) −→ `1(−2) −→ `2(−2) −→ `1(−3) −→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2 (exercise)

33/111

Proving Termination with Invariants

Example (Transition system with invariants)

`0(x) −→ `1(x) [x ≥ 0]

`1(x) −→ `2(x) [x 6= 0 ∧ x ≥ 0]

`2(x) −→ `1(x− 1) [x ≥ 0]

`1(x) −→ `3(x) [x = 0 ∧ x ≥ 0]

Prove termination by ranking function [·] with [`0](x) = [`1](x) = · · · = x

Automate search using parametric ranking function:

[`0](x) = a0 + b0 · x, [`1](x) = a1 + b1 · x, . . .

Constraints here:

x ≥ 0 ⇒ a2 + b2 · x > a1 + b1 · (x− 1) “decrease . . . ”
x ≥ 0 ⇒ a2 + b2 · x ≥ 0 “. . . against a bound”

Use Farkas’ Lemma to eliminate ∀x, solver for linear constraints gives model for ai, bi.
More: [Podelski, Rybalchenko, VMCAI ’04; Alias et al, SAS ’10]

34/111

Proving Termination with Invariants

Example (Transition system with invariants)

`0(x) % `1(x) [x ≥ 0]
`1(x) % `2(x) [x 6= 0 ∧ x ≥ 0]
`2(x) � `1(x− 1) [x ≥ 0]
`1(x) % `3(x) [x = 0 ∧ x ≥ 0]

Prove termination by ranking function [·] with [`0](x) = [`1](x) = · · · = x

Automate search using parametric ranking function:

[`0](x) = a0 + b0 · x, [`1](x) = a1 + b1 · x, . . .

Constraints here:

x ≥ 0 ⇒ a2 + b2 · x > a1 + b1 · (x− 1) “decrease . . . ”
x ≥ 0 ⇒ a2 + b2 · x ≥ 0 “. . . against a bound”

Use Farkas’ Lemma to eliminate ∀x, solver for linear constraints gives model for ai, bi.
More: [Podelski, Rybalchenko, VMCAI ’04; Alias et al, SAS ’10]

34/111

Proving Termination with Invariants

Example (Transition system with invariants)

`0(x) % `1(x) [x ≥ 0]
`1(x) % `2(x) [x 6= 0 ∧ x ≥ 0]
`2(x) � `1(x− 1) [x ≥ 0]
`1(x) % `3(x) [x = 0 ∧ x ≥ 0]

Prove termination by ranking function [·] with [`0](x) = [`1](x) = · · · = x

Automate search using parametric ranking function:

[`0](x) = a0 + b0 · x, [`1](x) = a1 + b1 · x, . . .

Constraints here:

x ≥ 0 ⇒ a2 + b2 · x > a1 + b1 · (x− 1) “decrease . . . ”
x ≥ 0 ⇒ a2 + b2 · x ≥ 0 “. . . against a bound”

Use Farkas’ Lemma to eliminate ∀x, solver for linear constraints gives model for ai, bi.
More: [Podelski, Rybalchenko, VMCAI ’04; Alias et al, SAS ’10]

34/111

Proving Termination with Invariants

Example (Transition system with invariants)

`0(x) % `1(x) [x ≥ 0]
`1(x) % `2(x) [x 6= 0 ∧ x ≥ 0]

`2(x) � `1(x− 1) [x ≥ 0]

`1(x) % `3(x) [x = 0 ∧ x ≥ 0]

Prove termination by ranking function [·] with [`0](x) = [`1](x) = · · · = x

Automate search using parametric ranking function:

[`0](x) = a0 + b0 · x, [`1](x) = a1 + b1 · x, . . .

Constraints here:

x ≥ 0 ⇒ a2 + b2 · x > a1 + b1 · (x− 1) “decrease . . . ”
x ≥ 0 ⇒ a2 + b2 · x ≥ 0 “. . . against a bound”

Use Farkas’ Lemma to eliminate ∀x, solver for linear constraints gives model for ai, bi.
More: [Podelski, Rybalchenko, VMCAI ’04; Alias et al, SAS ’10]

34/111

Proving Termination with Invariants

Example (Transition system with invariants)

`0(x) % `1(x) [x ≥ 0]
`1(x) % `2(x) [x 6= 0 ∧ x ≥ 0]

`2(x) � `1(x− 1) [x ≥ 0]

`1(x) % `3(x) [x = 0 ∧ x ≥ 0]

Prove termination by ranking function [·] with [`0](x) = [`1](x) = · · · = x

Automate search using parametric ranking function:

[`0](x) = a0 + b0 · x, [`1](x) = a1 + b1 · x, . . .

Constraints here:

x ≥ 0 ⇒ a2 + b2 · x > a1 + b1 · (x− 1) “decrease . . . ”
x ≥ 0 ⇒ a2 + b2 · x ≥ 0 “. . . against a bound”

Use Farkas’ Lemma to eliminate ∀x, solver for linear constraints gives model for ai, bi.

More: [Podelski, Rybalchenko, VMCAI ’04; Alias et al, SAS ’10]

34/111

Proving Termination with Invariants

Example (Transition system with invariants)

`0(x) % `1(x) [x ≥ 0]
`1(x) % `2(x) [x 6= 0 ∧ x ≥ 0]

`2(x) � `1(x− 1) [x ≥ 0]

`1(x) % `3(x) [x = 0 ∧ x ≥ 0]

Prove termination by ranking function [·] with [`0](x) = [`1](x) = · · · = x

Automate search using parametric ranking function:

[`0](x) = a0 + b0 · x, [`1](x) = a1 + b1 · x, . . .

Constraints here:

x ≥ 0 ⇒ a2 + b2 · x > a1 + b1 · (x− 1) “decrease . . . ”
x ≥ 0 ⇒ a2 + b2 · x ≥ 0 “. . . against a bound”

Use Farkas’ Lemma to eliminate ∀x, solver for linear constraints gives model for ai, bi.
More: [Podelski, Rybalchenko, VMCAI ’04; Alias et al, SAS ’10]

34/111

Proving Termination with Invariants

Example (Transition system with invariants)

`0(x) −→ `1(x) [x ≥ 0]

`1(x) −→ `2(x) [x 6= 0 ∧ x ≥ 0]

`2(x) � `1(x− 1) [x ≥ 0]

`1(x) −→ `3(x) [x = 0 ∧ x ≥ 0]

Prove termination by ranking function [·] with [`0](x) = [`1](x) = · · · = x

Automate search using parametric ranking function:

[`0](x) = a0 + b0 · x, [`1](x) = a1 + b1 · x, . . .

Constraints here:

x ≥ 0 ⇒ a2 + b2 · x > a1 + b1 · (x− 1) “decrease . . . ”
x ≥ 0 ⇒ a2 + b2 · x ≥ 0 “. . . against a bound”

Use Farkas’ Lemma to eliminate ∀x, solver for linear constraints gives model for ai, bi.
More: [Podelski, Rybalchenko, VMCAI ’04; Alias et al, SAS ’10]

34/111

Searching for Invariants Using SMT

Termination prover needs to find invariants for programs on integers

Statically before the translation [Otto et al, RTA ’10; Ströder et al, JAR ’17, . . .]
−→ abstract interpretation [Cousot, Cousot, POPL ’77]
−→ more about this in a few minutes!

By counterexample-based reasoning + safety prover: Terminator
[Cook, Podelski, Rybalchenko, CAV ’06, PLDI ’06]
−→ prove termination of single program runs
−→ termination argument often generalises

. . . also cooperating with removal of terminating rules (as for TRSs): T2
[Brockschmidt, Cook, Fuhs, CAV ’13; Brockschmidt et al, TACAS ’16]

Using Max-SMT: VeryMax
[Larraz, Oliveras, Rodríguez-Carbonell, Rubio, FMCAD ’13]

Nowadays all SMT-based!

35/111

Searching for Invariants Using SMT

Termination prover needs to find invariants for programs on integers

Statically before the translation [Otto et al, RTA ’10; Ströder et al, JAR ’17, . . .]
−→ abstract interpretation [Cousot, Cousot, POPL ’77]
−→ more about this in a few minutes!

By counterexample-based reasoning + safety prover: Terminator
[Cook, Podelski, Rybalchenko, CAV ’06, PLDI ’06]
−→ prove termination of single program runs
−→ termination argument often generalises

. . . also cooperating with removal of terminating rules (as for TRSs): T2
[Brockschmidt, Cook, Fuhs, CAV ’13; Brockschmidt et al, TACAS ’16]

Using Max-SMT: VeryMax
[Larraz, Oliveras, Rodríguez-Carbonell, Rubio, FMCAD ’13]

Nowadays all SMT-based!

35/111

Searching for Invariants Using SMT

Termination prover needs to find invariants for programs on integers

Statically before the translation [Otto et al, RTA ’10; Ströder et al, JAR ’17, . . .]
−→ abstract interpretation [Cousot, Cousot, POPL ’77]
−→ more about this in a few minutes!

By counterexample-based reasoning + safety prover: Terminator
[Cook, Podelski, Rybalchenko, CAV ’06, PLDI ’06]
−→ prove termination of single program runs
−→ termination argument often generalises

. . . also cooperating with removal of terminating rules (as for TRSs): T2
[Brockschmidt, Cook, Fuhs, CAV ’13; Brockschmidt et al, TACAS ’16]

Using Max-SMT: VeryMax
[Larraz, Oliveras, Rodríguez-Carbonell, Rubio, FMCAD ’13]

Nowadays all SMT-based!

35/111

Searching for Invariants Using SMT

Termination prover needs to find invariants for programs on integers

Statically before the translation [Otto et al, RTA ’10; Ströder et al, JAR ’17, . . .]
−→ abstract interpretation [Cousot, Cousot, POPL ’77]
−→ more about this in a few minutes!

By counterexample-based reasoning + safety prover: Terminator
[Cook, Podelski, Rybalchenko, CAV ’06, PLDI ’06]
−→ prove termination of single program runs
−→ termination argument often generalises

. . . also cooperating with removal of terminating rules (as for TRSs): T2
[Brockschmidt, Cook, Fuhs, CAV ’13; Brockschmidt et al, TACAS ’16]

Using Max-SMT: VeryMax
[Larraz, Oliveras, Rodríguez-Carbonell, Rubio, FMCAD ’13]

Nowadays all SMT-based!

35/111

Searching for Invariants Using SMT

Termination prover needs to find invariants for programs on integers

Statically before the translation [Otto et al, RTA ’10; Ströder et al, JAR ’17, . . .]
−→ abstract interpretation [Cousot, Cousot, POPL ’77]
−→ more about this in a few minutes!

By counterexample-based reasoning + safety prover: Terminator
[Cook, Podelski, Rybalchenko, CAV ’06, PLDI ’06]
−→ prove termination of single program runs
−→ termination argument often generalises

. . . also cooperating with removal of terminating rules (as for TRSs): T2
[Brockschmidt, Cook, Fuhs, CAV ’13; Brockschmidt et al, TACAS ’16]

Using Max-SMT: VeryMax
[Larraz, Oliveras, Rodríguez-Carbonell, Rubio, FMCAD ’13]

Nowadays all SMT-based!

35/111

Searching for Invariants Using SMT

Termination prover needs to find invariants for programs on integers

Statically before the translation [Otto et al, RTA ’10; Ströder et al, JAR ’17, . . .]
−→ abstract interpretation [Cousot, Cousot, POPL ’77]
−→ more about this in a few minutes!

By counterexample-based reasoning + safety prover: Terminator
[Cook, Podelski, Rybalchenko, CAV ’06, PLDI ’06]
−→ prove termination of single program runs
−→ termination argument often generalises

. . . also cooperating with removal of terminating rules (as for TRSs): T2
[Brockschmidt, Cook, Fuhs, CAV ’13; Brockschmidt et al, TACAS ’16]

Using Max-SMT: VeryMax
[Larraz, Oliveras, Rodríguez-Carbonell, Rubio, FMCAD ’13]

Nowadays all SMT-based!
35/111

Extensions

Proving non-termination (infinite run is possible from initial states)
[Gupta et al, POPL ’08, Brockschmidt et al, FoVeOOS ’11, Chen et al, TACAS ’14, Larraz et
al, CAV ’14, Cook et al, FMCAD ’14, . . .]

Complexity bounds
[Alias et al, SAS ’10, Hoffmann, Shao, JFP ’15, Brockschmidt et al, TOPLAS ’16, . . .]

CTL∗ model checking for infinite state systems based on termination and non-termination
provers [Cook, Khlaaf, Piterman, JACM ’17]

Beyond sequential programs on integers:
structs/classes [Berdine et al, CAV ’06; Otto et al, RTA ’10; . . .]
arrays (pointer arithmetic) [Ströder et al, JAR ’17, . . .]
multi-threaded programs [Cook et al, PLDI ’07, . . .]
. . .

36/111

Extensions

Proving non-termination (infinite run is possible from initial states)
[Gupta et al, POPL ’08, Brockschmidt et al, FoVeOOS ’11, Chen et al, TACAS ’14, Larraz et
al, CAV ’14, Cook et al, FMCAD ’14, . . .]

Complexity bounds
[Alias et al, SAS ’10, Hoffmann, Shao, JFP ’15, Brockschmidt et al, TOPLAS ’16, . . .]

CTL∗ model checking for infinite state systems based on termination and non-termination
provers [Cook, Khlaaf, Piterman, JACM ’17]

Beyond sequential programs on integers:
structs/classes [Berdine et al, CAV ’06; Otto et al, RTA ’10; . . .]
arrays (pointer arithmetic) [Ströder et al, JAR ’17, . . .]
multi-threaded programs [Cook et al, PLDI ’07, . . .]
. . .

36/111

Extensions

Proving non-termination (infinite run is possible from initial states)
[Gupta et al, POPL ’08, Brockschmidt et al, FoVeOOS ’11, Chen et al, TACAS ’14, Larraz et
al, CAV ’14, Cook et al, FMCAD ’14, . . .]

Complexity bounds
[Alias et al, SAS ’10, Hoffmann, Shao, JFP ’15, Brockschmidt et al, TOPLAS ’16, . . .]

CTL∗ model checking for infinite state systems based on termination and non-termination
provers [Cook, Khlaaf, Piterman, JACM ’17]

Beyond sequential programs on integers:
structs/classes [Berdine et al, CAV ’06; Otto et al, RTA ’10; . . .]
arrays (pointer arithmetic) [Ströder et al, JAR ’17, . . .]
multi-threaded programs [Cook et al, PLDI ’07, . . .]
. . .

36/111

Extensions

Proving non-termination (infinite run is possible from initial states)
[Gupta et al, POPL ’08, Brockschmidt et al, FoVeOOS ’11, Chen et al, TACAS ’14, Larraz et
al, CAV ’14, Cook et al, FMCAD ’14, . . .]

Complexity bounds
[Alias et al, SAS ’10, Hoffmann, Shao, JFP ’15, Brockschmidt et al, TOPLAS ’16, . . .]

CTL∗ model checking for infinite state systems based on termination and non-termination
provers [Cook, Khlaaf, Piterman, JACM ’17]

Beyond sequential programs on integers:
structs/classes [Berdine et al, CAV ’06; Otto et al, RTA ’10; . . .]
arrays (pointer arithmetic) [Ströder et al, JAR ’17, . . .]
multi-threaded programs [Cook et al, PLDI ’07, . . .]
. . .

36/111

Why Care about Termination of Term Rewriting?

Termination needed by theorem provers

Translate program P with inductive data structures (trees) to TRS, represent data structures as
terms

⇒ Termination of TRS implies termination of P

Logic programming: Prolog
[van Raamsdonk, ICLP ’97; Schneider-Kamp et al, TOCL ’09; Giesl et al, PPDP ’12]

(Lazy) functional programming: Haskell [Giesl et al, TOPLAS ’11]

Object-oriented programming: Java [Otto et al, RTA ’10]

37/111

Beyond Classic TRSs for Program Analysis

So far, so good . . .
but do we really want to represent 1000000 as s(s(s(...)))?!

Drawbacks:
throws away domain knowledge about built-in data types like integers
need to analyse recursive rules for minus, quot, . . . over and over
does not benefit from dedicated constraint solvers
(e.g., SMT solvers) for arithmetic operations in programs

Solution: use constrained term rewriting

38/111

Beyond Classic TRSs for Program Analysis

So far, so good . . .
but do we really want to represent 1000000 as s(s(s(...)))?!

Drawbacks:

throws away domain knowledge about built-in data types like integers
need to analyse recursive rules for minus, quot, . . . over and over
does not benefit from dedicated constraint solvers
(e.g., SMT solvers) for arithmetic operations in programs

Solution: use constrained term rewriting

38/111

Beyond Classic TRSs for Program Analysis

So far, so good . . .
but do we really want to represent 1000000 as s(s(s(...)))?!

Drawbacks:
throws away domain knowledge about built-in data types like integers

need to analyse recursive rules for minus, quot, . . . over and over
does not benefit from dedicated constraint solvers
(e.g., SMT solvers) for arithmetic operations in programs

Solution: use constrained term rewriting

38/111

Beyond Classic TRSs for Program Analysis

So far, so good . . .
but do we really want to represent 1000000 as s(s(s(...)))?!

Drawbacks:
throws away domain knowledge about built-in data types like integers
need to analyse recursive rules for minus, quot, . . . over and over

does not benefit from dedicated constraint solvers
(e.g., SMT solvers) for arithmetic operations in programs

Solution: use constrained term rewriting

38/111

Beyond Classic TRSs for Program Analysis

So far, so good . . .
but do we really want to represent 1000000 as s(s(s(...)))?!

Drawbacks:
throws away domain knowledge about built-in data types like integers
need to analyse recursive rules for minus, quot, . . . over and over
does not benefit from dedicated constraint solvers
(e.g., SMT solvers) for arithmetic operations in programs

Solution: use constrained term rewriting

38/111

Beyond Classic TRSs for Program Analysis

So far, so good . . .
but do we really want to represent 1000000 as s(s(s(...)))?!

Drawbacks:
throws away domain knowledge about built-in data types like integers
need to analyse recursive rules for minus, quot, . . . over and over
does not benefit from dedicated constraint solvers
(e.g., SMT solvers) for arithmetic operations in programs

Solution: use constrained term rewriting

38/111

Constrained Term Rewriting, What’s That?

Term rewriting “with batteries included”
first-order
no fixed evaluation strategy
no fixed order of rules to apply

typed
with pre-defined data structures (integers, arrays, bitvectors, ...),
usually from SMT-LIB theories
rewrite rules with SMT constraints

⇒ Term rewriting + SMT solving for automated reasoning

Constrained rewriting known at least since [Vorobyov, RTA ’89]
General forms available, e.g., Logically Constrained TRSs [Kop, Nishida, FroCoS ’13]
For program termination: use term rewriting with integers
[Falke, Kapur, CADE ’09; Fuhs et al, RTA ’09; Giesl et al, JAR ’17]

39/111

Constrained Term Rewriting, What’s That?

Term rewriting “with batteries included”
first-order
no fixed evaluation strategy
no fixed order of rules to apply
typed

with pre-defined data structures (integers, arrays, bitvectors, ...),
usually from SMT-LIB theories
rewrite rules with SMT constraints

⇒ Term rewriting + SMT solving for automated reasoning

Constrained rewriting known at least since [Vorobyov, RTA ’89]
General forms available, e.g., Logically Constrained TRSs [Kop, Nishida, FroCoS ’13]
For program termination: use term rewriting with integers
[Falke, Kapur, CADE ’09; Fuhs et al, RTA ’09; Giesl et al, JAR ’17]

39/111

Constrained Term Rewriting, What’s That?

Term rewriting “with batteries included”
first-order
no fixed evaluation strategy
no fixed order of rules to apply
typed
with pre-defined data structures (integers, arrays, bitvectors, ...),
usually from SMT-LIB theories

rewrite rules with SMT constraints
⇒ Term rewriting + SMT solving for automated reasoning

Constrained rewriting known at least since [Vorobyov, RTA ’89]
General forms available, e.g., Logically Constrained TRSs [Kop, Nishida, FroCoS ’13]
For program termination: use term rewriting with integers
[Falke, Kapur, CADE ’09; Fuhs et al, RTA ’09; Giesl et al, JAR ’17]

39/111

Constrained Term Rewriting, What’s That?

Term rewriting “with batteries included”
first-order
no fixed evaluation strategy
no fixed order of rules to apply
typed
with pre-defined data structures (integers, arrays, bitvectors, ...),
usually from SMT-LIB theories
rewrite rules with SMT constraints

⇒ Term rewriting + SMT solving for automated reasoning

Constrained rewriting known at least since [Vorobyov, RTA ’89]
General forms available, e.g., Logically Constrained TRSs [Kop, Nishida, FroCoS ’13]
For program termination: use term rewriting with integers
[Falke, Kapur, CADE ’09; Fuhs et al, RTA ’09; Giesl et al, JAR ’17]

39/111

Constrained Term Rewriting, What’s That?

Term rewriting “with batteries included”
first-order
no fixed evaluation strategy
no fixed order of rules to apply
typed
with pre-defined data structures (integers, arrays, bitvectors, ...),
usually from SMT-LIB theories
rewrite rules with SMT constraints

⇒ Term rewriting + SMT solving for automated reasoning

Constrained rewriting known at least since [Vorobyov, RTA ’89]
General forms available, e.g., Logically Constrained TRSs [Kop, Nishida, FroCoS ’13]
For program termination: use term rewriting with integers
[Falke, Kapur, CADE ’09; Fuhs et al, RTA ’09; Giesl et al, JAR ’17]

39/111

Constrained Term Rewriting, What’s That?

Term rewriting “with batteries included”
first-order
no fixed evaluation strategy
no fixed order of rules to apply
typed
with pre-defined data structures (integers, arrays, bitvectors, ...),
usually from SMT-LIB theories
rewrite rules with SMT constraints

⇒ Term rewriting + SMT solving for automated reasoning

Constrained rewriting known at least since [Vorobyov, RTA ’89]

General forms available, e.g., Logically Constrained TRSs [Kop, Nishida, FroCoS ’13]
For program termination: use term rewriting with integers
[Falke, Kapur, CADE ’09; Fuhs et al, RTA ’09; Giesl et al, JAR ’17]

39/111

Constrained Term Rewriting, What’s That?

Term rewriting “with batteries included”
first-order
no fixed evaluation strategy
no fixed order of rules to apply
typed
with pre-defined data structures (integers, arrays, bitvectors, ...),
usually from SMT-LIB theories
rewrite rules with SMT constraints

⇒ Term rewriting + SMT solving for automated reasoning

Constrained rewriting known at least since [Vorobyov, RTA ’89]
General forms available, e.g., Logically Constrained TRSs [Kop, Nishida, FroCoS ’13]

For program termination: use term rewriting with integers
[Falke, Kapur, CADE ’09; Fuhs et al, RTA ’09; Giesl et al, JAR ’17]

39/111

Constrained Term Rewriting, What’s That?

Term rewriting “with batteries included”
first-order
no fixed evaluation strategy
no fixed order of rules to apply
typed
with pre-defined data structures (integers, arrays, bitvectors, ...),
usually from SMT-LIB theories
rewrite rules with SMT constraints

⇒ Term rewriting + SMT solving for automated reasoning

Constrained rewriting known at least since [Vorobyov, RTA ’89]
General forms available, e.g., Logically Constrained TRSs [Kop, Nishida, FroCoS ’13]
For program termination: use term rewriting with integers
[Falke, Kapur, CADE ’09; Fuhs et al, RTA ’09; Giesl et al, JAR ’17]

39/111

Logically Constrained TRSs: Adoption

Analysis techniques for Logically Constrained TRSs:
Termination [Kop, WST ’13; Nishida, Winkler, VSTTE ’18]
Complexity [Winkler, Moser, LOPSTR ’20]
Equivalence [Fuhs, Kop, Nishida, TOCL ’17; Ciobâcă, Lucanu, Buruiana, JLAMP ’23]
Confluence [Schöpf, Middeldorp, CADE ’23; Schöpf, Mitterwallner, Middeldorp, IJCAR ’24]
Reachability / Safety [Ciobâcă, Lucanu, IJCAR ’18; Kojima, Nishida, JLAMP ’23]

40/111

Constrained Rewriting by Example

Example (Constrained Rewrite System)

`0(n, r) −→ `1(n, r,Nil)

`1(n, r, xs) −→ `1(n− 1, r + 1,Cons(r, xs)) [n > 0]

`1(n, r, xs) −→ `2(xs) [n = 0]

Possible rewrite sequence:

`0(2, 7)

−→ `1(2, 7,Nil)

−→ `1(1, 8,Cons(7,Nil))

−→ `1(0, 9,Cons(8,Cons(7,Nil)))

−→ `2(Cons(8,Cons(7,Nil)))

Here 7, 8, . . . are predefined constants.

Termination proof: reuse techniques for TRSs and integer programs

41/111

Constrained Rewriting by Example

Example (Constrained Rewrite System)

`0(n, r) −→ `1(n, r,Nil)

`1(n, r, xs) −→ `1(n− 1, r + 1,Cons(r, xs)) [n > 0]

`1(n, r, xs) −→ `2(xs) [n = 0]

Possible rewrite sequence:

`0(2, 7)

−→ `1(2, 7,Nil)

−→ `1(1, 8,Cons(7,Nil))

−→ `1(0, 9,Cons(8,Cons(7,Nil)))

−→ `2(Cons(8,Cons(7,Nil)))

Here 7, 8, . . . are predefined constants.

Termination proof: reuse techniques for TRSs and integer programs

41/111

Constrained Rewriting by Example

Example (Constrained Rewrite System)

`0(n, r) −→ `1(n, r,Nil)

`1(n, r, xs) −→ `1(n− 1, r + 1,Cons(r, xs)) [n > 0]

`1(n, r, xs) −→ `2(xs) [n = 0]

Possible rewrite sequence:

`0(2, 7)

−→ `1(2, 7,Nil)

−→ `1(1, 8,Cons(7,Nil))

−→ `1(0, 9,Cons(8,Cons(7,Nil)))

−→ `2(Cons(8,Cons(7,Nil)))

Here 7, 8, . . . are predefined constants.

Termination proof: reuse techniques for TRSs and integer programs

41/111

Constrained Rewriting by Example

Example (Constrained Rewrite System)

`0(n, r) −→ `1(n, r,Nil)

`1(n, r, xs) −→ `1(n− 1, r + 1,Cons(r, xs)) [n > 0]

`1(n, r, xs) −→ `2(xs) [n = 0]

Possible rewrite sequence:

`0(2, 7)

−→ `1(2, 7,Nil)

−→ `1(1, 8,Cons(7,Nil))

−→ `1(0, 9,Cons(8,Cons(7,Nil)))

−→ `2(Cons(8,Cons(7,Nil)))

Here 7, 8, . . . are predefined constants.

Termination proof: reuse techniques for TRSs and integer programs

41/111

Constrained Rewriting by Example

Example (Constrained Rewrite System)

`0(n, r) −→ `1(n, r,Nil)

`1(n, r, xs) −→ `1(n− 1, r + 1,Cons(r, xs)) [n > 0]

`1(n, r, xs) −→ `2(xs) [n = 0]

Possible rewrite sequence:

`0(2, 7)

−→ `1(2, 7,Nil)

−→ `1(1, 8,Cons(7,Nil))

−→ `1(0, 9,Cons(8,Cons(7,Nil)))

−→ `2(Cons(8,Cons(7,Nil)))

Here 7, 8, . . . are predefined constants.

Termination proof: reuse techniques for TRSs and integer programs

41/111

Constrained Rewriting by Example

Example (Constrained Rewrite System)

`0(n, r) −→ `1(n, r,Nil)

`1(n, r, xs) −→ `1(n− 1, r + 1,Cons(r, xs)) [n > 0]

`1(n, r, xs) −→ `2(xs) [n = 0]

Possible rewrite sequence:

`0(2, 7)

−→ `1(2, 7,Nil)

−→ `1(1, 8,Cons(7,Nil))

−→ `1(0, 9,Cons(8,Cons(7,Nil)))

−→ `2(Cons(8,Cons(7,Nil)))

Here 7, 8, . . . are predefined constants.

Termination proof: reuse techniques for TRSs and integer programs

41/111

Constrained Rewriting by Example

Example (Constrained Rewrite System)

`0(n, r) −→ `1(n, r,Nil)

`1(n, r, xs) −→ `1(n− 1, r + 1,Cons(r, xs)) [n > 0]

`1(n, r, xs) −→ `2(xs) [n = 0]

Possible rewrite sequence:

`0(2, 7)

−→ `1(2, 7,Nil)

−→ `1(1, 8,Cons(7,Nil))

−→ `1(0, 9,Cons(8,Cons(7,Nil)))

−→ `2(Cons(8,Cons(7,Nil)))

Here 7, 8, . . . are predefined constants.

Termination proof: reuse techniques for TRSs and integer programs

41/111

Constrained Rewriting by Example

Example (Constrained Rewrite System)

`0(n, r) −→ `1(n, r,Nil)

`1(n, r, xs) −→ `1(n− 1, r + 1,Cons(r, xs)) [n > 0]

`1(n, r, xs) −→ `2(xs) [n = 0]

Possible rewrite sequence:

`0(2, 7)

−→ `1(2, 7,Nil)

−→ `1(1, 8,Cons(7,Nil))

−→ `1(0, 9,Cons(8,Cons(7,Nil)))

−→ `2(Cons(8,Cons(7,Nil)))

Here 7, 8, . . . are predefined constants.

Termination proof: reuse techniques for TRSs and integer programs
41/111

Conclusion: Termination Proving Back-Ends

Automated termination analysis for term rewriting and for imperative programs developed in
parallel over the last ∼ 25 years

Term rewriting: handles inductive data structures well
Imperative programs on integers: need to consider reachability/safety and invariants
Since a few years cross-fertilisation
Constrained term rewriting: best of both worlds as back-end language
Proof search heavily relies on SMT solving for automation
Needs of termination analysis have also led to better SMT solvers
More information . . .

e.g., on the annual Termination Competition:

http://termination-portal.org

Behind (almost) every successful termination prover . . .

. . . there is a powerful SAT / SMT solver!

42/111

Conclusion: Termination Proving Back-Ends

Automated termination analysis for term rewriting and for imperative programs developed in
parallel over the last ∼ 25 years
Term rewriting: handles inductive data structures well

Imperative programs on integers: need to consider reachability/safety and invariants
Since a few years cross-fertilisation
Constrained term rewriting: best of both worlds as back-end language
Proof search heavily relies on SMT solving for automation
Needs of termination analysis have also led to better SMT solvers
More information . . .

e.g., on the annual Termination Competition:

http://termination-portal.org

Behind (almost) every successful termination prover . . .

. . . there is a powerful SAT / SMT solver!

42/111

Conclusion: Termination Proving Back-Ends

Automated termination analysis for term rewriting and for imperative programs developed in
parallel over the last ∼ 25 years
Term rewriting: handles inductive data structures well
Imperative programs on integers: need to consider reachability/safety and invariants

Since a few years cross-fertilisation
Constrained term rewriting: best of both worlds as back-end language
Proof search heavily relies on SMT solving for automation
Needs of termination analysis have also led to better SMT solvers
More information . . .

e.g., on the annual Termination Competition:

http://termination-portal.org

Behind (almost) every successful termination prover . . .

. . . there is a powerful SAT / SMT solver!

42/111

Conclusion: Termination Proving Back-Ends

Automated termination analysis for term rewriting and for imperative programs developed in
parallel over the last ∼ 25 years
Term rewriting: handles inductive data structures well
Imperative programs on integers: need to consider reachability/safety and invariants
Since a few years cross-fertilisation

Constrained term rewriting: best of both worlds as back-end language
Proof search heavily relies on SMT solving for automation
Needs of termination analysis have also led to better SMT solvers
More information . . .

e.g., on the annual Termination Competition:

http://termination-portal.org

Behind (almost) every successful termination prover . . .

. . . there is a powerful SAT / SMT solver!

42/111

Conclusion: Termination Proving Back-Ends

Automated termination analysis for term rewriting and for imperative programs developed in
parallel over the last ∼ 25 years
Term rewriting: handles inductive data structures well
Imperative programs on integers: need to consider reachability/safety and invariants
Since a few years cross-fertilisation
Constrained term rewriting: best of both worlds as back-end language

Proof search heavily relies on SMT solving for automation
Needs of termination analysis have also led to better SMT solvers
More information . . .

e.g., on the annual Termination Competition:

http://termination-portal.org

Behind (almost) every successful termination prover . . .

. . . there is a powerful SAT / SMT solver!

42/111

Conclusion: Termination Proving Back-Ends

Automated termination analysis for term rewriting and for imperative programs developed in
parallel over the last ∼ 25 years
Term rewriting: handles inductive data structures well
Imperative programs on integers: need to consider reachability/safety and invariants
Since a few years cross-fertilisation
Constrained term rewriting: best of both worlds as back-end language
Proof search heavily relies on SMT solving for automation

Needs of termination analysis have also led to better SMT solvers
More information . . .

e.g., on the annual Termination Competition:

http://termination-portal.org

Behind (almost) every successful termination prover . . .

. . . there is a powerful SAT / SMT solver!

42/111

Conclusion: Termination Proving Back-Ends

Automated termination analysis for term rewriting and for imperative programs developed in
parallel over the last ∼ 25 years
Term rewriting: handles inductive data structures well
Imperative programs on integers: need to consider reachability/safety and invariants
Since a few years cross-fertilisation
Constrained term rewriting: best of both worlds as back-end language
Proof search heavily relies on SMT solving for automation
Needs of termination analysis have also led to better SMT solvers

More information . . .

e.g., on the annual Termination Competition:

http://termination-portal.org

Behind (almost) every successful termination prover . . .

. . . there is a powerful SAT / SMT solver!

42/111

Conclusion: Termination Proving Back-Ends

Automated termination analysis for term rewriting and for imperative programs developed in
parallel over the last ∼ 25 years
Term rewriting: handles inductive data structures well
Imperative programs on integers: need to consider reachability/safety and invariants
Since a few years cross-fertilisation
Constrained term rewriting: best of both worlds as back-end language
Proof search heavily relies on SMT solving for automation
Needs of termination analysis have also led to better SMT solvers
More information . . .

e.g., on the annual Termination Competition:

http://termination-portal.org

Behind (almost) every successful termination prover . . .

. . . there is a powerful SAT / SMT solver!

42/111

Conclusion: Termination Proving Back-Ends

Automated termination analysis for term rewriting and for imperative programs developed in
parallel over the last ∼ 25 years
Term rewriting: handles inductive data structures well
Imperative programs on integers: need to consider reachability/safety and invariants
Since a few years cross-fertilisation
Constrained term rewriting: best of both worlds as back-end language
Proof search heavily relies on SMT solving for automation
Needs of termination analysis have also led to better SMT solvers
More information . . .

e.g., on the annual Termination Competition:

http://termination-portal.org

Behind (almost) every successful termination prover . . .

. . . there is a powerful SAT / SMT solver!

42/111

Conclusion: Termination Proving Back-Ends

Automated termination analysis for term rewriting and for imperative programs developed in
parallel over the last ∼ 25 years
Term rewriting: handles inductive data structures well
Imperative programs on integers: need to consider reachability/safety and invariants
Since a few years cross-fertilisation
Constrained term rewriting: best of both worlds as back-end language
Proof search heavily relies on SMT solving for automation
Needs of termination analysis have also led to better SMT solvers
More information . . .

e.g., on the annual Termination Competition:

http://termination-portal.org

Behind (almost) every successful termination prover . . .
. . . there is a powerful SAT / SMT solver!

42/111

I.3 Termination Analysis of Java programs

43/111

Front-End: from Program to Constrained Term Rewriting, high-level

execute program symbolically from initial states of the program, handle language peculiarities
here (−→ Java: sharing, cyclicity analysis)

use generalisation of program states, get over-approximation of all possible program runs
(≈ control-flow graph with extra info)
closely related: Abstract Interpretation
extract TRS from cycles in the representation
if TRS terminates
⇒ any concrete program execution can use cycles only finitely often
⇒ the program must terminate

f : if ...
...

else
...
g : while ...

...

44/111

Front-End: from Program to Constrained Term Rewriting, high-level

execute program symbolically from initial states of the program, handle language peculiarities
here (−→ Java: sharing, cyclicity analysis)

use generalisation of program states, get over-approximation of all possible program runs
(≈ control-flow graph with extra info)
closely related: Abstract Interpretation
extract TRS from cycles in the representation
if TRS terminates
⇒ any concrete program execution can use cycles only finitely often
⇒ the program must terminate

f : if ...
...

else
...
g : while ...

...

init(...)

44/111

Front-End: from Program to Constrained Term Rewriting, high-level

execute program symbolically from initial states of the program, handle language peculiarities
here (−→ Java: sharing, cyclicity analysis)

use generalisation of program states, get over-approximation of all possible program runs
(≈ control-flow graph with extra info)
closely related: Abstract Interpretation
extract TRS from cycles in the representation
if TRS terminates
⇒ any concrete program execution can use cycles only finitely often
⇒ the program must terminate

f : if ...
...

else
...
g : while ...

...

init(...)

f(...)

44/111

Front-End: from Program to Constrained Term Rewriting, high-level

execute program symbolically from initial states of the program, handle language peculiarities
here (−→ Java: sharing, cyclicity analysis)

use generalisation of program states, get over-approximation of all possible program runs
(≈ control-flow graph with extra info)
closely related: Abstract Interpretation
extract TRS from cycles in the representation
if TRS terminates
⇒ any concrete program execution can use cycles only finitely often
⇒ the program must terminate

f : if ...
...

else
...
g : while ...

...

init(...)

f(...)

... g(~s)

44/111

Front-End: from Program to Constrained Term Rewriting, high-level

execute program symbolically from initial states of the program, handle language peculiarities
here (−→ Java: sharing, cyclicity analysis)

use generalisation of program states, get over-approximation of all possible program runs
(≈ control-flow graph with extra info)
closely related: Abstract Interpretation
extract TRS from cycles in the representation
if TRS terminates
⇒ any concrete program execution can use cycles only finitely often
⇒ the program must terminate

f : if ...
...

else
...
g : while ...

...

init(...)

f(...)

... g(~s)

g(~t)...

44/111

Front-End: from Program to Constrained Term Rewriting, high-level

execute program symbolically from initial states of the program, handle language peculiarities
here (−→ Java: sharing, cyclicity analysis)
use generalisation of program states, get over-approximation of all possible program runs
(≈ control-flow graph with extra info)
closely related: Abstract Interpretation

extract TRS from cycles in the representation
if TRS terminates
⇒ any concrete program execution can use cycles only finitely often
⇒ the program must terminate

f : if ...
...

else
...
g : while ...

...

init(...)

f(...)

... g(~s)

g(~t)...

g(~t) instance of g(~s)

44/111

Front-End: from Program to Constrained Term Rewriting, high-level

execute program symbolically from initial states of the program, handle language peculiarities
here (−→ Java: sharing, cyclicity analysis)
use generalisation of program states, get over-approximation of all possible program runs
(≈ control-flow graph with extra info)
closely related: Abstract Interpretation
extract TRS from cycles in the representation

if TRS terminates
⇒ any concrete program execution can use cycles only finitely often
⇒ the program must terminate

f : if ...
...

else
...
g : while ...

...

init(...)

f(...)

... g(~s)

g(~t)...

g(~t) instance of g(~s)

44/111

Front-End: from Program to Constrained Term Rewriting, high-level

execute program symbolically from initial states of the program, handle language peculiarities
here (−→ Java: sharing, cyclicity analysis)
use generalisation of program states, get over-approximation of all possible program runs
(≈ control-flow graph with extra info)
closely related: Abstract Interpretation
extract TRS from cycles in the representation
if TRS terminates
⇒ any concrete program execution can use cycles only finitely often
⇒ the program must terminate

f : if ...
...

else
...
g : while ...

...

init(...)

f(...)

... g(~s)

g(~t)...

g(~t) instance of g(~s)

44/111

Application: Termination Analysis of Programs

Recipe for proving program termination by reusing TRS termination provers

Decide on suitable symbolic representation of abstract program states (abstract domain)
−→ here: what data objects can we represent as terms?
Execute program symbolically from its initial states
Use generalisation of program states to get closed finite representation (symbolic execution
graph, abstract interpretation)
Extract rewrite rules that “over-approximate” program executions in strongly-connected
components of graph
Prove termination of these rewrite rules
⇒ implies termination of program from initial states

45/111

Application: Termination Analysis of Programs

Recipe for proving program termination by reusing TRS termination provers
Decide on suitable symbolic representation of abstract program states (abstract domain)
−→ here: what data objects can we represent as terms?

Execute program symbolically from its initial states
Use generalisation of program states to get closed finite representation (symbolic execution
graph, abstract interpretation)
Extract rewrite rules that “over-approximate” program executions in strongly-connected
components of graph
Prove termination of these rewrite rules
⇒ implies termination of program from initial states

45/111

Application: Termination Analysis of Programs

Recipe for proving program termination by reusing TRS termination provers
Decide on suitable symbolic representation of abstract program states (abstract domain)
−→ here: what data objects can we represent as terms?
Execute program symbolically from its initial states

Use generalisation of program states to get closed finite representation (symbolic execution
graph, abstract interpretation)
Extract rewrite rules that “over-approximate” program executions in strongly-connected
components of graph
Prove termination of these rewrite rules
⇒ implies termination of program from initial states

45/111

Application: Termination Analysis of Programs

Recipe for proving program termination by reusing TRS termination provers
Decide on suitable symbolic representation of abstract program states (abstract domain)
−→ here: what data objects can we represent as terms?
Execute program symbolically from its initial states
Use generalisation of program states to get closed finite representation (symbolic execution
graph, abstract interpretation)

Extract rewrite rules that “over-approximate” program executions in strongly-connected
components of graph
Prove termination of these rewrite rules
⇒ implies termination of program from initial states

45/111

Application: Termination Analysis of Programs

Recipe for proving program termination by reusing TRS termination provers
Decide on suitable symbolic representation of abstract program states (abstract domain)
−→ here: what data objects can we represent as terms?
Execute program symbolically from its initial states
Use generalisation of program states to get closed finite representation (symbolic execution
graph, abstract interpretation)
Extract rewrite rules that “over-approximate” program executions in strongly-connected
components of graph

Prove termination of these rewrite rules
⇒ implies termination of program from initial states

45/111

Application: Termination Analysis of Programs

Recipe for proving program termination by reusing TRS termination provers
Decide on suitable symbolic representation of abstract program states (abstract domain)
−→ here: what data objects can we represent as terms?
Execute program symbolically from its initial states
Use generalisation of program states to get closed finite representation (symbolic execution
graph, abstract interpretation)
Extract rewrite rules that “over-approximate” program executions in strongly-connected
components of graph
Prove termination of these rewrite rules
⇒ implies termination of program from initial states

45/111

Java Challenges

Java: object-oriented imperative language
sharing and aliasing (several references to the same object)
side effects
cyclic data objects (e.g., list.next == list)
object-orientation with inheritance
. . .

46/111

Java Example

Does count terminate for all inputs? Why (not)?
(Assume that num and limit are not references to the same object.)

47/111

public class MyInt {

// only wrap a primitive int
private int val;

// count "num" up to the value in "limit"
public static void count(MyInt num, MyInt limit) {

if (num == null || limit == null) {
return;

}
// introduce sharing
MyInt copy = num;
while (num.val < limit.val) {

copy.val++;
}

}
}

Approach to Termination Analysis of Java

Tailor two-stage approach to Java [Otto et al, RTA ’10]

Back-end: From rewrite system to termination proof
Constrained term rewriting with integers [Giesl et al, JAR ’17]
Termination techniques for rewriting and for integers can be integrated

Front-end: From Java to constrained rewrite system
Build symbolic execution graph that over-approximates all runs of Java program (abstract
interpretation)
Symbolic execution graph has invariants for integers and heap object shape (trees?)
Extract rewrite system from symbolic execution graph

Implemented in the tool AProVE (−→ web interface)

http://aprove.informatik.rwth-aachen.de/

48/111

http://aprove.informatik.rwth-aachen.de/

Approach to Termination Analysis of Java

Tailor two-stage approach to Java [Otto et al, RTA ’10]

Back-end: From rewrite system to termination proof
Constrained term rewriting with integers [Giesl et al, JAR ’17]
Termination techniques for rewriting and for integers can be integrated

Front-end: From Java to constrained rewrite system
Build symbolic execution graph that over-approximates all runs of Java program (abstract
interpretation)
Symbolic execution graph has invariants for integers and heap object shape (trees?)
Extract rewrite system from symbolic execution graph

Implemented in the tool AProVE (−→ web interface)

http://aprove.informatik.rwth-aachen.de/

48/111

http://aprove.informatik.rwth-aachen.de/

Approach to Termination Analysis of Java

Tailor two-stage approach to Java [Otto et al, RTA ’10]

Back-end: From rewrite system to termination proof
Constrained term rewriting with integers [Giesl et al, JAR ’17]
Termination techniques for rewriting and for integers can be integrated

Front-end: From Java to constrained rewrite system
Build symbolic execution graph that over-approximates all runs of Java program (abstract
interpretation)
Symbolic execution graph has invariants for integers and heap object shape (trees?)
Extract rewrite system from symbolic execution graph

Implemented in the tool AProVE (−→ web interface)

http://aprove.informatik.rwth-aachen.de/

48/111

http://aprove.informatik.rwth-aachen.de/

Approach to Termination Analysis of Java

Tailor two-stage approach to Java [Otto et al, RTA ’10]

Back-end: From rewrite system to termination proof
Constrained term rewriting with integers [Giesl et al, JAR ’17]
Termination techniques for rewriting and for integers can be integrated

Front-end: From Java to constrained rewrite system
Build symbolic execution graph that over-approximates all runs of Java program (abstract
interpretation)
Symbolic execution graph has invariants for integers and heap object shape (trees?)
Extract rewrite system from symbolic execution graph

Implemented in the tool AProVE (−→ web interface)

http://aprove.informatik.rwth-aachen.de/

48/111

http://aprove.informatik.rwth-aachen.de/

Java: Source Code vs Bytecode

[Otto et al, RTA ’10] describe their technique for compiled Java programs: Java Bytecode

desugared machine code for a (virtual) stack machine,
still has all the (relevant) information from source code
input for Java interpreter and for many program analysis tools
somewhat inconvenient for presentation, though . . .

Here: Java source code

49/111

Java: Source Code vs Bytecode

[Otto et al, RTA ’10] describe their technique for compiled Java programs: Java Bytecode
desugared machine code for a (virtual) stack machine,
still has all the (relevant) information from source code
input for Java interpreter and for many program analysis tools
somewhat inconvenient for presentation, though . . .

Here: Java source code

49/111

Java: Source Code vs Bytecode

[Otto et al, RTA ’10] describe their technique for compiled Java programs: Java Bytecode
desugared machine code for a (virtual) stack machine,
still has all the (relevant) information from source code
input for Java interpreter and for many program analysis tools
somewhat inconvenient for presentation, though . . .

Here: Java source code

49/111

00: aload_0
01: ifnull 8
04: aload_1
05: ifnonnull 9
08: return
09: aload_0
10: astore_2
11: aload_0
12: getfield val
15: aload_1
16: getfield val
19: if_icmpge 35
22: aload_2
23: aload_2
24: getfield val
27: iconst_1
28: iadd
29: putfield val
32: goto 11
35: return

Java: Source Code vs Bytecode

[Otto et al, RTA ’10] describe their technique for compiled Java programs: Java Bytecode
desugared machine code for a (virtual) stack machine,
still has all the (relevant) information from source code
input for Java interpreter and for many program analysis tools
somewhat inconvenient for presentation, though . . .

Here: Java source code

49/111

Ingredients for the Abstract Domain

1 program counter value (line number)
2 values of variables (treating int as Z)
3 over-approximating info on possible variable values

integers: use intervals, e.g. x ∈ [4, 7] or y ∈ [0, ∞)
heap memory with objects, no sharing unless stated otherwise
MyInt(?): maybe null, maybe a MyInt object

Heap predicates:
Two references may be equal: o1=? o2

Two references may share: o1%$o2
Reference may have cycles: o1 !

03 | num : o1, limit : o2
o1 : MyInt(?)
o2 : MyInt(val = i1)
i1 : [4, 80]

50/111

Ingredients for the Abstract Domain

1 program counter value (line number)
2 values of variables (treating int as Z)
3 over-approximating info on possible variable values

integers: use intervals, e.g. x ∈ [4, 7] or y ∈ [0, ∞)
heap memory with objects, no sharing unless stated otherwise
MyInt(?): maybe null, maybe a MyInt object

Heap predicates:
Two references may be equal: o1=? o2
Two references may share: o1%$o2

Reference may have cycles: o1 !

03 | num : o1, limit : o2
o1 : MyInt(?)
o2 : MyInt(val = i1)
i1 : [4, 80]

50/111

Ingredients for the Abstract Domain

1 program counter value (line number)
2 values of variables (treating int as Z)
3 over-approximating info on possible variable values

integers: use intervals, e.g. x ∈ [4, 7] or y ∈ [0, ∞)
heap memory with objects, no sharing unless stated otherwise
MyInt(?): maybe null, maybe a MyInt object

Heap predicates:
Two references may be equal: o1=? o2
Two references may share: o1%$o2
Reference may have cycles: o1 !

03 | num : o1, limit : o2
o1 : MyInt(?)
o2 : MyInt(val = i1)
i1 : [4, 80]

50/111

Building the Symbolic Execution Graph

1 | num : o1, limit : o2
o1 : MyInt(?)
o2 : MyInt(?)

A

51/111

public class MyInt {
private int val;
static void count(MyInt num, MyInt limit) {

1: if (num == null
2: || limit == null)
3: return;
4: MyInt copy = num;
5: while (num.val < limit.val)
6: copy.val++;
7: } }

Building the Symbolic Execution Graph

1 | num : o1, limit : o2
o1 : MyInt(?)
o2 : MyInt(?)

A

3 | num : o1, limit : o2
o1 : null
o2 : MyInt(?)

B

2 | num : o1, limit : o2
o1 : MyInt(val = i1)
o2 : MyInt(?)
i1 : (−∞,∞)

C

o1 = null

o1 6= null

X Y
cond

means: refine X with cond , then evaluate to Y; here combined for brevity
(narrowing)

51/111

public class MyInt {
private int val;
static void count(MyInt num, MyInt limit) {

1: if (num == null
2: || limit == null)
3: return;
4: MyInt copy = num;
5: while (num.val < limit.val)
6: copy.val++;
7: } }

Building the Symbolic Execution Graph

1 | num : o1, limit : o2
o1 : MyInt(?)
o2 : MyInt(?)

A

3 | num : o1, limit : o2
o1 : null
o2 : MyInt(?)

B

2 | num : o1, limit : o2
o1 : MyInt(val = i1)
o2 : MyInt(?)
i1 : (−∞,∞)

C

3 | num : o1, limit : o2
o1 : MyInt(val = i1)
o2 : null
i1 : (−∞,∞)

D

4 | num : o1, limit : o2
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

E

o1 = null

o1 6= null
o2 = null

o2 6= null

X Y
cond

means: refine X with cond , then evaluate to Y; here combined for brevity
(narrowing)

51/111

public class MyInt {
private int val;
static void count(MyInt num, MyInt limit) {

1: if (num == null
2: || limit == null)
3: return;
4: MyInt copy = num;
5: while (num.val < limit.val)
6: copy.val++;
7: } }

Building the Symbolic Execution Graph

1 | num : o1, limit : o2
o1 : MyInt(?)
o2 : MyInt(?)

A

3 | num : o1, limit : o2
o1 : null
o2 : MyInt(?)

B

2 | num : o1, limit : o2
o1 : MyInt(val = i1)
o2 : MyInt(?)
i1 : (−∞,∞)

C

3 | num : o1, limit : o2
o1 : MyInt(val = i1)
o2 : null
i1 : (−∞,∞)

D

4 | num : o1, limit : o2
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

E

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

F

o1 = null

o1 6= null
o2 = null

o2 6= null

X Y

means: evaluate X to Y

51/111

public class MyInt {
private int val;
static void count(MyInt num, MyInt limit) {

1: if (num == null
2: || limit == null)
3: return;
4: MyInt copy = num;
5: while (num.val < limit.val)
6: copy.val++;
7: } }

Building the Symbolic Execution Graph

1 | num : o1, limit : o2
o1 : MyInt(?)
o2 : MyInt(?)

A

3 | num : o1, limit : o2
o1 : null
o2 : MyInt(?)

B

2 | num : o1, limit : o2
o1 : MyInt(val = i1)
o2 : MyInt(?)
i1 : (−∞,∞)

C

3 | num : o1, limit : o2
o1 : MyInt(val = i1)
o2 : null
i1 : (−∞,∞)

D

4 | num : o1, limit : o2
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

E

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

F

7 | num : o1, . . .
. . .

G6 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

H

o1 = null

o1 6= null
o2 = null

o2 6= null

i1 ≥ i2i1 < i2

51/111

public class MyInt {
private int val;
static void count(MyInt num, MyInt limit) {

1: if (num == null
2: || limit == null)
3: return;
4: MyInt copy = num;
5: while (num.val < limit.val)
6: copy.val++;
7: } }

Building the Symbolic Execution Graph

1 | num : o1, limit : o2
o1 : MyInt(?)
o2 : MyInt(?)

A

3 | num : o1, limit : o2
o1 : null
o2 : MyInt(?)

B

2 | num : o1, limit : o2
o1 : MyInt(val = i1)
o2 : MyInt(?)
i1 : (−∞,∞)

C

3 | num : o1, limit : o2
o1 : MyInt(val = i1)
o2 : null
i1 : (−∞,∞)

D

4 | num : o1, limit : o2
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

E

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

F

7 | num : o1, . . .
. . .

G6 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

H

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i3)
o2 : MyInt(val = i2)
i3 : (−∞,∞)
i2 : (−∞,∞)

I

o1 = null

o1 6= null
o2 = null

o2 6= null

i1 ≥ i2i1 < i2

i3 = i1 + 1

51/111

public class MyInt {
private int val;
static void count(MyInt num, MyInt limit) {

1: if (num == null
2: || limit == null)
3: return;
4: MyInt copy = num;
5: while (num.val < limit.val)
6: copy.val++;
7: } }

Building the Symbolic Execution Graph

1 | num : o1, limit : o2
o1 : MyInt(?)
o2 : MyInt(?)

A

3 | num : o1, limit : o2
o1 : null
o2 : MyInt(?)

B

2 | num : o1, limit : o2
o1 : MyInt(val = i1)
o2 : MyInt(?)
i1 : (−∞,∞)

C

3 | num : o1, limit : o2
o1 : MyInt(val = i1)
o2 : null
i1 : (−∞,∞)

D

4 | num : o1, limit : o2
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

E

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

F

7 | num : o1, . . .
. . .

G6 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

H

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i3)
o2 : MyInt(val = i2)
i3 : (−∞,∞)
i2 : (−∞,∞)

I

o1 = null

o1 6= null
o2 = null

o2 6= null

i1 ≥ i2i1 < i2

i3 = i1 + 1

X Y :

X is instance of Y

51/111

public class MyInt {
private int val;
static void count(MyInt num, MyInt limit) {

1: if (num == null
2: || limit == null)
3: return;
4: MyInt copy = num;
5: while (num.val < limit.val)
6: copy.val++;
7: } }

From Java to Symbolic Execution Graphs

Symbolic Execution Graphs
symbolic over-approximation of all computations
(abstract interpretation)
expand nodes until all leaves correspond to program ends
by suitable generalisation steps (widening),
one can always get a finite symbolic execution graph
state s1 is instance of state s2
if all concrete states described by s1 are also described by s2

Using Symbolic Execution Graphs for Termination Proofs
every concrete Java computation corresponds to a computation path in the symbolic
execution graph
symbolic execution graph is called terminating
iff it has no infinite computation path

52/111

From Java to Symbolic Execution Graphs

Symbolic Execution Graphs
symbolic over-approximation of all computations
(abstract interpretation)
expand nodes until all leaves correspond to program ends
by suitable generalisation steps (widening),
one can always get a finite symbolic execution graph
state s1 is instance of state s2
if all concrete states described by s1 are also described by s2

Using Symbolic Execution Graphs for Termination Proofs
every concrete Java computation corresponds to a computation path in the symbolic
execution graph
symbolic execution graph is called terminating
iff it has no infinite computation path

52/111

Transformation of Objects to Terms (1/2)

16 | num : o1, limit : o2, x : o3, y : o4, z : i1
o1 : MyInt(?)
o2 : MyInt(val = i2)
o3 : null
o4 : MyList(?)
o4 !
i1 : [7,∞)
i2 : (−∞,∞)

Q

For every class C with n fields, introduce an n-ary function symbol C

term for o1: o1
term for o2: MyInt(i2)

term for o3: null

term for o4: x (new variable)
term for i1: i1 with side constraint i1 ≥ 7

(add invariant i1 ≥ 7 to constrained rewrite rules from state Q)
53/111

Transformation of Objects to Terms (2/2)

public class A {
int a;

}

public class B extends A {
int b;

}

...
A x = new A();
x.a = 1;

B y = new B();
y.a = 2;
y.b = 3;

Dealing with subclasses:

for every class C with n fields,
introduce (n+ 1)-ary function symbol C

first argument: part of the object corresponding to
subclasses of C
term for x:

jlO(

A(eoc, 1)

)

−→ eoc for end of class
term for y:

jlO(

A(B(eoc, 3), 2)

)

every class extends Object!
(−→ jlO ≡ java.lang.Object)

54/111

Transformation of Objects to Terms (2/2)

public class A {
int a;

}

public class B extends A {
int b;

}

...
A x = new A();
x.a = 1;

B y = new B();
y.a = 2;
y.b = 3;

Dealing with subclasses:
for every class C with n fields,
introduce (n+ 1)-ary function symbol C

first argument: part of the object corresponding to
subclasses of C
term for x:

jlO(

A(eoc, 1)

)

−→ eoc for end of class
term for y:

jlO(

A(B(eoc, 3), 2)

)

every class extends Object!
(−→ jlO ≡ java.lang.Object)

54/111

Transformation of Objects to Terms (2/2)

public class A {
int a;

}

public class B extends A {
int b;

}

...
A x = new A();
x.a = 1;

B y = new B();
y.a = 2;
y.b = 3;

Dealing with subclasses:
for every class C with n fields,
introduce (n+ 1)-ary function symbol C

first argument: part of the object corresponding to
subclasses of C
term for x: jlO(A(eoc, 1))

−→ eoc for end of class
term for y: jlO(A(B(eoc, 3), 2))

every class extends Object!
(−→ jlO ≡ java.lang.Object)

54/111

From the Symbolic Execution Graph to Terms and Rules

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

F

6 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

H

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i3)
o2 : MyInt(val = i2)
i3 : (−∞,∞)
i2 : (−∞,∞)

I

i1 < i2

i3 = i1 + 1

State F: `F(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2)))

−→

State H: `H(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2)))

[i1 < i2]

State H: `H(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2)))

−→

State I: `F(jlO(MyInt(eoc, i1 + 1)), jlO(MyInt(eoc, i2)))

Termination easy to show (intuitively: i2 − i1 decreases against bound 0)

55/111

From the Symbolic Execution Graph to Terms and Rules

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

F

6 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

H

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i3)
o2 : MyInt(val = i2)
i3 : (−∞,∞)
i2 : (−∞,∞)

I

i1 < i2

i3 = i1 + 1

State F: `F(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2)))

−→

State H: `H(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2)))

[i1 < i2]

State H: `H(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2)))

−→

State I: `F(jlO(MyInt(eoc, i1 + 1)), jlO(MyInt(eoc, i2)))

Termination easy to show (intuitively: i2 − i1 decreases against bound 0)

55/111

From the Symbolic Execution Graph to Terms and Rules

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

F

6 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

H

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i3)
o2 : MyInt(val = i2)
i3 : (−∞,∞)
i2 : (−∞,∞)

I

i1 < i2

i3 = i1 + 1

State F: `F(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2)))
−→

State H: `H(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2))) [i1 < i2]

State H: `H(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2)))

−→

State I: `F(jlO(MyInt(eoc, i1 + 1)), jlO(MyInt(eoc, i2)))

Termination easy to show (intuitively: i2 − i1 decreases against bound 0)

55/111

From the Symbolic Execution Graph to Terms and Rules

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

F

6 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

H

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i3)
o2 : MyInt(val = i2)
i3 : (−∞,∞)
i2 : (−∞,∞)

I

i1 < i2

i3 = i1 + 1

State F: `F(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2)))
−→

State H: `H(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2))) [i1 < i2]

State H: `H(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2)))

−→

State I: `F(jlO(MyInt(eoc, i1 + 1)), jlO(MyInt(eoc, i2)))

Termination easy to show (intuitively: i2 − i1 decreases against bound 0)

55/111

From the Symbolic Execution Graph to Terms and Rules

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

F

6 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

H

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i3)
o2 : MyInt(val = i2)
i3 : (−∞,∞)
i2 : (−∞,∞)

I

i1 < i2

i3 = i1 + 1

State F: `F(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2)))
−→

State H: `H(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2))) [i1 < i2]

State H: `H(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2)))
−→

State I: `F(jlO(MyInt(eoc, i1 + 1)), jlO(MyInt(eoc, i2)))

Termination easy to show (intuitively: i2 − i1 decreases against bound 0)

55/111

From the Symbolic Execution Graph to Terms and Rules

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

F

6 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

H

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i3)
o2 : MyInt(val = i2)
i3 : (−∞,∞)
i2 : (−∞,∞)

I

i1 < i2

i3 = i1 + 1

State F: `F(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2)))
−→

State H: `H(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2))) [i1 < i2]

State H: `H(jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2)))
−→

State I: `F(jlO(MyInt(eoc, i1 + 1)), jlO(MyInt(eoc, i2)))

Termination easy to show (intuitively: i2 − i1 decreases against bound 0)
55/111

Extensions

modular termination proofs and recursion [Brockschmidt et al, RTA ’11]
proving reachability and non-termination (uses only symbolic execution graph)
[Brockschmidt et al, FoVeOOS ’11]
proving termination with cyclic data objects (preprocessing in symbolic execution graph)
[Brockschmidt et al, CAV ’12]
proving upper bounds for time complexity (abstracts terms to numbers)
[Frohn and Giesl, iFM ’17]

56/111

Front-Ends for Haskell and Prolog

Haskell [Giesl et al, TOPLAS ’11]
lazy evaluation
polymorphic types
higher-order

⇒ abstract domain: a single term; extract (non-constrained) TRS

Prolog [Schneider-Kamp et al, TOCL ’09; Giesl et al, PPDP ’12]
backtracking
uses unification instead of matching
extra-logical language features (e.g., cut)

⇒ abstract domain based on equivalent linear Prolog semantics [Ströder et al, LOPSTR ’11],
tracks which variables are for ground terms vs arbitrary terms

57/111

Front-Ends for Haskell and Prolog

Haskell [Giesl et al, TOPLAS ’11]
lazy evaluation
polymorphic types
higher-order

⇒ abstract domain: a single term; extract (non-constrained) TRS

Prolog [Schneider-Kamp et al, TOCL ’09; Giesl et al, PPDP ’12]
backtracking
uses unification instead of matching
extra-logical language features (e.g., cut)

⇒ abstract domain based on equivalent linear Prolog semantics [Ströder et al, LOPSTR ’11],
tracks which variables are for ground terms vs arbitrary terms

57/111

Front-Ends for Haskell and Prolog

Haskell [Giesl et al, TOPLAS ’11]
lazy evaluation
polymorphic types
higher-order

⇒ abstract domain: a single term; extract (non-constrained) TRS

Prolog [Schneider-Kamp et al, TOCL ’09; Giesl et al, PPDP ’12]
backtracking
uses unification instead of matching
extra-logical language features (e.g., cut)

⇒ abstract domain based on equivalent linear Prolog semantics [Ströder et al, LOPSTR ’11],
tracks which variables are for ground terms vs arbitrary terms

57/111

Front-Ends for Haskell and Prolog

Haskell [Giesl et al, TOPLAS ’11]
lazy evaluation
polymorphic types
higher-order

⇒ abstract domain: a single term; extract (non-constrained) TRS

Prolog [Schneider-Kamp et al, TOCL ’09; Giesl et al, PPDP ’12]
backtracking
uses unification instead of matching
extra-logical language features (e.g., cut)

⇒ abstract domain based on equivalent linear Prolog semantics [Ströder et al, LOPSTR ’11],
tracks which variables are for ground terms vs arbitrary terms

57/111

Front-End for LLVM

LLVM [Ströder et al, JAR ’17]
LLVM bitcode: intermediate language of LLVM compiler framework
clang compiler has prominent frontend for C
challenges: memory safety, pointer arithmetic

⇒ abstract domain tracks information about allocated memory and its content; extract Integer
Transition System

Extensions:
bitvector int semantics [Hensel et al, JLAMP ’18]
linked lists [Hensel, Giesl, CADE ’23]

58/111

Front-End for LLVM

LLVM [Ströder et al, JAR ’17]
LLVM bitcode: intermediate language of LLVM compiler framework
clang compiler has prominent frontend for C
challenges: memory safety, pointer arithmetic

⇒ abstract domain tracks information about allocated memory and its content; extract Integer
Transition System

Extensions:
bitvector int semantics [Hensel et al, JLAMP ’18]
linked lists [Hensel, Giesl, CADE ’23]

58/111

Front-End for LLVM

LLVM [Ströder et al, JAR ’17]
LLVM bitcode: intermediate language of LLVM compiler framework
clang compiler has prominent frontend for C
challenges: memory safety, pointer arithmetic

⇒ abstract domain tracks information about allocated memory and its content; extract Integer
Transition System

Extensions:
bitvector int semantics [Hensel et al, JLAMP ’18]
linked lists [Hensel, Giesl, CADE ’23]

58/111

Conclusion: Termination Analysis for Programs

Termination proving for (LC)TRSs driven by SMT solvers

Constrained rewriting: Term rewriting + pre-defined primitive data structures

Common theme for analysis of program termination by (constrained) rewriting:
handle language specifics in front-end
transitions between program states become (constrained) rewrite rules
for termination back-end

Works across paradigms: Java, C, Haskell, Prolog

59/111

Conclusion: Termination Analysis for Programs

Termination proving for (LC)TRSs driven by SMT solvers

Constrained rewriting: Term rewriting + pre-defined primitive data structures

Common theme for analysis of program termination by (constrained) rewriting:
handle language specifics in front-end
transitions between program states become (constrained) rewrite rules
for termination back-end

Works across paradigms: Java, C, Haskell, Prolog

59/111

Conclusion: Termination Analysis for Programs

Termination proving for (LC)TRSs driven by SMT solvers

Constrained rewriting: Term rewriting + pre-defined primitive data structures

Common theme for analysis of program termination by (constrained) rewriting:
handle language specifics in front-end
transitions between program states become (constrained) rewrite rules
for termination back-end

Works across paradigms: Java, C, Haskell, Prolog

59/111

Conclusion: Termination Analysis for Programs

Termination proving for (LC)TRSs driven by SMT solvers

Constrained rewriting: Term rewriting + pre-defined primitive data structures

Common theme for analysis of program termination by (constrained) rewriting:
handle language specifics in front-end
transitions between program states become (constrained) rewrite rules
for termination back-end

Works across paradigms: Java, C, Haskell, Prolog

59/111

II. Complexity Analysis

60/111

II.1 Complexity Analysis for Programs on
Integers

61/111

What Do You Mean by Complexity?

Literature uses many alternative names:
(Computational/Algorithmic) complexity analysis
(Computational) cost analysis
Resource analysis
Static profiling
. . .

Resource:
Number of evaluation steps
Number of network requests
Peak memory use
Battery power
. . .

Given: Program P .
Task: Provide upper/lower bounds on the resource use of running P

Task:

as a function of the input (size) in the worst case

62/111

What Do You Mean by Complexity?

Literature uses many alternative names:
(Computational/Algorithmic) complexity analysis
(Computational) cost analysis
Resource analysis
Static profiling
. . .

Resource:
Number of evaluation steps
Number of network requests
Peak memory use
Battery power
. . .

Given: Program P .
Task: Provide upper/lower bounds on the resource use of running P

Task:

as a function of the input (size) in the worst case

62/111

What Do You Mean by Complexity?

Literature uses many alternative names:
(Computational/Algorithmic) complexity analysis
(Computational) cost analysis
Resource analysis
Static profiling
. . .

Resource:
Number of evaluation steps
Number of network requests
Peak memory use
Battery power
. . .

Given: Program P .
Task: Provide upper/lower bounds on the resource use of running P

Task:

as a function of the input (size) in the worst case
62/111

Why Care About Computational Cost, Anyway?

Mobile devices: Bound energy usage

Security: Denial of Service attacks

−→ related DARPA project: Space/Time Analysis for Cybersecurity
https://www.darpa.mil/program/space-time-analysis-for-cybersecurity

Embedded devices: Bound memory usage
Specifications: What guarantees can we make to the API’s user?

“The size, isEmpty, get, set, iterator, and listIterator operations run in constant time. The
add operation runs in amortized constant time, that is, adding n elements requires O(n)
time. All of the other operations run in linear time (roughly speaking).”
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

−→ computational cost as a non-functional requirement!

Profiling: Which parts of the code need most runtime as inputs grow larger?
Smart contracts: Bound execution cost (as “gas”, i.e., money)
More: see Section 1.1.2 of PhD thesis by Alicia Merayo Corcoba1

1A. Merayo Corcoba: Resource analysis of integer and abstract programs, PhD thesis, U Complutense Madrid, 2022

63/111

https://www.darpa.mil/program/space-time-analysis-for-cybersecurity
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Why Care About Computational Cost, Anyway?

Mobile devices: Bound energy usage
Security: Denial of Service attacks

−→ related DARPA project: Space/Time Analysis for Cybersecurity
https://www.darpa.mil/program/space-time-analysis-for-cybersecurity

Embedded devices: Bound memory usage
Specifications: What guarantees can we make to the API’s user?

“The size, isEmpty, get, set, iterator, and listIterator operations run in constant time. The
add operation runs in amortized constant time, that is, adding n elements requires O(n)
time. All of the other operations run in linear time (roughly speaking).”
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

−→ computational cost as a non-functional requirement!

Profiling: Which parts of the code need most runtime as inputs grow larger?
Smart contracts: Bound execution cost (as “gas”, i.e., money)
More: see Section 1.1.2 of PhD thesis by Alicia Merayo Corcoba1

1A. Merayo Corcoba: Resource analysis of integer and abstract programs, PhD thesis, U Complutense Madrid, 2022

63/111

https://www.darpa.mil/program/space-time-analysis-for-cybersecurity
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Why Care About Computational Cost, Anyway?

Mobile devices: Bound energy usage
Security: Denial of Service attacks
−→ related DARPA project: Space/Time Analysis for Cybersecurity

https://www.darpa.mil/program/space-time-analysis-for-cybersecurity

Embedded devices: Bound memory usage
Specifications: What guarantees can we make to the API’s user?

“The size, isEmpty, get, set, iterator, and listIterator operations run in constant time. The
add operation runs in amortized constant time, that is, adding n elements requires O(n)
time. All of the other operations run in linear time (roughly speaking).”
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

−→ computational cost as a non-functional requirement!

Profiling: Which parts of the code need most runtime as inputs grow larger?
Smart contracts: Bound execution cost (as “gas”, i.e., money)
More: see Section 1.1.2 of PhD thesis by Alicia Merayo Corcoba1

1A. Merayo Corcoba: Resource analysis of integer and abstract programs, PhD thesis, U Complutense Madrid, 2022

63/111

https://www.darpa.mil/program/space-time-analysis-for-cybersecurity
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Why Care About Computational Cost, Anyway?

Mobile devices: Bound energy usage
Security: Denial of Service attacks
−→ related DARPA project: Space/Time Analysis for Cybersecurity

https://www.darpa.mil/program/space-time-analysis-for-cybersecurity

Embedded devices: Bound memory usage

Specifications: What guarantees can we make to the API’s user?

“The size, isEmpty, get, set, iterator, and listIterator operations run in constant time. The
add operation runs in amortized constant time, that is, adding n elements requires O(n)
time. All of the other operations run in linear time (roughly speaking).”
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

−→ computational cost as a non-functional requirement!

Profiling: Which parts of the code need most runtime as inputs grow larger?
Smart contracts: Bound execution cost (as “gas”, i.e., money)
More: see Section 1.1.2 of PhD thesis by Alicia Merayo Corcoba1

1A. Merayo Corcoba: Resource analysis of integer and abstract programs, PhD thesis, U Complutense Madrid, 2022

63/111

https://www.darpa.mil/program/space-time-analysis-for-cybersecurity
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Why Care About Computational Cost, Anyway?

Mobile devices: Bound energy usage
Security: Denial of Service attacks
−→ related DARPA project: Space/Time Analysis for Cybersecurity

https://www.darpa.mil/program/space-time-analysis-for-cybersecurity

Embedded devices: Bound memory usage
Specifications: What guarantees can we make to the API’s user?

“The size, isEmpty, get, set, iterator, and listIterator operations run in constant time. The
add operation runs in amortized constant time, that is, adding n elements requires O(n)
time. All of the other operations run in linear time (roughly speaking).”
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

−→ computational cost as a non-functional requirement!
Profiling: Which parts of the code need most runtime as inputs grow larger?
Smart contracts: Bound execution cost (as “gas”, i.e., money)
More: see Section 1.1.2 of PhD thesis by Alicia Merayo Corcoba1

1A. Merayo Corcoba: Resource analysis of integer and abstract programs, PhD thesis, U Complutense Madrid, 2022

63/111

https://www.darpa.mil/program/space-time-analysis-for-cybersecurity
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Why Care About Computational Cost, Anyway?

Mobile devices: Bound energy usage
Security: Denial of Service attacks
−→ related DARPA project: Space/Time Analysis for Cybersecurity

https://www.darpa.mil/program/space-time-analysis-for-cybersecurity

Embedded devices: Bound memory usage
Specifications: What guarantees can we make to the API’s user?
“The size, isEmpty, get, set, iterator, and listIterator operations run in constant time. The
add operation runs in amortized constant time, that is, adding n elements requires O(n)
time. All of the other operations run in linear time (roughly speaking).”
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

−→ computational cost as a non-functional requirement!

Profiling: Which parts of the code need most runtime as inputs grow larger?
Smart contracts: Bound execution cost (as “gas”, i.e., money)
More: see Section 1.1.2 of PhD thesis by Alicia Merayo Corcoba1

1A. Merayo Corcoba: Resource analysis of integer and abstract programs, PhD thesis, U Complutense Madrid, 2022

63/111

https://www.darpa.mil/program/space-time-analysis-for-cybersecurity
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Why Care About Computational Cost, Anyway?

Mobile devices: Bound energy usage
Security: Denial of Service attacks
−→ related DARPA project: Space/Time Analysis for Cybersecurity

https://www.darpa.mil/program/space-time-analysis-for-cybersecurity

Embedded devices: Bound memory usage
Specifications: What guarantees can we make to the API’s user?
“The size, isEmpty, get, set, iterator, and listIterator operations run in constant time. The
add operation runs in amortized constant time, that is, adding n elements requires O(n)
time. All of the other operations run in linear time (roughly speaking).”
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

−→ computational cost as a non-functional requirement!
Profiling: Which parts of the code need most runtime as inputs grow larger?

Smart contracts: Bound execution cost (as “gas”, i.e., money)
More: see Section 1.1.2 of PhD thesis by Alicia Merayo Corcoba1

1A. Merayo Corcoba: Resource analysis of integer and abstract programs, PhD thesis, U Complutense Madrid, 2022

63/111

https://www.darpa.mil/program/space-time-analysis-for-cybersecurity
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Why Care About Computational Cost, Anyway?

Mobile devices: Bound energy usage
Security: Denial of Service attacks
−→ related DARPA project: Space/Time Analysis for Cybersecurity

https://www.darpa.mil/program/space-time-analysis-for-cybersecurity

Embedded devices: Bound memory usage
Specifications: What guarantees can we make to the API’s user?
“The size, isEmpty, get, set, iterator, and listIterator operations run in constant time. The
add operation runs in amortized constant time, that is, adding n elements requires O(n)
time. All of the other operations run in linear time (roughly speaking).”
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

−→ computational cost as a non-functional requirement!
Profiling: Which parts of the code need most runtime as inputs grow larger?
Smart contracts: Bound execution cost (as “gas”, i.e., money)

More: see Section 1.1.2 of PhD thesis by Alicia Merayo Corcoba1

1A. Merayo Corcoba: Resource analysis of integer and abstract programs, PhD thesis, U Complutense Madrid, 2022

63/111

https://www.darpa.mil/program/space-time-analysis-for-cybersecurity
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Why Care About Computational Cost, Anyway?

Mobile devices: Bound energy usage
Security: Denial of Service attacks
−→ related DARPA project: Space/Time Analysis for Cybersecurity

https://www.darpa.mil/program/space-time-analysis-for-cybersecurity

Embedded devices: Bound memory usage
Specifications: What guarantees can we make to the API’s user?
“The size, isEmpty, get, set, iterator, and listIterator operations run in constant time. The
add operation runs in amortized constant time, that is, adding n elements requires O(n)
time. All of the other operations run in linear time (roughly speaking).”
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

−→ computational cost as a non-functional requirement!
Profiling: Which parts of the code need most runtime as inputs grow larger?
Smart contracts: Bound execution cost (as “gas”, i.e., money)
More: see Section 1.1.2 of PhD thesis by Alicia Merayo Corcoba1

1A. Merayo Corcoba: Resource analysis of integer and abstract programs, PhD thesis, U Complutense Madrid, 2022
63/111

https://www.darpa.mil/program/space-time-analysis-for-cybersecurity
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

Show Me Some Examples!

Question: Write a Python function that returns the sum 1 + 2 + · · ·+ n.

def sum1(n):
r = 0
i = 1
while i <= n:
r = r + i
i = i + 1

return r

def sum2(n):
r = 0
i = 1
while i <= n:
r = r + i

return r

def sum3(n):
r = 0
i = 1
while i <= n:

j = 0
while j < i:
r = r + 1
j = j + 1

i = i + 1
return r

def sum4(n):
return n*(n+1)//2

runtime in O(f(n)) means:
for an input of “size” n, the program needs at most about f(n) steps
the runtime is “of order f(n)”

64/111

Show Me Some Examples!

Question: Write a Python function that returns the sum 1 + 2 + · · ·+ n.

def sum1(n):
r = 0
i = 1
while i <= n:
r = r + i
i = i + 1

return r

def sum2(n):
r = 0
i = 1
while i <= n:
r = r + i

return r

def sum3(n):
r = 0
i = 1
while i <= n:

j = 0
while j < i:
r = r + 1
j = j + 1

i = i + 1
return r

def sum4(n):
return n*(n+1)//2

runtime in O(f(n)) means:
for an input of “size” n, the program needs at most about f(n) steps
the runtime is “of order f(n)”

64/111

Show Me Some Examples!

Question: Write a Python function that returns the sum 1 + 2 + · · ·+ n.

def sum1(n):
r = 0
i = 1
while i <= n:
r = r + i
i = i + 1

return r

def sum2(n):
r = 0
i = 1
while i <= n:
r = r + i

return r

def sum3(n):
r = 0
i = 1
while i <= n:

j = 0
while j < i:
r = r + 1
j = j + 1

i = i + 1
return r

def sum4(n):
return n*(n+1)//2

runtime in O(f(n)) means:
for an input of “size” n, the program needs at most about f(n) steps
the runtime is “of order f(n)”

64/111

Show Me Some Examples!

Question: Write a Python function that returns the sum 1 + 2 + · · ·+ n.

def sum1(n):
r = 0
i = 1
while i <= n:
r = r + i
i = i + 1

return r

def sum2(n):
r = 0
i = 1
while i <= n:
r = r + i

return r

def sum3(n):
r = 0
i = 1
while i <= n:

j = 0
while j < i:
r = r + 1
j = j + 1

i = i + 1
return r

def sum4(n):
return n*(n+1)//2

runtime in O(f(n)) means:
for an input of “size” n, the program needs at most about f(n) steps
the runtime is “of order f(n)”

O(n)

64/111

Show Me Some Examples!

Question: Write a Python function that returns the sum 1 + 2 + · · ·+ n.

def sum1(n):
r = 0
i = 1
while i <= n:
r = r + i
i = i + 1

return r

def sum2(n):
r = 0
i = 1
while i <= n:
r = r + i

return r

def sum3(n):
r = 0
i = 1
while i <= n:

j = 0
while j < i:
r = r + 1
j = j + 1

i = i + 1
return r

def sum4(n):
return n*(n+1)//2

runtime in O(f(n)) means:
for an input of “size” n, the program needs at most about f(n) steps
the runtime is “of order f(n)”

O(n)

64/111

Show Me Some Examples!

Question: Write a Python function that returns the sum 1 + 2 + · · ·+ n.

def sum1(n):
r = 0
i = 1
while i <= n:
r = r + i
i = i + 1

return r

def sum2(n):
r = 0
i = 1
while i <= n:
r = r + i

return r

def sum3(n):
r = 0
i = 1
while i <= n:

j = 0
while j < i:
r = r + 1
j = j + 1

i = i + 1
return r

def sum4(n):
return n*(n+1)//2

runtime in O(f(n)) means:
for an input of “size” n, the program needs at most about f(n) steps
the runtime is “of order f(n)”

O(n) O(∞)

64/111

Show Me Some Examples!

Question: Write a Python function that returns the sum 1 + 2 + · · ·+ n.

def sum1(n):
r = 0
i = 1
while i <= n:
r = r + i
i = i + 1

return r

def sum2(n):
r = 0
i = 1
while i <= n:
r = r + i

return r

def sum3(n):
r = 0
i = 1
while i <= n:
j = 0
while j < i:
r = r + 1
j = j + 1

i = i + 1
return r

def sum4(n):
return n*(n+1)//2

runtime in O(f(n)) means:
for an input of “size” n, the program needs at most about f(n) steps
the runtime is “of order f(n)”

O(n) O(∞)

64/111

Show Me Some Examples!

Question: Write a Python function that returns the sum 1 + 2 + · · ·+ n.

def sum1(n):
r = 0
i = 1
while i <= n:
r = r + i
i = i + 1

return r

def sum2(n):
r = 0
i = 1
while i <= n:
r = r + i

return r

def sum3(n):
r = 0
i = 1
while i <= n:
j = 0
while j < i:
r = r + 1
j = j + 1

i = i + 1
return r

def sum4(n):
return n*(n+1)//2

runtime in O(f(n)) means:
for an input of “size” n, the program needs at most about f(n) steps
the runtime is “of order f(n)”

O(n) O(∞) O(n2)

64/111

Show Me Some Examples!

Question: Write a Python function that returns the sum 1 + 2 + · · ·+ n.

def sum1(n):
r = 0
i = 1
while i <= n:
r = r + i
i = i + 1

return r

def sum2(n):
r = 0
i = 1
while i <= n:
r = r + i

return r

def sum3(n):
r = 0
i = 1
while i <= n:
j = 0
while j < i:
r = r + 1
j = j + 1

i = i + 1
return r

def sum4(n):
return n*(n+1)//2

runtime in O(f(n)) means:
for an input of “size” n, the program needs at most about f(n) steps
the runtime is “of order f(n)”

O(n) O(∞) O(n2)

64/111

Show Me Some Examples!

Question: Write a Python function that returns the sum 1 + 2 + · · ·+ n.

def sum1(n):
r = 0
i = 1
while i <= n:
r = r + i
i = i + 1

return r

def sum2(n):
r = 0
i = 1
while i <= n:
r = r + i

return r

def sum3(n):
r = 0
i = 1
while i <= n:
j = 0
while j < i:
r = r + 1
j = j + 1

i = i + 1
return r

def sum4(n):
return n*(n+1)//2

runtime in O(f(n)) means:
for an input of “size” n, the program needs at most about f(n) steps
the runtime is “of order f(n)”

O(n) O(∞) O(n2) O(1)

64/111

Is There a Tool that Finds such Bounds Automatically?

Fully automatic open-source tool KoAT:

https://github.com/s-falke/kittel-koat

Journal paper about the automated analysis implemented in KoAT:

M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, J. Giesl,
Analyzing runtime and size complexity of integer programs
ACM Transactions on Programming Languages and Systems 38 (4), pp. 1 – 50, 2016.

Experiments:

http://aprove.informatik.rwth-aachen.de/eval/IntegerComplexity-Journal

65/111

https://github.com/s-falke/kittel-koat
http://aprove.informatik.rwth-aachen.de/eval/IntegerComplexity-Journal

Is There a Tool that Finds such Bounds Automatically?

Fully automatic open-source tool KoAT:

https://github.com/s-falke/kittel-koat

Journal paper about the automated analysis implemented in KoAT:

M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, J. Giesl,
Analyzing runtime and size complexity of integer programs
ACM Transactions on Programming Languages and Systems 38 (4), pp. 1 – 50, 2016.

Experiments:

http://aprove.informatik.rwth-aachen.de/eval/IntegerComplexity-Journal

65/111

https://github.com/s-falke/kittel-koat
http://aprove.informatik.rwth-aachen.de/eval/IntegerComplexity-Journal

Is There a Tool that Finds such Bounds Automatically?

Fully automatic open-source tool KoAT:

https://github.com/s-falke/kittel-koat

Journal paper about the automated analysis implemented in KoAT:

M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, J. Giesl,
Analyzing runtime and size complexity of integer programs
ACM Transactions on Programming Languages and Systems 38 (4), pp. 1 – 50, 2016.

Experiments:

http://aprove.informatik.rwth-aachen.de/eval/IntegerComplexity-Journal

65/111

https://github.com/s-falke/kittel-koat
http://aprove.informatik.rwth-aachen.de/eval/IntegerComplexity-Journal

How Can We Make the Computer Do the Work for Us?

Idea: Countdown.
For each loop find a ranking function f on the variables:
expression that gets smaller each time round the loop, but never goes below 0.

⇒ Gives us a bound on the number of times we go through the loop
Termination analysis tools find ranking functions automatically!

def twoLoops1(x, z):
while x > 0:

x = x - 1

while z > 0:
z = z - 1

def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

while z > 0:
z = z - 1

Loop 1: ranking function x
Loop 2: ranking function z
⇒ runtime in O(x+ z)

Loop 1: ranking function x
Loop 2: ranking function z
⇒ runtime in ... oops.

Best runtime bound: O(x2 + z)

66/111

How Can We Make the Computer Do the Work for Us?

Idea: Countdown.
For each loop find a ranking function f on the variables:
expression that gets smaller each time round the loop, but never goes below 0.
⇒ Gives us a bound on the number of times we go through the loop

Termination analysis tools find ranking functions automatically!

def twoLoops1(x, z):
while x > 0:

x = x - 1

while z > 0:
z = z - 1

def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

while z > 0:
z = z - 1

Loop 1: ranking function x
Loop 2: ranking function z
⇒ runtime in O(x+ z)

Loop 1: ranking function x
Loop 2: ranking function z
⇒ runtime in ... oops.

Best runtime bound: O(x2 + z)

66/111

How Can We Make the Computer Do the Work for Us?

Idea: Countdown.
For each loop find a ranking function f on the variables:
expression that gets smaller each time round the loop, but never goes below 0.
⇒ Gives us a bound on the number of times we go through the loop
Termination analysis tools find ranking functions automatically!

def twoLoops1(x, z):
while x > 0:

x = x - 1

while z > 0:
z = z - 1

def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

while z > 0:
z = z - 1

Loop 1: ranking function x
Loop 2: ranking function z
⇒ runtime in O(x+ z)

Loop 1: ranking function x
Loop 2: ranking function z
⇒ runtime in ... oops.

Best runtime bound: O(x2 + z)

66/111

How Can We Make the Computer Do the Work for Us?

Idea: Countdown.
For each loop find a ranking function f on the variables:
expression that gets smaller each time round the loop, but never goes below 0.
⇒ Gives us a bound on the number of times we go through the loop
Termination analysis tools find ranking functions automatically!

def twoLoops1(x, z):
while x > 0:
x = x - 1

while z > 0:
z = z - 1

def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

while z > 0:
z = z - 1

Loop 1: ranking function x
Loop 2: ranking function z
⇒ runtime in O(x+ z)

Loop 1: ranking function x
Loop 2: ranking function z
⇒ runtime in ... oops.

Best runtime bound: O(x2 + z)

66/111

How Can We Make the Computer Do the Work for Us?

Idea: Countdown.
For each loop find a ranking function f on the variables:
expression that gets smaller each time round the loop, but never goes below 0.
⇒ Gives us a bound on the number of times we go through the loop
Termination analysis tools find ranking functions automatically!

def twoLoops1(x, z):
while x > 0:
x = x - 1

while z > 0:
z = z - 1

def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

while z > 0:
z = z - 1

Loop 1: ranking function x

Loop 2: ranking function z
⇒ runtime in O(x+ z)

Loop 1: ranking function x
Loop 2: ranking function z
⇒ runtime in ... oops.

Best runtime bound: O(x2 + z)

66/111

How Can We Make the Computer Do the Work for Us?

Idea: Countdown.
For each loop find a ranking function f on the variables:
expression that gets smaller each time round the loop, but never goes below 0.
⇒ Gives us a bound on the number of times we go through the loop
Termination analysis tools find ranking functions automatically!

def twoLoops1(x, z):
while x > 0:
x = x - 1

while z > 0:
z = z - 1

def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

while z > 0:
z = z - 1

Loop 1: ranking function x
Loop 2: ranking function z

⇒ runtime in O(x+ z)

Loop 1: ranking function x
Loop 2: ranking function z
⇒ runtime in ... oops.

Best runtime bound: O(x2 + z)

66/111

How Can We Make the Computer Do the Work for Us?

Idea: Countdown.
For each loop find a ranking function f on the variables:
expression that gets smaller each time round the loop, but never goes below 0.
⇒ Gives us a bound on the number of times we go through the loop
Termination analysis tools find ranking functions automatically!

def twoLoops1(x, z):
while x > 0:
x = x - 1

while z > 0:
z = z - 1

def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

while z > 0:
z = z - 1

Loop 1: ranking function x
Loop 2: ranking function z
⇒ runtime in O(x+ z)

Loop 1: ranking function x
Loop 2: ranking function z
⇒ runtime in ... oops.

Best runtime bound: O(x2 + z)

66/111

How Can We Make the Computer Do the Work for Us?

Idea: Countdown.
For each loop find a ranking function f on the variables:
expression that gets smaller each time round the loop, but never goes below 0.
⇒ Gives us a bound on the number of times we go through the loop
Termination analysis tools find ranking functions automatically!

def twoLoops1(x, z):
while x > 0:
x = x - 1

while z > 0:
z = z - 1

def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

while z > 0:
z = z - 1

Loop 1: ranking function x
Loop 2: ranking function z
⇒ runtime in O(x+ z)

Loop 1: ranking function x
Loop 2: ranking function z
⇒ runtime in ... oops.

Best runtime bound: O(x2 + z)

66/111

How Can We Make the Computer Do the Work for Us?

Idea: Countdown.
For each loop find a ranking function f on the variables:
expression that gets smaller each time round the loop, but never goes below 0.
⇒ Gives us a bound on the number of times we go through the loop
Termination analysis tools find ranking functions automatically!

def twoLoops1(x, z):
while x > 0:
x = x - 1

while z > 0:
z = z - 1

def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

while z > 0:
z = z - 1

Loop 1: ranking function x
Loop 2: ranking function z
⇒ runtime in O(x+ z)

Loop 1: ranking function x

Loop 2: ranking function z
⇒ runtime in ... oops.

Best runtime bound: O(x2 + z)

66/111

How Can We Make the Computer Do the Work for Us?

Idea: Countdown.
For each loop find a ranking function f on the variables:
expression that gets smaller each time round the loop, but never goes below 0.
⇒ Gives us a bound on the number of times we go through the loop
Termination analysis tools find ranking functions automatically!

def twoLoops1(x, z):
while x > 0:
x = x - 1

while z > 0:
z = z - 1

def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

while z > 0:
z = z - 1

Loop 1: ranking function x
Loop 2: ranking function z
⇒ runtime in O(x+ z)

Loop 1: ranking function x
Loop 2: ranking function z

⇒ runtime in ... oops.
Best runtime bound: O(x2 + z)

66/111

How Can We Make the Computer Do the Work for Us?

Idea: Countdown.
For each loop find a ranking function f on the variables:
expression that gets smaller each time round the loop, but never goes below 0.
⇒ Gives us a bound on the number of times we go through the loop
Termination analysis tools find ranking functions automatically!

def twoLoops1(x, z):
while x > 0:
x = x - 1

while z > 0:
z = z - 1

def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

while z > 0:
z = z - 1

Loop 1: ranking function x
Loop 2: ranking function z
⇒ runtime in O(x+ z)

Loop 1: ranking function x
Loop 2: ranking function z
⇒ runtime in

... oops.
Best runtime bound: O(x2 + z)

66/111

How Can We Make the Computer Do the Work for Us?

Idea: Countdown.
For each loop find a ranking function f on the variables:
expression that gets smaller each time round the loop, but never goes below 0.
⇒ Gives us a bound on the number of times we go through the loop
Termination analysis tools find ranking functions automatically!

def twoLoops1(x, z):
while x > 0:
x = x - 1

while z > 0:
z = z - 1

def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

while z > 0:
z = z - 1

Loop 1: ranking function x
Loop 2: ranking function z
⇒ runtime in O(x+ z)

Loop 1: ranking function x
Loop 2: ranking function z
⇒ runtime in ... oops.

Best runtime bound: O(x2 + z)

66/111

How Can We Make the Computer Do the Work for Us?

Idea: Countdown.
For each loop find a ranking function f on the variables:
expression that gets smaller each time round the loop, but never goes below 0.
⇒ Gives us a bound on the number of times we go through the loop
Termination analysis tools find ranking functions automatically!

def twoLoops1(x, z):
while x > 0:
x = x - 1

while z > 0:
z = z - 1

def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

while z > 0:
z = z - 1

Loop 1: ranking function x
Loop 2: ranking function z
⇒ runtime in O(x+ z)

Loop 1: ranking function x
Loop 2: ranking function z
⇒ runtime in ... oops.

Best runtime bound: O(x2 + z)
66/111

How Can we Fix our Approach?

def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

while z > 0:
z = z - 1

Loop 1: ranking function f1(x, z) = x

Loop 2: ranking function f2(x, z) = z

Problem:
Loop 1 writes to z. In Loop 2, z is much larger than its initial value z0!
Now an oracle tells us:

Oh, when you reach Loop 2, z is at most z0 + x20.
So:

1 we can make at most f2(x, z) = z steps in Loop 2
2 when we enter Loop 2, we know z ≤ z0 + x20

⇒ f2(..., z0 + x20) = z0 + x20 gives runtime bound for Loop 2: O(z0 + x20)

Data size influences runtime.

67/111

How Can we Fix our Approach?

def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

while z > 0:
z = z - 1

Loop 1: ranking function f1(x, z) = x

Loop 2: ranking function f2(x, z) = z

Problem:
Loop 1 writes to z. In Loop 2, z is much larger than its initial value z0!

Now an oracle tells us:

Oh, when you reach Loop 2, z is at most z0 + x20.
So:

1 we can make at most f2(x, z) = z steps in Loop 2
2 when we enter Loop 2, we know z ≤ z0 + x20

⇒ f2(..., z0 + x20) = z0 + x20 gives runtime bound for Loop 2: O(z0 + x20)

Data size influences runtime.

67/111

How Can we Fix our Approach?

def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

while z > 0:
z = z - 1

Loop 1: ranking function f1(x, z) = x

Loop 2: ranking function f2(x, z) = z

Problem:
Loop 1 writes to z. In Loop 2, z is much larger than its initial value z0!
Now an oracle tells us:

Oh, when you reach Loop 2, z is at most z0 + x20.
So:

1 we can make at most f2(x, z) = z steps in Loop 2
2 when we enter Loop 2, we know z ≤ z0 + x20

⇒ f2(..., z0 + x20) = z0 + x20 gives runtime bound for Loop 2: O(z0 + x20)

Data size influences runtime.

67/111

How Can we Fix our Approach?

def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

while z > 0:
z = z - 1

Loop 1: ranking function f1(x, z) = x

Loop 2: ranking function f2(x, z) = z

Problem:
Loop 1 writes to z. In Loop 2, z is much larger than its initial value z0!
Now an oracle tells us:

Oh, when you reach Loop 2, z is at most z0 + x20.

So:
1 we can make at most f2(x, z) = z steps in Loop 2
2 when we enter Loop 2, we know z ≤ z0 + x20

⇒ f2(..., z0 + x20) = z0 + x20 gives runtime bound for Loop 2: O(z0 + x20)

Data size influences runtime.

67/111

How Can we Fix our Approach?

def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

while z > 0:
z = z - 1

Loop 1: ranking function f1(x, z) = x

Loop 2: ranking function f2(x, z) = z

Problem:
Loop 1 writes to z. In Loop 2, z is much larger than its initial value z0!
Now an oracle tells us:

Oh, when you reach Loop 2, z is at most z0 + x20.
So:

1 we can make at most f2(x, z) = z steps in Loop 2

2 when we enter Loop 2, we know z ≤ z0 + x20

⇒ f2(..., z0 + x20) = z0 + x20 gives runtime bound for Loop 2: O(z0 + x20)

Data size influences runtime.

67/111

How Can we Fix our Approach?

def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

while z > 0:
z = z - 1

Loop 1: ranking function f1(x, z) = x

Loop 2: ranking function f2(x, z) = z

Problem:
Loop 1 writes to z. In Loop 2, z is much larger than its initial value z0!
Now an oracle tells us:

Oh, when you reach Loop 2, z is at most z0 + x20.
So:

1 we can make at most f2(x, z) = z steps in Loop 2
2 when we enter Loop 2, we know z ≤ z0 + x20

⇒ f2(..., z0 + x20) = z0 + x20 gives runtime bound for Loop 2: O(z0 + x20)

Data size influences runtime.

67/111

How Can we Fix our Approach?

def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

while z > 0:
z = z - 1

Loop 1: ranking function f1(x, z) = x

Loop 2: ranking function f2(x, z) = z

Problem:
Loop 1 writes to z. In Loop 2, z is much larger than its initial value z0!
Now an oracle tells us:

Oh, when you reach Loop 2, z is at most z0 + x20.
So:

1 we can make at most f2(x, z) = z steps in Loop 2
2 when we enter Loop 2, we know z ≤ z0 + x20

⇒ f2(..., z0 + x20) = z0 + x20

gives runtime bound for Loop 2: O(z0 + x20)

Data size influences runtime.

67/111

How Can we Fix our Approach?

def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

while z > 0:
z = z - 1

Loop 1: ranking function f1(x, z) = x

Loop 2: ranking function f2(x, z) = z

Problem:
Loop 1 writes to z. In Loop 2, z is much larger than its initial value z0!
Now an oracle tells us:

Oh, when you reach Loop 2, z is at most z0 + x20.
So:

1 we can make at most f2(x, z) = z steps in Loop 2
2 when we enter Loop 2, we know z ≤ z0 + x20

⇒ f2(..., z0 + x20) = z0 + x20 gives runtime bound for Loop 2: O(z0 + x20)

Data size influences runtime.

67/111

How Can we Fix our Approach?

def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

while z > 0:
z = z - 1

Loop 1: ranking function f1(x, z) = x

Loop 2: ranking function f2(x, z) = z

Problem:
Loop 1 writes to z. In Loop 2, z is much larger than its initial value z0!
Now an oracle tells us:

Oh, when you reach Loop 2, z is at most z0 + x20.
So:

1 we can make at most f2(x, z) = z steps in Loop 2
2 when we enter Loop 2, we know z ≤ z0 + x20

⇒ f2(..., z0 + x20) = z0 + x20 gives runtime bound for Loop 2: O(z0 + x20)

Data size influences runtime.
67/111

How Can We Build such an Oracle for Size Bounds?
def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

(*)
while z > 0:
z = z - 1

Loop 1: ranking function f1(x, z) = x

Loop 2: ranking function f2(x, z) = z

Wanted: automatic oracle to tell how big z can be at (*).
We know:

1 each time round Loop 1, x goes down by 1, from x0 until 0
⇒ in Loop 1: x ≤ x0

2 each time round Loop 1, z goes up by x (≤ x0)
3 we run through Loop 1 at most f1(x0, z0) = x0 times

⇒ at (*), z will be at most z0 + x0 · x0 = z0 + x20 !

Runtime influences data size.

68/111

How Can We Build such an Oracle for Size Bounds?
def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

(*)
while z > 0:
z = z - 1

Loop 1: ranking function f1(x, z) = x

Loop 2: ranking function f2(x, z) = z

Wanted: automatic oracle to tell how big z can be at (*).

We know:
1 each time round Loop 1, x goes down by 1, from x0 until 0
⇒ in Loop 1: x ≤ x0

2 each time round Loop 1, z goes up by x (≤ x0)
3 we run through Loop 1 at most f1(x0, z0) = x0 times

⇒ at (*), z will be at most z0 + x0 · x0 = z0 + x20 !

Runtime influences data size.

68/111

How Can We Build such an Oracle for Size Bounds?
def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

(*)
while z > 0:
z = z - 1

Loop 1: ranking function f1(x, z) = x

Loop 2: ranking function f2(x, z) = z

Wanted: automatic oracle to tell how big z can be at (*).
We know:

1 each time round Loop 1, x goes down by 1, from x0 until 0

⇒ in Loop 1: x ≤ x0
2 each time round Loop 1, z goes up by x (≤ x0)
3 we run through Loop 1 at most f1(x0, z0) = x0 times

⇒ at (*), z will be at most z0 + x0 · x0 = z0 + x20 !

Runtime influences data size.

68/111

How Can We Build such an Oracle for Size Bounds?
def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

(*)
while z > 0:
z = z - 1

Loop 1: ranking function f1(x, z) = x

Loop 2: ranking function f2(x, z) = z

Wanted: automatic oracle to tell how big z can be at (*).
We know:

1 each time round Loop 1, x goes down by 1, from x0 until 0
⇒ in Loop 1: x ≤ x0

2 each time round Loop 1, z goes up by x (≤ x0)
3 we run through Loop 1 at most f1(x0, z0) = x0 times

⇒ at (*), z will be at most z0 + x0 · x0 = z0 + x20 !

Runtime influences data size.

68/111

How Can We Build such an Oracle for Size Bounds?
def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

(*)
while z > 0:
z = z - 1

Loop 1: ranking function f1(x, z) = x

Loop 2: ranking function f2(x, z) = z

Wanted: automatic oracle to tell how big z can be at (*).
We know:

1 each time round Loop 1, x goes down by 1, from x0 until 0
⇒ in Loop 1: x ≤ x0

2 each time round Loop 1, z goes up by x (≤ x0)

3 we run through Loop 1 at most f1(x0, z0) = x0 times

⇒ at (*), z will be at most z0 + x0 · x0 = z0 + x20 !

Runtime influences data size.

68/111

How Can We Build such an Oracle for Size Bounds?
def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

(*)
while z > 0:
z = z - 1

Loop 1: ranking function f1(x, z) = x

Loop 2: ranking function f2(x, z) = z

Wanted: automatic oracle to tell how big z can be at (*).
We know:

1 each time round Loop 1, x goes down by 1, from x0 until 0
⇒ in Loop 1: x ≤ x0

2 each time round Loop 1, z goes up by x (≤ x0)
3 we run through Loop 1 at most f1(x0, z0) = x0 times

⇒ at (*), z will be at most z0 + x0 · x0 = z0 + x20 !

Runtime influences data size.

68/111

How Can We Build such an Oracle for Size Bounds?
def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

(*)
while z > 0:
z = z - 1

Loop 1: ranking function f1(x, z) = x

Loop 2: ranking function f2(x, z) = z

Wanted: automatic oracle to tell how big z can be at (*).
We know:

1 each time round Loop 1, x goes down by 1, from x0 until 0
⇒ in Loop 1: x ≤ x0

2 each time round Loop 1, z goes up by x (≤ x0)
3 we run through Loop 1 at most f1(x0, z0) = x0 times

⇒ at (*), z will be at most z0 + x0 · x0 = z0 + x20 !

Runtime influences data size.

68/111

How Can We Build such an Oracle for Size Bounds?
def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

(*)
while z > 0:
z = z - 1

Loop 1: ranking function f1(x, z) = x

Loop 2: ranking function f2(x, z) = z

Wanted: automatic oracle to tell how big z can be at (*).
We know:

1 each time round Loop 1, x goes down by 1, from x0 until 0
⇒ in Loop 1: x ≤ x0

2 each time round Loop 1, z goes up by x (≤ x0)
3 we run through Loop 1 at most f1(x0, z0) = x0 times

⇒ at (*), z will be at most z0 + x0 · x0 = z0 + x20 !

Runtime influences data size.
68/111

Are There Other Techniques and Tools?
Using techniques from termination proving: ABC2, AProVE, CoFloCo3, COSTA/PUBS4,
Loopus5, Rank6, TcT7, . . .

Using invariant generation: SPEED8

Using abstract interpretation: Infer9

Using type-based amortised analysis:10 RAML11, . . .

2R. Blanc, T. Henzinger, L. Kovács: ABC: Algebraic Bound Computation for Loops, LPAR (Dakar) ’10
3A. Flores-Montoya and R. Hähnle: Resource Analysis of Complex Programs with Cost Equations, APLAS ’14
4E. Albert, P. Arenas, S. Genaim, G. Puebla, D.Zanardini: Cost analysis of object-oriented bytecode programs,

TCS ’12
5M. Sinn, F. Zuleger, H. Veith: A Simple and Scalable Static Analysis for Bound Analysis and Amortized

Complexity Analysis, CAV ’14
6C. Alias, A. Darte, P. Feautrier, L. Gonnord: Multi-dimensional Rankings, Program Termination, and Complexity

Bounds of Flowchart Programs, SAS ’10
7M. Avanzini, G. Moser, M. Schaper: TcT: Tyrolean Complexity Tool, TACAS ’16

8S. Gulwani, K. Mehro, T. Chilimbi: SPEED: precise and efficient static estimation of program computational
complexity, POPL ’09

9E. Çiçek, M. Bouaziz, S. Cho, D. Distefano: Static Resource Analysis at Scale (Extended Abstract), SAS ’20
10J. Hoffmann, S. Jost: Two decades of automatic amortized resource analysis, MSCS ’22
11J. Hoffmann, K. Aehlig, M. Hofmann: Resource Aware ML, CAV ’12

69/111

Are There Other Techniques and Tools?
Using techniques from termination proving: ABC2, AProVE, CoFloCo3, COSTA/PUBS4,
Loopus5, Rank6, TcT7, . . .
Using invariant generation: SPEED8

Using abstract interpretation: Infer9

Using type-based amortised analysis:10 RAML11, . . .

2R. Blanc, T. Henzinger, L. Kovács: ABC: Algebraic Bound Computation for Loops, LPAR (Dakar) ’10
3A. Flores-Montoya and R. Hähnle: Resource Analysis of Complex Programs with Cost Equations, APLAS ’14
4E. Albert, P. Arenas, S. Genaim, G. Puebla, D.Zanardini: Cost analysis of object-oriented bytecode programs,

TCS ’12
5M. Sinn, F. Zuleger, H. Veith: A Simple and Scalable Static Analysis for Bound Analysis and Amortized

Complexity Analysis, CAV ’14
6C. Alias, A. Darte, P. Feautrier, L. Gonnord: Multi-dimensional Rankings, Program Termination, and Complexity

Bounds of Flowchart Programs, SAS ’10
7M. Avanzini, G. Moser, M. Schaper: TcT: Tyrolean Complexity Tool, TACAS ’16
8S. Gulwani, K. Mehro, T. Chilimbi: SPEED: precise and efficient static estimation of program computational

complexity, POPL ’09

9E. Çiçek, M. Bouaziz, S. Cho, D. Distefano: Static Resource Analysis at Scale (Extended Abstract), SAS ’20
10J. Hoffmann, S. Jost: Two decades of automatic amortized resource analysis, MSCS ’22
11J. Hoffmann, K. Aehlig, M. Hofmann: Resource Aware ML, CAV ’12

69/111

Are There Other Techniques and Tools?
Using techniques from termination proving: ABC2, AProVE, CoFloCo3, COSTA/PUBS4,
Loopus5, Rank6, TcT7, . . .
Using invariant generation: SPEED8

Using abstract interpretation: Infer9

Using type-based amortised analysis:10 RAML11, . . .

2R. Blanc, T. Henzinger, L. Kovács: ABC: Algebraic Bound Computation for Loops, LPAR (Dakar) ’10
3A. Flores-Montoya and R. Hähnle: Resource Analysis of Complex Programs with Cost Equations, APLAS ’14
4E. Albert, P. Arenas, S. Genaim, G. Puebla, D.Zanardini: Cost analysis of object-oriented bytecode programs,

TCS ’12
5M. Sinn, F. Zuleger, H. Veith: A Simple and Scalable Static Analysis for Bound Analysis and Amortized

Complexity Analysis, CAV ’14
6C. Alias, A. Darte, P. Feautrier, L. Gonnord: Multi-dimensional Rankings, Program Termination, and Complexity

Bounds of Flowchart Programs, SAS ’10
7M. Avanzini, G. Moser, M. Schaper: TcT: Tyrolean Complexity Tool, TACAS ’16
8S. Gulwani, K. Mehro, T. Chilimbi: SPEED: precise and efficient static estimation of program computational

complexity, POPL ’09
9E. Çiçek, M. Bouaziz, S. Cho, D. Distefano: Static Resource Analysis at Scale (Extended Abstract), SAS ’20

10J. Hoffmann, S. Jost: Two decades of automatic amortized resource analysis, MSCS ’22
11J. Hoffmann, K. Aehlig, M. Hofmann: Resource Aware ML, CAV ’12

69/111

Are There Other Techniques and Tools?
Using techniques from termination proving: ABC2, AProVE, CoFloCo3, COSTA/PUBS4,
Loopus5, Rank6, TcT7, . . .
Using invariant generation: SPEED8

Using abstract interpretation: Infer9

Using type-based amortised analysis:10 RAML11, . . .
2R. Blanc, T. Henzinger, L. Kovács: ABC: Algebraic Bound Computation for Loops, LPAR (Dakar) ’10
3A. Flores-Montoya and R. Hähnle: Resource Analysis of Complex Programs with Cost Equations, APLAS ’14
4E. Albert, P. Arenas, S. Genaim, G. Puebla, D.Zanardini: Cost analysis of object-oriented bytecode programs,

TCS ’12
5M. Sinn, F. Zuleger, H. Veith: A Simple and Scalable Static Analysis for Bound Analysis and Amortized

Complexity Analysis, CAV ’14
6C. Alias, A. Darte, P. Feautrier, L. Gonnord: Multi-dimensional Rankings, Program Termination, and Complexity

Bounds of Flowchart Programs, SAS ’10
7M. Avanzini, G. Moser, M. Schaper: TcT: Tyrolean Complexity Tool, TACAS ’16
8S. Gulwani, K. Mehro, T. Chilimbi: SPEED: precise and efficient static estimation of program computational

complexity, POPL ’09
9E. Çiçek, M. Bouaziz, S. Cho, D. Distefano: Static Resource Analysis at Scale (Extended Abstract), SAS ’20

10J. Hoffmann, S. Jost: Two decades of automatic amortized resource analysis, MSCS ’22
11J. Hoffmann, K. Aehlig, M. Hofmann: Resource Aware ML, CAV ’12

69/111

Current Developments

Precise handling of loops with computable complexity in the KoAT approach12

Inference of lower bounds for worst-case runtime complexity13: LoAT14

Cost analysis for Java programs via Integer Transition Systems15

Cost analysis for probabilistic programs161718

12N. Lommen, F. Meyer, J. Giesl: Automatic Complexity Analysis of Integer Programs via Triangular Weakly
Non-Linear Loops, IJCAR ’22

13F. Frohn, M. Naaf, M. Brockschmidt, J. Giesl: Inferring Lower Runtime Bounds for Integer Programs,
TOPLAS ’20

14F. Frohn, J. Giesl: Proving Non-Termination and Lower Runtime Bounds with LoAT (System Description),
IJCAR ’22

15F. Frohn, J. Giesl: Complexity Analysis for Java with AProVE, iFM ’17
16P. Wang, H. Fu, A. Goharshady, K. Chatterjee, X. Qin, W. Shi: Cost analysis of nondeterministic probabilistic

programs, PLDI ’19
17F. Meyer, M. Hark, J. Giesl: Inferring Expected Runtimes of Probabilistic Integer Programs Using Expected Sizes,

TACAS ’21
18L. Leutgeb, G. Moser, F. Zuleger: Automated Expected Amortised Cost Analysis of Probabilistic Data Structures,

CAV ’22

70/111

Current Developments

Precise handling of loops with computable complexity in the KoAT approach12

Inference of lower bounds for worst-case runtime complexity13: LoAT14

Cost analysis for Java programs via Integer Transition Systems15

Cost analysis for probabilistic programs161718

12N. Lommen, F. Meyer, J. Giesl: Automatic Complexity Analysis of Integer Programs via Triangular Weakly
Non-Linear Loops, IJCAR ’22

13F. Frohn, M. Naaf, M. Brockschmidt, J. Giesl: Inferring Lower Runtime Bounds for Integer Programs,
TOPLAS ’20

14F. Frohn, J. Giesl: Proving Non-Termination and Lower Runtime Bounds with LoAT (System Description),
IJCAR ’22

15F. Frohn, J. Giesl: Complexity Analysis for Java with AProVE, iFM ’17
16P. Wang, H. Fu, A. Goharshady, K. Chatterjee, X. Qin, W. Shi: Cost analysis of nondeterministic probabilistic

programs, PLDI ’19
17F. Meyer, M. Hark, J. Giesl: Inferring Expected Runtimes of Probabilistic Integer Programs Using Expected Sizes,

TACAS ’21
18L. Leutgeb, G. Moser, F. Zuleger: Automated Expected Amortised Cost Analysis of Probabilistic Data Structures,

CAV ’22

70/111

Current Developments

Precise handling of loops with computable complexity in the KoAT approach12

Inference of lower bounds for worst-case runtime complexity13: LoAT14

Cost analysis for Java programs via Integer Transition Systems15

Cost analysis for probabilistic programs161718

12N. Lommen, F. Meyer, J. Giesl: Automatic Complexity Analysis of Integer Programs via Triangular Weakly
Non-Linear Loops, IJCAR ’22

13F. Frohn, M. Naaf, M. Brockschmidt, J. Giesl: Inferring Lower Runtime Bounds for Integer Programs,
TOPLAS ’20

14F. Frohn, J. Giesl: Proving Non-Termination and Lower Runtime Bounds with LoAT (System Description),
IJCAR ’22

15F. Frohn, J. Giesl: Complexity Analysis for Java with AProVE, iFM ’17

16P. Wang, H. Fu, A. Goharshady, K. Chatterjee, X. Qin, W. Shi: Cost analysis of nondeterministic probabilistic
programs, PLDI ’19

17F. Meyer, M. Hark, J. Giesl: Inferring Expected Runtimes of Probabilistic Integer Programs Using Expected Sizes,
TACAS ’21

18L. Leutgeb, G. Moser, F. Zuleger: Automated Expected Amortised Cost Analysis of Probabilistic Data Structures,
CAV ’22

70/111

Current Developments

Precise handling of loops with computable complexity in the KoAT approach12

Inference of lower bounds for worst-case runtime complexity13: LoAT14

Cost analysis for Java programs via Integer Transition Systems15

Cost analysis for probabilistic programs161718

12N. Lommen, F. Meyer, J. Giesl: Automatic Complexity Analysis of Integer Programs via Triangular Weakly
Non-Linear Loops, IJCAR ’22

13F. Frohn, M. Naaf, M. Brockschmidt, J. Giesl: Inferring Lower Runtime Bounds for Integer Programs,
TOPLAS ’20

14F. Frohn, J. Giesl: Proving Non-Termination and Lower Runtime Bounds with LoAT (System Description),
IJCAR ’22

15F. Frohn, J. Giesl: Complexity Analysis for Java with AProVE, iFM ’17
16P. Wang, H. Fu, A. Goharshady, K. Chatterjee, X. Qin, W. Shi: Cost analysis of nondeterministic probabilistic

programs, PLDI ’19
17F. Meyer, M. Hark, J. Giesl: Inferring Expected Runtimes of Probabilistic Integer Programs Using Expected Sizes,

TACAS ’21
18L. Leutgeb, G. Moser, F. Zuleger: Automated Expected Amortised Cost Analysis of Probabilistic Data Structures,

CAV ’22
70/111

Complexity of Integer Programs: What to Take Home?

Key insights:

Data size influences runtime
Runtime influences data size
Other influences minor

Solution:
Alternating size/runtime analysis
Modularity by using only these results

71/111

Complexity of Integer Programs: What to Take Home?

Key insights:

Data size influences runtime
Runtime influences data size
Other influences minor

Solution:
Alternating size/runtime analysis
Modularity by using only these results

71/111

II.2 Complexity Analysis for Term Rewriting

72/111

What is Term Rewriting?

(1) Core functional programming language without many restrictions (and features) of “real” FP:

first-order (usually)
no fixed evaluation strategy
untyped
no pre-defined data structures (integers, arrays, . . .)

(2) Syntactic approach for reasoning in equational first-order logic

Example (Term Rewrite System (TRS) R)
double(0) −→ 0

double(s(x)) −→ s(s(double(x))

Compute “double of 3 is 6”:
double(s(s(s(0))))

−→R s(s(double(s(s(0)))))

−→R s(s(s(s(double(s(0))))))

−→R s(s(s(s(s(s(double(0)))))))

−→R s(s(s(s(s(s(0))))))

in 4 steps with −→R

73/111

What is Term Rewriting?

(1) Core functional programming language without many restrictions (and features) of “real” FP:
first-order (usually)
no fixed evaluation strategy
untyped
no pre-defined data structures (integers, arrays, . . .)

(2) Syntactic approach for reasoning in equational first-order logic

Example (Term Rewrite System (TRS) R)
double(0) −→ 0

double(s(x)) −→ s(s(double(x))

Compute “double of 3 is 6”:
double(s(s(s(0))))

−→R s(s(double(s(s(0)))))

−→R s(s(s(s(double(s(0))))))

−→R s(s(s(s(s(s(double(0)))))))

−→R s(s(s(s(s(s(0))))))

in 4 steps with −→R

73/111

What is Term Rewriting?

(1) Core functional programming language without many restrictions (and features) of “real” FP:
first-order (usually)
no fixed evaluation strategy
untyped
no pre-defined data structures (integers, arrays, . . .)

(2) Syntactic approach for reasoning in equational first-order logic

Example (Term Rewrite System (TRS) R)
double(0) −→ 0

double(s(x)) −→ s(s(double(x))

Compute “double of 3 is 6”:
double(s(s(s(0))))

−→R s(s(double(s(s(0)))))

−→R s(s(s(s(double(s(0))))))

−→R s(s(s(s(s(s(double(0)))))))

−→R s(s(s(s(s(s(0))))))

in 4 steps with −→R

73/111

What is Term Rewriting?

(1) Core functional programming language without many restrictions (and features) of “real” FP:
first-order (usually)
no fixed evaluation strategy
untyped
no pre-defined data structures (integers, arrays, . . .)

(2) Syntactic approach for reasoning in equational first-order logic

Example (Term Rewrite System (TRS) R)
double(0) −→ 0

double(s(x)) −→ s(s(double(x))

Compute “double of 3 is 6”:
double(s(s(s(0))))

−→R s(s(double(s(s(0)))))

−→R s(s(s(s(double(s(0))))))

−→R s(s(s(s(s(s(double(0)))))))

−→R s(s(s(s(s(s(0))))))

in 4 steps with −→R

73/111

What is Term Rewriting?

(1) Core functional programming language without many restrictions (and features) of “real” FP:
first-order (usually)
no fixed evaluation strategy
untyped
no pre-defined data structures (integers, arrays, . . .)

(2) Syntactic approach for reasoning in equational first-order logic

Example (Term Rewrite System (TRS) R)
double(0) −→ 0

double(s(x)) −→ s(s(double(x))

Compute “double of 3 is 6”:
double(s(s(s(0))))

−→R s(s(double(s(s(0)))))

−→R s(s(s(s(double(s(0))))))

−→R s(s(s(s(s(s(double(0)))))))

−→R s(s(s(s(s(s(0))))))

in 4 steps with −→R

73/111

What is Term Rewriting?

(1) Core functional programming language without many restrictions (and features) of “real” FP:
first-order (usually)
no fixed evaluation strategy
untyped
no pre-defined data structures (integers, arrays, . . .)

(2) Syntactic approach for reasoning in equational first-order logic

Example (Term Rewrite System (TRS) R)
double(0) −→ 0

double(s(x)) −→ s(s(double(x))

Compute “double of 3 is 6”:
double(s(s(s(0))))

−→R s(s(double(s(s(0)))))

−→R s(s(s(s(double(s(0))))))

−→R s(s(s(s(s(s(double(0)))))))

−→R s(s(s(s(s(s(0))))))

in 4 steps with −→R

73/111

What is Term Rewriting?

(1) Core functional programming language without many restrictions (and features) of “real” FP:
first-order (usually)
no fixed evaluation strategy
untyped
no pre-defined data structures (integers, arrays, . . .)

(2) Syntactic approach for reasoning in equational first-order logic

Example (Term Rewrite System (TRS) R)
double(0) −→ 0

double(s(x)) −→ s(s(double(x))

Compute “double of 3 is 6”:
double(s(s(s(0))))

−→R s(s(double(s(s(0)))))

−→R s(s(s(s(double(s(0))))))

−→R s(s(s(s(s(s(double(0)))))))

−→R s(s(s(s(s(s(0))))))

in 4 steps with −→R

73/111

What is Term Rewriting?

(1) Core functional programming language without many restrictions (and features) of “real” FP:
first-order (usually)
no fixed evaluation strategy
untyped
no pre-defined data structures (integers, arrays, . . .)

(2) Syntactic approach for reasoning in equational first-order logic

Example (Term Rewrite System (TRS) R)
double(0) −→ 0

double(s(x)) −→ s(s(double(x))

Compute “double of 3 is 6”:
double(s(s(s(0))))

−→R s(s(double(s(s(0)))))

−→R s(s(s(s(double(s(0))))))

−→R s(s(s(s(s(s(double(0)))))))

−→R s(s(s(s(s(s(0))))))

in 4 steps with −→R

73/111

What is Term Rewriting?

(1) Core functional programming language without many restrictions (and features) of “real” FP:
first-order (usually)
no fixed evaluation strategy
untyped
no pre-defined data structures (integers, arrays, . . .)

(2) Syntactic approach for reasoning in equational first-order logic

Example (Term Rewrite System (TRS) R)
double(0) −→ 0

double(s(x)) −→ s(s(double(x))

Compute “double of 3 is 6”:
double(s(s(s(0))))

−→R s(s(double(s(s(0)))))

−→R s(s(s(s(double(s(0))))))

−→R s(s(s(s(s(s(double(0)))))))

−→R s(s(s(s(s(s(0))))))

in 4 steps with −→R

73/111

What is Term Rewriting?

(1) Core functional programming language without many restrictions (and features) of “real” FP:
first-order (usually)
no fixed evaluation strategy
untyped
no pre-defined data structures (integers, arrays, . . .)

(2) Syntactic approach for reasoning in equational first-order logic

Example (Term Rewrite System (TRS) R)
double(0) −→ 0

double(s(x)) −→ s(s(double(x))

Compute “double of 3 is 6”:
double(s(s(s(0))))

−→R s(s(double(s(s(0)))))

−→R s(s(s(s(double(s(0))))))

−→R s(s(s(s(s(s(double(0)))))))

−→R s(s(s(s(s(s(0))))))

in 4 steps with −→R
73/111

What is Term Rewriting?

(1) Core functional programming language without many restrictions (and features) of “real” FP:
first-order (usually)
no fixed evaluation strategy
untyped
no pre-defined data structures (integers, arrays, . . .)

(2) Syntactic approach for reasoning in equational first-order logic

Example (Term Rewrite System (TRS) R)
double(0) −→ 0

double(s(x)) −→ s(s(double(x))

Compute “double of 3 is 6”:
double(s3(0))

−→R s2(double(s2(0)))

−→R s4(double(s(0)))

−→R s6(double(0))

−→R s6(0)

in 4 steps with −→R
73/111

What is Complexity of Term Rewriting?

Given: TRS R (e.g., { double(0) −→ 0, double(s(x)) −→ s(s(double(x))) })

Question: How long can a −→R sequence from a term of size n become?
(worst case)

Here: Does R have complexity Θ(n)?

(1) Yes!
double(sn−2(0)) −→n−1

R s2n−4(0)

basic terms f(t1, . . ., tn) with ti constructor terms allow only n steps
runtime complexity rcR(n): basic terms as start terms
rcR(n) for program analysis

(2) No!

double3(s(0)) −→2
R double2(s2(0)) −→3

R double(s4(0)) −→5
R s8(0) in 10 steps

doublen−2(s(0)) allows Θ(2n) many steps to s2
n−2

(0)
derivational complexity dcR(n): no restrictions on start terms
dcR(n) for equational reasoning: cost of solving the word problem E |= s ≡ t
by rewriting s and t via an equivalent convergent TRS RE

74/111

What is Complexity of Term Rewriting?

Given: TRS R (e.g., { double(0) −→ 0, double(s(x)) −→ s(s(double(x))) })
Question: How long can a −→R sequence from a term of size n become?

(worst case)

Here: Does R have complexity Θ(n)?

(1) Yes!
double(sn−2(0)) −→n−1

R s2n−4(0)

basic terms f(t1, . . ., tn) with ti constructor terms allow only n steps
runtime complexity rcR(n): basic terms as start terms
rcR(n) for program analysis

(2) No!

double3(s(0)) −→2
R double2(s2(0)) −→3

R double(s4(0)) −→5
R s8(0) in 10 steps

doublen−2(s(0)) allows Θ(2n) many steps to s2
n−2

(0)
derivational complexity dcR(n): no restrictions on start terms
dcR(n) for equational reasoning: cost of solving the word problem E |= s ≡ t
by rewriting s and t via an equivalent convergent TRS RE

74/111

What is Complexity of Term Rewriting?

Given: TRS R (e.g., { double(0) −→ 0, double(s(x)) −→ s(s(double(x))) })
Question: How long can a −→R sequence from a term of size n become?

(worst case)
Here: Does R have complexity Θ(n)?

(1) Yes!
double(sn−2(0)) −→n−1

R s2n−4(0)

basic terms f(t1, . . ., tn) with ti constructor terms allow only n steps
runtime complexity rcR(n): basic terms as start terms
rcR(n) for program analysis

(2) No!

double3(s(0)) −→2
R double2(s2(0)) −→3

R double(s4(0)) −→5
R s8(0) in 10 steps

doublen−2(s(0)) allows Θ(2n) many steps to s2
n−2

(0)
derivational complexity dcR(n): no restrictions on start terms
dcR(n) for equational reasoning: cost of solving the word problem E |= s ≡ t
by rewriting s and t via an equivalent convergent TRS RE

74/111

What is Complexity of Term Rewriting?

Given: TRS R (e.g., { double(0) −→ 0, double(s(x)) −→ s(s(double(x))) })
Question: How long can a −→R sequence from a term of size n become?

(worst case)
Here: Does R have complexity Θ(n)?

(1) Yes!

double(sn−2(0)) −→n−1
R s2n−4(0)

basic terms f(t1, . . ., tn) with ti constructor terms allow only n steps
runtime complexity rcR(n): basic terms as start terms
rcR(n) for program analysis

(2) No!

double3(s(0)) −→2
R double2(s2(0)) −→3

R double(s4(0)) −→5
R s8(0) in 10 steps

doublen−2(s(0)) allows Θ(2n) many steps to s2
n−2

(0)
derivational complexity dcR(n): no restrictions on start terms
dcR(n) for equational reasoning: cost of solving the word problem E |= s ≡ t
by rewriting s and t via an equivalent convergent TRS RE

74/111

What is Complexity of Term Rewriting?

Given: TRS R (e.g., { double(0) −→ 0, double(s(x)) −→ s(s(double(x))) })
Question: How long can a −→R sequence from a term of size n become?

(worst case)
Here: Does R have complexity Θ(n)?

(1) Yes!
double(sn−2(0)) −→n−1

R s2n−4(0)

basic terms f(t1, . . ., tn) with ti constructor terms allow only n steps
runtime complexity rcR(n): basic terms as start terms
rcR(n) for program analysis

(2) No!

double3(s(0)) −→2
R double2(s2(0)) −→3

R double(s4(0)) −→5
R s8(0) in 10 steps

doublen−2(s(0)) allows Θ(2n) many steps to s2
n−2

(0)
derivational complexity dcR(n): no restrictions on start terms
dcR(n) for equational reasoning: cost of solving the word problem E |= s ≡ t
by rewriting s and t via an equivalent convergent TRS RE

74/111

What is Complexity of Term Rewriting?

Given: TRS R (e.g., { double(0) −→ 0, double(s(x)) −→ s(s(double(x))) })
Question: How long can a −→R sequence from a term of size n become?

(worst case)
Here: Does R have complexity Θ(n)?

(1) Yes!
double(sn−2(0)) −→n−1

R s2n−4(0)

basic terms f(t1, . . ., tn) with ti constructor terms allow only n steps

runtime complexity rcR(n): basic terms as start terms
rcR(n) for program analysis

(2) No!

double3(s(0)) −→2
R double2(s2(0)) −→3

R double(s4(0)) −→5
R s8(0) in 10 steps

doublen−2(s(0)) allows Θ(2n) many steps to s2
n−2

(0)
derivational complexity dcR(n): no restrictions on start terms
dcR(n) for equational reasoning: cost of solving the word problem E |= s ≡ t
by rewriting s and t via an equivalent convergent TRS RE

74/111

What is Complexity of Term Rewriting?

Given: TRS R (e.g., { double(0) −→ 0, double(s(x)) −→ s(s(double(x))) })
Question: How long can a −→R sequence from a term of size n become?

(worst case)
Here: Does R have complexity Θ(n)?

(1) Yes!
double(sn−2(0)) −→n−1

R s2n−4(0)

basic terms f(t1, . . ., tn) with ti constructor terms allow only n steps
runtime complexity rcR(n): basic terms as start terms

rcR(n) for program analysis

(2) No!

double3(s(0)) −→2
R double2(s2(0)) −→3

R double(s4(0)) −→5
R s8(0) in 10 steps

doublen−2(s(0)) allows Θ(2n) many steps to s2
n−2

(0)
derivational complexity dcR(n): no restrictions on start terms
dcR(n) for equational reasoning: cost of solving the word problem E |= s ≡ t
by rewriting s and t via an equivalent convergent TRS RE

74/111

What is Complexity of Term Rewriting?

Given: TRS R (e.g., { double(0) −→ 0, double(s(x)) −→ s(s(double(x))) })
Question: How long can a −→R sequence from a term of size n become?

(worst case)
Here: Does R have complexity Θ(n)?

(1) Yes!
double(sn−2(0)) −→n−1

R s2n−4(0)

basic terms f(t1, . . ., tn) with ti constructor terms allow only n steps
runtime complexity rcR(n): basic terms as start terms
rcR(n) for program analysis

(2) No!

double3(s(0)) −→2
R double2(s2(0)) −→3

R double(s4(0)) −→5
R s8(0) in 10 steps

doublen−2(s(0)) allows Θ(2n) many steps to s2
n−2

(0)
derivational complexity dcR(n): no restrictions on start terms
dcR(n) for equational reasoning: cost of solving the word problem E |= s ≡ t
by rewriting s and t via an equivalent convergent TRS RE

74/111

What is Complexity of Term Rewriting?

Given: TRS R (e.g., { double(0) −→ 0, double(s(x)) −→ s(s(double(x))) })
Question: How long can a −→R sequence from a term of size n become?

(worst case)
Here: Does R have complexity Θ(n)?

(1) Yes!
double(sn−2(0)) −→n−1

R s2n−4(0)

basic terms f(t1, . . ., tn) with ti constructor terms allow only n steps
runtime complexity rcR(n): basic terms as start terms
rcR(n) for program analysis

(2) No!

double3(s(0)) −→2
R double2(s2(0)) −→3

R double(s4(0)) −→5
R s8(0) in 10 steps

doublen−2(s(0)) allows Θ(2n) many steps to s2
n−2

(0)
derivational complexity dcR(n): no restrictions on start terms
dcR(n) for equational reasoning: cost of solving the word problem E |= s ≡ t
by rewriting s and t via an equivalent convergent TRS RE

74/111

What is Complexity of Term Rewriting?

Given: TRS R (e.g., { double(0) −→ 0, double(s(x)) −→ s(s(double(x))) })
Question: How long can a −→R sequence from a term of size n become?

(worst case)
Here: Does R have complexity Θ(n)?

(1) Yes!
double(sn−2(0)) −→n−1

R s2n−4(0)

basic terms f(t1, . . ., tn) with ti constructor terms allow only n steps
runtime complexity rcR(n): basic terms as start terms
rcR(n) for program analysis

(2) No!

double3(s(0)) −→2
R double2(s2(0)) −→3

R double(s4(0)) −→5
R s8(0) in 10 steps

doublen−2(s(0)) allows Θ(2n) many steps to s2
n−2

(0)
derivational complexity dcR(n): no restrictions on start terms
dcR(n) for equational reasoning: cost of solving the word problem E |= s ≡ t
by rewriting s and t via an equivalent convergent TRS RE

74/111

What is Complexity of Term Rewriting?

Given: TRS R (e.g., { double(0) −→ 0, double(s(x)) −→ s(s(double(x))) })
Question: How long can a −→R sequence from a term of size n become?

(worst case)
Here: Does R have complexity Θ(n)?

(1) Yes!
double(sn−2(0)) −→n−1

R s2n−4(0)

basic terms f(t1, . . ., tn) with ti constructor terms allow only n steps
runtime complexity rcR(n): basic terms as start terms
rcR(n) for program analysis

(2) No!

double3(s(0)) −→2
R double2(s2(0)) −→3

R double(s4(0)) −→5
R s8(0) in 10 steps

doublen−2(s(0)) allows Θ(2n) many steps to s2
n−2

(0)

derivational complexity dcR(n): no restrictions on start terms
dcR(n) for equational reasoning: cost of solving the word problem E |= s ≡ t
by rewriting s and t via an equivalent convergent TRS RE

74/111

What is Complexity of Term Rewriting?

Given: TRS R (e.g., { double(0) −→ 0, double(s(x)) −→ s(s(double(x))) })
Question: How long can a −→R sequence from a term of size n become?

(worst case)
Here: Does R have complexity Θ(n)?

(1) Yes!
double(sn−2(0)) −→n−1

R s2n−4(0)

basic terms f(t1, . . ., tn) with ti constructor terms allow only n steps
runtime complexity rcR(n): basic terms as start terms
rcR(n) for program analysis

(2) No!

double3(s(0)) −→2
R double2(s2(0)) −→3

R double(s4(0)) −→5
R s8(0) in 10 steps

doublen−2(s(0)) allows Θ(2n) many steps to s2
n−2

(0)
derivational complexity dcR(n): no restrictions on start terms

dcR(n) for equational reasoning: cost of solving the word problem E |= s ≡ t
by rewriting s and t via an equivalent convergent TRS RE

74/111

What is Complexity of Term Rewriting?

Given: TRS R (e.g., { double(0) −→ 0, double(s(x)) −→ s(s(double(x))) })
Question: How long can a −→R sequence from a term of size n become?

(worst case)
Here: Does R have complexity Θ(n)?

(1) Yes!
double(sn−2(0)) −→n−1

R s2n−4(0)

basic terms f(t1, . . ., tn) with ti constructor terms allow only n steps
runtime complexity rcR(n): basic terms as start terms
rcR(n) for program analysis

(2) No!

double3(s(0)) −→2
R double2(s2(0)) −→3

R double(s4(0)) −→5
R s8(0) in 10 steps

doublen−2(s(0)) allows Θ(2n) many steps to s2
n−2

(0)
derivational complexity dcR(n): no restrictions on start terms
dcR(n) for equational reasoning: cost of solving the word problem E |= s ≡ t
by rewriting s and t via an equivalent convergent TRS RE

74/111

Complexity Analysis for TRSs: Overview

1 Introduction
2 Automatically Finding Upper Bounds
3 Transformational Techniques
4 Analysing Program Complexity via TRS Complexity
5 Current Developments

75/111

A Short Timeline (1/2)

1989: Derivational complexity introduced, linked to termination proofs19

2001: Techniques for polynomial upper complexity bounds20

2008: Runtime complexity introduced with first analysis techniques21

2008: First automated tools to find complexity bounds: TcT22, CaT23

2008: First complexity analysis categories in the Termination Competition (termCOMP)
. . .

19D. Hofbauer, C. Lautemann: Termination proofs and the length of derivations, RTA ’89

20G. Bonfante, A. Cichon, J. Marion, and H. Touzet: Algorithms with polynomial interpretation termination proof,
JFP ’01

21N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency pair method, IJCAR ’08
22M. Avanzini, G. Moser, M. Schaper: TcT: Tyrolean Complexity Tool, TACAS ’16,

https://tcs-informatik.uibk.ac.at/tools/tct/
23M. Korp, C. Sternagel, H. Zankl, A. Middeldorp: Tyrolean Termination Tool 2, RTA ’09,

http://cl-informatik.uibk.ac.at/software/cat/

76/111

https://tcs-informatik.uibk.ac.at/tools/tct/
http://cl-informatik.uibk.ac.at/software/cat/

A Short Timeline (1/2)

1989: Derivational complexity introduced, linked to termination proofs19

2001: Techniques for polynomial upper complexity bounds20

2008: Runtime complexity introduced with first analysis techniques21

2008: First automated tools to find complexity bounds: TcT22, CaT23

2008: First complexity analysis categories in the Termination Competition (termCOMP)
. . .

19D. Hofbauer, C. Lautemann: Termination proofs and the length of derivations, RTA ’89
20G. Bonfante, A. Cichon, J. Marion, and H. Touzet: Algorithms with polynomial interpretation termination proof,

JFP ’01

21N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency pair method, IJCAR ’08
22M. Avanzini, G. Moser, M. Schaper: TcT: Tyrolean Complexity Tool, TACAS ’16,

https://tcs-informatik.uibk.ac.at/tools/tct/
23M. Korp, C. Sternagel, H. Zankl, A. Middeldorp: Tyrolean Termination Tool 2, RTA ’09,

http://cl-informatik.uibk.ac.at/software/cat/

76/111

https://tcs-informatik.uibk.ac.at/tools/tct/
http://cl-informatik.uibk.ac.at/software/cat/

A Short Timeline (1/2)

1989: Derivational complexity introduced, linked to termination proofs19

2001: Techniques for polynomial upper complexity bounds20

2008: Runtime complexity introduced with first analysis techniques21

2008: First automated tools to find complexity bounds: TcT22, CaT23

2008: First complexity analysis categories in the Termination Competition (termCOMP)
. . .

19D. Hofbauer, C. Lautemann: Termination proofs and the length of derivations, RTA ’89
20G. Bonfante, A. Cichon, J. Marion, and H. Touzet: Algorithms with polynomial interpretation termination proof,

JFP ’01
21N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency pair method, IJCAR ’08

22M. Avanzini, G. Moser, M. Schaper: TcT: Tyrolean Complexity Tool, TACAS ’16,
https://tcs-informatik.uibk.ac.at/tools/tct/

23M. Korp, C. Sternagel, H. Zankl, A. Middeldorp: Tyrolean Termination Tool 2, RTA ’09,
http://cl-informatik.uibk.ac.at/software/cat/

76/111

https://tcs-informatik.uibk.ac.at/tools/tct/
http://cl-informatik.uibk.ac.at/software/cat/

A Short Timeline (1/2)

1989: Derivational complexity introduced, linked to termination proofs19

2001: Techniques for polynomial upper complexity bounds20

2008: Runtime complexity introduced with first analysis techniques21

2008: First automated tools to find complexity bounds: TcT22, CaT23

2008: First complexity analysis categories in the Termination Competition (termCOMP)
. . .

19D. Hofbauer, C. Lautemann: Termination proofs and the length of derivations, RTA ’89
20G. Bonfante, A. Cichon, J. Marion, and H. Touzet: Algorithms with polynomial interpretation termination proof,

JFP ’01
21N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency pair method, IJCAR ’08
22M. Avanzini, G. Moser, M. Schaper: TcT: Tyrolean Complexity Tool, TACAS ’16,

https://tcs-informatik.uibk.ac.at/tools/tct/
23M. Korp, C. Sternagel, H. Zankl, A. Middeldorp: Tyrolean Termination Tool 2, RTA ’09,

http://cl-informatik.uibk.ac.at/software/cat/
76/111

https://tcs-informatik.uibk.ac.at/tools/tct/
http://cl-informatik.uibk.ac.at/software/cat/

A Short Timeline (1/2)

1989: Derivational complexity introduced, linked to termination proofs19

2001: Techniques for polynomial upper complexity bounds20

2008: Runtime complexity introduced with first analysis techniques21

2008: First automated tools to find complexity bounds: TcT22, CaT23

2008: First complexity analysis categories in the Termination Competition (termCOMP)

. . .

19D. Hofbauer, C. Lautemann: Termination proofs and the length of derivations, RTA ’89
20G. Bonfante, A. Cichon, J. Marion, and H. Touzet: Algorithms with polynomial interpretation termination proof,

JFP ’01
21N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency pair method, IJCAR ’08
22M. Avanzini, G. Moser, M. Schaper: TcT: Tyrolean Complexity Tool, TACAS ’16,

https://tcs-informatik.uibk.ac.at/tools/tct/
23M. Korp, C. Sternagel, H. Zankl, A. Middeldorp: Tyrolean Termination Tool 2, RTA ’09,

http://cl-informatik.uibk.ac.at/software/cat/
76/111

https://tcs-informatik.uibk.ac.at/tools/tct/
http://cl-informatik.uibk.ac.at/software/cat/

A Short Timeline (1/2)

1989: Derivational complexity introduced, linked to termination proofs19

2001: Techniques for polynomial upper complexity bounds20

2008: Runtime complexity introduced with first analysis techniques21

2008: First automated tools to find complexity bounds: TcT22, CaT23

2008: First complexity analysis categories in the Termination Competition (termCOMP)
. . .

19D. Hofbauer, C. Lautemann: Termination proofs and the length of derivations, RTA ’89
20G. Bonfante, A. Cichon, J. Marion, and H. Touzet: Algorithms with polynomial interpretation termination proof,

JFP ’01
21N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency pair method, IJCAR ’08
22M. Avanzini, G. Moser, M. Schaper: TcT: Tyrolean Complexity Tool, TACAS ’16,

https://tcs-informatik.uibk.ac.at/tools/tct/
23M. Korp, C. Sternagel, H. Zankl, A. Middeldorp: Tyrolean Termination Tool 2, RTA ’09,

http://cl-informatik.uibk.ac.at/software/cat/
76/111

https://tcs-informatik.uibk.ac.at/tools/tct/
http://cl-informatik.uibk.ac.at/software/cat/

Some Definitions

Definition (Derivation Height dh)

For a term t ∈ T (F ,V) and a relation −→, the derivation height is:

dh(t,−→) = sup { n | ∃t′. t −→n
t′ }

If t starts an infinite −→-sequence, we set dh(t,−→) = ω.

dh(t,−→): length of the longest −→-sequence from t.

Example: dh(double(s(s(s(0)))), −→R) = 4

Definition (Derivational Complexity dc)
For a TRS R, the derivational complexity is:

dcR(n) = sup { dh(t,−→R) | t ∈ T (F ,V), |t| ≤ n }

dcR(n): length of the longest −→R-sequence from a term of size at most n

Example: For R for double, we have dcR(n) ∈ Θ(2n).

77/111

Some Definitions

Definition (Derivation Height dh)

For a term t ∈ T (F ,V) and a relation −→, the derivation height is:

dh(t,−→) = sup { n | ∃t′. t −→n
t′ }

If t starts an infinite −→-sequence, we set dh(t,−→) = ω.

dh(t,−→): length of the longest −→-sequence from t.

Example: dh(double(s(s(s(0)))), −→R) = 4

Definition (Derivational Complexity dc)
For a TRS R, the derivational complexity is:

dcR(n) = sup { dh(t,−→R) | t ∈ T (F ,V), |t| ≤ n }

dcR(n): length of the longest −→R-sequence from a term of size at most n

Example: For R for double, we have dcR(n) ∈ Θ(2n).

77/111

Some Definitions

Definition (Derivation Height dh)

For a term t ∈ T (F ,V) and a relation −→, the derivation height is:

dh(t,−→) = sup { n | ∃t′. t −→n
t′ }

If t starts an infinite −→-sequence, we set dh(t,−→) = ω.

dh(t,−→): length of the longest −→-sequence from t.

Example: dh(double(s(s(s(0)))), −→R) = 4

Definition (Derivational Complexity dc)
For a TRS R, the derivational complexity is:

dcR(n) = sup { dh(t,−→R) | t ∈ T (F ,V), |t| ≤ n }

dcR(n): length of the longest −→R-sequence from a term of size at most n

Example: For R for double, we have dcR(n) ∈ Θ(2n).

77/111

Some Definitions

Definition (Derivation Height dh)

For a term t ∈ T (F ,V) and a relation −→, the derivation height is:

dh(t,−→) = sup { n | ∃t′. t −→n
t′ }

If t starts an infinite −→-sequence, we set dh(t,−→) = ω.

dh(t,−→): length of the longest −→-sequence from t.

Example: dh(double(s(s(s(0)))), −→R) = 4

Definition (Derivational Complexity dc)
For a TRS R, the derivational complexity is:

dcR(n) = sup { dh(t,−→R) | t ∈ T (F ,V), |t| ≤ n }

dcR(n): length of the longest −→R-sequence from a term of size at most n

Example: For R for double, we have dcR(n) ∈ Θ(2n).

77/111

Some Definitions

Definition (Derivation Height dh)

For a term t ∈ T (F ,V) and a relation −→, the derivation height is:

dh(t,−→) = sup { n | ∃t′. t −→n
t′ }

If t starts an infinite −→-sequence, we set dh(t,−→) = ω.

dh(t,−→): length of the longest −→-sequence from t.

Example: dh(double(s(s(s(0)))), −→R) = 4

Definition (Derivational Complexity dc)
For a TRS R, the derivational complexity is:

dcR(n) = sup { dh(t,−→R) | t ∈ T (F ,V), |t| ≤ n }

dcR(n): length of the longest −→R-sequence from a term of size at most n

Example: For R for double, we have dcR(n) ∈ Θ(2n).

77/111

Some Definitions

Definition (Derivation Height dh)

For a term t ∈ T (F ,V) and a relation −→, the derivation height is:

dh(t,−→) = sup { n | ∃t′. t −→n
t′ }

If t starts an infinite −→-sequence, we set dh(t,−→) = ω.

dh(t,−→): length of the longest −→-sequence from t.

Example: dh(double(s(s(s(0)))), −→R) = 4

Definition (Derivational Complexity dc)
For a TRS R, the derivational complexity is:

dcR(n) = sup { dh(t,−→R) | t ∈ T (F ,V), |t| ≤ n }

dcR(n): length of the longest −→R-sequence from a term of size at most n

Example: For R for double, we have dcR(n) ∈ Θ(2n).
77/111

Upper Bounds

The Bad News for automation:

For a given TRS R, the following questions are undecidable:

dcR(n) = ω for some n? (−→ termination!)
dcR(n) polynomially bounded?24

Goal: find approximations for derivational complexity

Initial focus: find upper bounds
dcR(n) ∈ O(...)

24A. Schnabl and J. G. Simonsen: The exact hardness of deciding derivational and runtime complexity, CSL ’11

78/111

Upper Bounds

The Bad News for automation:

For a given TRS R, the following questions are undecidable:

dcR(n) = ω for some n? (−→ termination!)

dcR(n) polynomially bounded?24

Goal: find approximations for derivational complexity

Initial focus: find upper bounds
dcR(n) ∈ O(...)

24A. Schnabl and J. G. Simonsen: The exact hardness of deciding derivational and runtime complexity, CSL ’11

78/111

Upper Bounds

The Bad News for automation:

For a given TRS R, the following questions are undecidable:

dcR(n) = ω for some n? (−→ termination!)
dcR(n) polynomially bounded?24

Goal: find approximations for derivational complexity

Initial focus: find upper bounds
dcR(n) ∈ O(...)

24A. Schnabl and J. G. Simonsen: The exact hardness of deciding derivational and runtime complexity, CSL ’11
78/111

Upper Bounds

The Bad News for automation:

For a given TRS R, the following questions are undecidable:

dcR(n) = ω for some n? (−→ termination!)
dcR(n) polynomially bounded?24

Goal: find approximations for derivational complexity

Initial focus: find upper bounds
dcR(n) ∈ O(...)

24A. Schnabl and J. G. Simonsen: The exact hardness of deciding derivational and runtime complexity, CSL ’11
78/111

Derivational Complexity from Polynomial Interpretations (1/2)

Example (double)

double(0) −→ 0

3 > 1

double(s(x)) −→ s(s(double(x))

3 · x+ 3 > 3 · x+ 2

Show dcR(n) < ω by termination proof with reduction order � on terms.
Get � via polynomial interpretation25 [·] over N: ` � r ⇐⇒ [`] � [r]

Example: [double](x) = 3 · x, [s](x) = x+ 1, [0] = 1

Extend to terms:
[x] = x

[f(t1, . . . , tn)] = [f]([t1], . . . , [tn])

Automated search for [·] via SAT26 or SMT27 solving
25D. Lankford: Canonical algebraic simplification in computational logic, U Texas ’75
26C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, H. Zankl: SAT solving for termination

analysis with polynomial interpretations, SAT ’07
27C. Borralleras, S. Lucas, A. Oliveras, E. Rodríguez-Carbonell, A. Rubio: SAT modulo linear arithmetic for solving

polynomial constraints, JAR ’12

79/111

Derivational Complexity from Polynomial Interpretations (1/2)

Example (double)

double(0) � 0

3 > 1

double(s(x)) � s(s(double(x))

3 · x+ 3 > 3 · x+ 2

Show dcR(n) < ω by termination proof with reduction order � on terms.

Get � via polynomial interpretation25 [·] over N: ` � r ⇐⇒ [`] � [r]

Example: [double](x) = 3 · x, [s](x) = x+ 1, [0] = 1

Extend to terms:
[x] = x

[f(t1, . . . , tn)] = [f]([t1], . . . , [tn])

Automated search for [·] via SAT26 or SMT27 solving
25D. Lankford: Canonical algebraic simplification in computational logic, U Texas ’75
26C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, H. Zankl: SAT solving for termination

analysis with polynomial interpretations, SAT ’07
27C. Borralleras, S. Lucas, A. Oliveras, E. Rodríguez-Carbonell, A. Rubio: SAT modulo linear arithmetic for solving

polynomial constraints, JAR ’12

79/111

Derivational Complexity from Polynomial Interpretations (1/2)

Example (double)

double(0) � 0

3 > 1

double(s(x)) � s(s(double(x))

3 · x+ 3 > 3 · x+ 2

Show dcR(n) < ω by termination proof with reduction order � on terms.
Get � via polynomial interpretation25 [·] over N: ` � r ⇐⇒ [`] � [r]

Example: [double](x) = 3 · x, [s](x) = x+ 1, [0] = 1

Extend to terms:
[x] = x

[f(t1, . . . , tn)] = [f]([t1], . . . , [tn])

Automated search for [·] via SAT26 or SMT27 solving

25D. Lankford: Canonical algebraic simplification in computational logic, U Texas ’75

26C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, H. Zankl: SAT solving for termination
analysis with polynomial interpretations, SAT ’07

27C. Borralleras, S. Lucas, A. Oliveras, E. Rodríguez-Carbonell, A. Rubio: SAT modulo linear arithmetic for solving
polynomial constraints, JAR ’12

79/111

Derivational Complexity from Polynomial Interpretations (1/2)

Example (double)

double(0) � 0

3 > 1

double(s(x)) � s(s(double(x))

3 · x+ 3 > 3 · x+ 2

Show dcR(n) < ω by termination proof with reduction order � on terms.
Get � via polynomial interpretation25 [·] over N: ` � r ⇐⇒ [`] � [r]

Example: [double](x) = 3 · x, [s](x) = x+ 1, [0] = 1

Extend to terms:
[x] = x

[f(t1, . . . , tn)] = [f]([t1], . . . , [tn])

Automated search for [·] via SAT26 or SMT27 solving

25D. Lankford: Canonical algebraic simplification in computational logic, U Texas ’75

26C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, H. Zankl: SAT solving for termination
analysis with polynomial interpretations, SAT ’07

27C. Borralleras, S. Lucas, A. Oliveras, E. Rodríguez-Carbonell, A. Rubio: SAT modulo linear arithmetic for solving
polynomial constraints, JAR ’12

79/111

Derivational Complexity from Polynomial Interpretations (1/2)

Example (double)

double(0) � 0

3 > 1

double(s(x)) � s(s(double(x))

3 · x+ 3 > 3 · x+ 2

Show dcR(n) < ω by termination proof with reduction order � on terms.
Get � via polynomial interpretation25 [·] over N: ` � r ⇐⇒ [`] � [r]

Example: [double](x) = 3 · x, [s](x) = x+ 1, [0] = 1

Extend to terms:
[x] = x

[f(t1, . . . , tn)] = [f]([t1], . . . , [tn])

Automated search for [·] via SAT26 or SMT27 solving

25D. Lankford: Canonical algebraic simplification in computational logic, U Texas ’75

26C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, H. Zankl: SAT solving for termination
analysis with polynomial interpretations, SAT ’07

27C. Borralleras, S. Lucas, A. Oliveras, E. Rodríguez-Carbonell, A. Rubio: SAT modulo linear arithmetic for solving
polynomial constraints, JAR ’12

79/111

Derivational Complexity from Polynomial Interpretations (1/2)

Example (double)

double(0) � 0 3 > 1
double(s(x)) � s(s(double(x)) 3 · x+ 3 > 3 · x+ 2

Show dcR(n) < ω by termination proof with reduction order � on terms.
Get � via polynomial interpretation25 [·] over N: ` � r ⇐⇒ [`] � [r]

Example: [double](x) = 3 · x, [s](x) = x+ 1, [0] = 1

Extend to terms:
[x] = x

[f(t1, . . . , tn)] = [f]([t1], . . . , [tn])

Automated search for [·] via SAT26 or SMT27 solving

25D. Lankford: Canonical algebraic simplification in computational logic, U Texas ’75

26C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, H. Zankl: SAT solving for termination
analysis with polynomial interpretations, SAT ’07

27C. Borralleras, S. Lucas, A. Oliveras, E. Rodríguez-Carbonell, A. Rubio: SAT modulo linear arithmetic for solving
polynomial constraints, JAR ’12

79/111

Derivational Complexity from Polynomial Interpretations (1/2)

Example (double)

double(0) � 0 3 > 1
double(s(x)) � s(s(double(x)) 3 · x+ 3 > 3 · x+ 2

Show dcR(n) < ω by termination proof with reduction order � on terms.
Get � via polynomial interpretation25 [·] over N: ` � r ⇐⇒ [`] � [r]

Example: [double](x) = 3 · x, [s](x) = x+ 1, [0] = 1

Extend to terms:
[x] = x

[f(t1, . . . , tn)] = [f]([t1], . . . , [tn])

Automated search for [·] via SAT26 or SMT27 solving
25D. Lankford: Canonical algebraic simplification in computational logic, U Texas ’75
26C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, H. Zankl: SAT solving for termination

analysis with polynomial interpretations, SAT ’07
27C. Borralleras, S. Lucas, A. Oliveras, E. Rodríguez-Carbonell, A. Rubio: SAT modulo linear arithmetic for solving

polynomial constraints, JAR ’12
79/111

Derivational Complexity from Polynomial Interpretations (2/2)

Example (double)

double(0) � 0 3 > 1
double(s(x)) � s(s(double(x)) 3 · x+ 3 > 3 · x+ 2

Example: [double](x) = 3 · x, [s](x) = x+ 1, [0] = 1

This proves more than just termination. . .

Theorem (Upper bounds for dcR(n) from polynomial interpretations28)
Termination proof for TRS R with polynomial interpretation

⇒ dcR(n) ∈ 22
O(n)

Termination proof for TRS R with linear polynomial interpretation
⇒ dcR(n) ∈ 2O(n)

28D. Hofbauer, C. Lautemann: Termination proofs and the length of derivations, RTA ’89

80/111

Derivational Complexity from Polynomial Interpretations (2/2)

Example (double)

double(0) � 0 3 > 1
double(s(x)) � s(s(double(x)) 3 · x+ 3 > 3 · x+ 2

Example: [double](x) = 3 · x, [s](x) = x+ 1, [0] = 1

This proves more than just termination. . .

Theorem (Upper bounds for dcR(n) from polynomial interpretations28)
Termination proof for TRS R with polynomial interpretation

⇒ dcR(n) ∈ 22
O(n)

Termination proof for TRS R with linear polynomial interpretation
⇒ dcR(n) ∈ 2O(n)

28D. Hofbauer, C. Lautemann: Termination proofs and the length of derivations, RTA ’89
80/111

Derivational Complexity from Polynomial Interpretations (2/2)

Example (double)

double(0) � 0 3 > 1
double(s(x)) � s(s(double(x)) 3 · x+ 3 > 3 · x+ 2

Example: [double](x) = 3 · x, [s](x) = x+ 1, [0] = 1

This proves more than just termination. . .

Theorem (Upper bounds for dcR(n) from polynomial interpretations28)
Termination proof for TRS R with polynomial interpretation

⇒ dcR(n) ∈ 22
O(n)

Termination proof for TRS R with linear polynomial interpretation
⇒ dcR(n) ∈ 2O(n)

28D. Hofbauer, C. Lautemann: Termination proofs and the length of derivations, RTA ’89
80/111

Derivational Complexity from Termination Proofs (1/2)

Termination proof for TRS R with . . .
matchbounds29 ⇒ dcR(n) ∈ O(n)

arctic matrix interpretations30 ⇒ dcR(n) ∈ O(n)

triangular matrix interpretation31 ⇒ dcR(n) is at most polynomial
matrix interpretation of spectral radius32 ≤ 1 ⇒ dcR(n) is at most polynomial
standard matrix interpretation33 ⇒ dcR(n) is at most exponential

29A. Geser, D. Hofbauer, J. Waldmann: Match-bounded string rewriting systems, AAECC ’04
30A. Koprowski, J. Waldmann: Max/plus tree automata for termination of term rewriting, Acta Cyb. ’09

31G. Moser, A. Schnabl, J. Waldmann: Complexity analysis of term rewriting based on matrix and context
dependent interpretations, FSTTCS ’08

32F. Neurauter, H. Zankl, A. Middeldorp: Revisiting matrix interpretations for polynomial derivational complexity of
term rewriting, LPAR (Yogyakarta) ’10

33J. Endrullis, J. Waldmann, and H. Zantema: Matrix interpretations for proving termination of term rewriting,
JAR ’08

81/111

Derivational Complexity from Termination Proofs (1/2)

Termination proof for TRS R with . . .
matchbounds29 ⇒ dcR(n) ∈ O(n)

arctic matrix interpretations30 ⇒ dcR(n) ∈ O(n)

triangular matrix interpretation31 ⇒ dcR(n) is at most polynomial
matrix interpretation of spectral radius32 ≤ 1 ⇒ dcR(n) is at most polynomial

standard matrix interpretation33 ⇒ dcR(n) is at most exponential

29A. Geser, D. Hofbauer, J. Waldmann: Match-bounded string rewriting systems, AAECC ’04
30A. Koprowski, J. Waldmann: Max/plus tree automata for termination of term rewriting, Acta Cyb. ’09
31G. Moser, A. Schnabl, J. Waldmann: Complexity analysis of term rewriting based on matrix and context

dependent interpretations, FSTTCS ’08
32F. Neurauter, H. Zankl, A. Middeldorp: Revisiting matrix interpretations for polynomial derivational complexity of

term rewriting, LPAR (Yogyakarta) ’10

33J. Endrullis, J. Waldmann, and H. Zantema: Matrix interpretations for proving termination of term rewriting,
JAR ’08

81/111

Derivational Complexity from Termination Proofs (1/2)

Termination proof for TRS R with . . .
matchbounds29 ⇒ dcR(n) ∈ O(n)

arctic matrix interpretations30 ⇒ dcR(n) ∈ O(n)

triangular matrix interpretation31 ⇒ dcR(n) is at most polynomial
matrix interpretation of spectral radius32 ≤ 1 ⇒ dcR(n) is at most polynomial
standard matrix interpretation33 ⇒ dcR(n) is at most exponential

29A. Geser, D. Hofbauer, J. Waldmann: Match-bounded string rewriting systems, AAECC ’04
30A. Koprowski, J. Waldmann: Max/plus tree automata for termination of term rewriting, Acta Cyb. ’09
31G. Moser, A. Schnabl, J. Waldmann: Complexity analysis of term rewriting based on matrix and context

dependent interpretations, FSTTCS ’08
32F. Neurauter, H. Zankl, A. Middeldorp: Revisiting matrix interpretations for polynomial derivational complexity of

term rewriting, LPAR (Yogyakarta) ’10
33J. Endrullis, J. Waldmann, and H. Zantema: Matrix interpretations for proving termination of term rewriting,

JAR ’08
81/111

Derivational Complexity from Termination Proofs (2/2)

Termination proof for TRS R with . . .
Lexicographic Path Order34 ⇒ dcR(n) is at most multiple recursive35

Dependency Pairs method36 with dependency graphs and usable rules
⇒ dcR(n) is at most primitive recursive37

Dependency Pairs framework3839 with dependency graphs, reduction pairs, subterm criterion
⇒ dcR(n) is at most multiple recursive40

34S. Kamin, J.-J. Lévy: Two generalizations of the recursive path ordering, U Illinois ’80
35A. Weiermann: Termination proofs for term rewriting systems by lexicographic path orderings imply multiply

recursive derivation lengths, TCS ’95

36T. Arts, J. Giesl: Termination of term rewriting using dependency pairs, TCS ’00
37G. Moser, A. Schnabl: The derivational complexity induced by the dependency pair method, LMCS ’11
38J. Giesl, R. Thiemann, P. Schneider-Kamp, S. Falke: Mechanizing and improving dependency pairs, JAR ’06
39N. Hirokawa and A. Middeldorp: Tyrolean Termination Tool: Techniques and features, IC ’07
40G. Moser, A. Schnabl: Termination proofs in the dependency pair framework may induce multiple recursive

derivational complexity, RTA ’11

82/111

Derivational Complexity from Termination Proofs (2/2)

Termination proof for TRS R with . . .
Lexicographic Path Order34 ⇒ dcR(n) is at most multiple recursive35

Dependency Pairs method36 with dependency graphs and usable rules
⇒ dcR(n) is at most primitive recursive37

Dependency Pairs framework3839 with dependency graphs, reduction pairs, subterm criterion
⇒ dcR(n) is at most multiple recursive40

34S. Kamin, J.-J. Lévy: Two generalizations of the recursive path ordering, U Illinois ’80
35A. Weiermann: Termination proofs for term rewriting systems by lexicographic path orderings imply multiply

recursive derivation lengths, TCS ’95
36T. Arts, J. Giesl: Termination of term rewriting using dependency pairs, TCS ’00
37G. Moser, A. Schnabl: The derivational complexity induced by the dependency pair method, LMCS ’11

38J. Giesl, R. Thiemann, P. Schneider-Kamp, S. Falke: Mechanizing and improving dependency pairs, JAR ’06
39N. Hirokawa and A. Middeldorp: Tyrolean Termination Tool: Techniques and features, IC ’07
40G. Moser, A. Schnabl: Termination proofs in the dependency pair framework may induce multiple recursive

derivational complexity, RTA ’11

82/111

Derivational Complexity from Termination Proofs (2/2)

Termination proof for TRS R with . . .
Lexicographic Path Order34 ⇒ dcR(n) is at most multiple recursive35

Dependency Pairs method36 with dependency graphs and usable rules
⇒ dcR(n) is at most primitive recursive37

Dependency Pairs framework3839 with dependency graphs, reduction pairs, subterm criterion
⇒ dcR(n) is at most multiple recursive40

34S. Kamin, J.-J. Lévy: Two generalizations of the recursive path ordering, U Illinois ’80
35A. Weiermann: Termination proofs for term rewriting systems by lexicographic path orderings imply multiply

recursive derivation lengths, TCS ’95
36T. Arts, J. Giesl: Termination of term rewriting using dependency pairs, TCS ’00
37G. Moser, A. Schnabl: The derivational complexity induced by the dependency pair method, LMCS ’11
38J. Giesl, R. Thiemann, P. Schneider-Kamp, S. Falke: Mechanizing and improving dependency pairs, JAR ’06
39N. Hirokawa and A. Middeldorp: Tyrolean Termination Tool: Techniques and features, IC ’07
40G. Moser, A. Schnabl: Termination proofs in the dependency pair framework may induce multiple recursive

derivational complexity, RTA ’11
82/111

Runtime Complexity

So far: upper bounds for derivational complexity

But: derivational complexity counter-intuitive, often infeasible
Wanted: complexity of evaluation of double on data: double(sn(0))

Definition (Basic Term41)
For defined symbols D and constructor symbols C, the term

f(t1, . . ., tn)

is in the set Tbasic of basic terms iff f ∈ D and t1, . . ., tn ∈ T (C,V).

Definition (Runtime Complexity rc41)
For a TRS R, the runtime complexity is:

rcR(n) = sup { dh(t,−→R) | t ∈ Tbasic, |t| ≤ n }

rcR(n): like derivational complexity. . . but for basic terms only!

41N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency pair method, IJCAR ’08

83/111

Runtime Complexity

So far: upper bounds for derivational complexity
But: derivational complexity counter-intuitive, often infeasible

Wanted: complexity of evaluation of double on data: double(sn(0))

Definition (Basic Term41)
For defined symbols D and constructor symbols C, the term

f(t1, . . ., tn)

is in the set Tbasic of basic terms iff f ∈ D and t1, . . ., tn ∈ T (C,V).

Definition (Runtime Complexity rc41)
For a TRS R, the runtime complexity is:

rcR(n) = sup { dh(t,−→R) | t ∈ Tbasic, |t| ≤ n }

rcR(n): like derivational complexity. . . but for basic terms only!

41N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency pair method, IJCAR ’08

83/111

Runtime Complexity

So far: upper bounds for derivational complexity
But: derivational complexity counter-intuitive, often infeasible
Wanted: complexity of evaluation of double on data: double(sn(0))

Definition (Basic Term41)
For defined symbols D and constructor symbols C, the term

f(t1, . . ., tn)

is in the set Tbasic of basic terms iff f ∈ D and t1, . . ., tn ∈ T (C,V).

Definition (Runtime Complexity rc41)
For a TRS R, the runtime complexity is:

rcR(n) = sup { dh(t,−→R) | t ∈ Tbasic, |t| ≤ n }

rcR(n): like derivational complexity. . . but for basic terms only!

41N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency pair method, IJCAR ’08

83/111

Runtime Complexity

So far: upper bounds for derivational complexity
But: derivational complexity counter-intuitive, often infeasible
Wanted: complexity of evaluation of double on data: double(sn(0))

Definition (Basic Term41)
For defined symbols D and constructor symbols C, the term

f(t1, . . ., tn)

is in the set Tbasic of basic terms iff f ∈ D and t1, . . ., tn ∈ T (C,V).

Definition (Runtime Complexity rc41)
For a TRS R, the runtime complexity is:

rcR(n) = sup { dh(t,−→R) | t ∈ Tbasic, |t| ≤ n }

rcR(n): like derivational complexity. . . but for basic terms only!

41N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency pair method, IJCAR ’08
83/111

Runtime Complexity

So far: upper bounds for derivational complexity
But: derivational complexity counter-intuitive, often infeasible
Wanted: complexity of evaluation of double on data: double(sn(0))

Definition (Basic Term41)
For defined symbols D and constructor symbols C, the term

f(t1, . . ., tn)

is in the set Tbasic of basic terms iff f ∈ D and t1, . . ., tn ∈ T (C,V).

Definition (Runtime Complexity rc41)
For a TRS R, the runtime complexity is:

rcR(n) = sup { dh(t,−→R) | t ∈ Tbasic, |t| ≤ n }

rcR(n): like derivational complexity. . . but for basic terms only!

41N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency pair method, IJCAR ’08
83/111

Runtime Complexity

So far: upper bounds for derivational complexity
But: derivational complexity counter-intuitive, often infeasible
Wanted: complexity of evaluation of double on data: double(sn(0))

Definition (Basic Term41)
For defined symbols D and constructor symbols C, the term

f(t1, . . ., tn)

is in the set Tbasic of basic terms iff f ∈ D and t1, . . ., tn ∈ T (C,V).

Definition (Runtime Complexity rc41)
For a TRS R, the runtime complexity is:

rcR(n) = sup { dh(t,−→R) | t ∈ Tbasic, |t| ≤ n }

rcR(n): like derivational complexity. . . but for basic terms only!

41N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency pair method, IJCAR ’08
83/111

Runtime Complexity from Polynomial Interpretations

Polynomial interpretations can induce upper bounds to runtime complexity:42

Definition (Strongly linear polynomial, restricted interpretation)
Polynomial p is strongly linear iff
p(x1, . . . , xn) = x1 + · · ·+ xn + a for some a ∈ N.
Polynomial interpretation [·] is restricted iff
for all constructor symbols f , [f](x1, . . . , xn) is strongly linear.

Idea: [t] ≤ c · |t| for fixed c ∈ N.

Theorem (Upper bounds for rcR(n) from restricted interpretations)
Termination proof for TRS R with restricted interpretation [·] of degree at most d for [f]

⇒ rcR(n) ∈ O(nd)

Example: [double](x) = 3 · x, [s](x) = x+ 1, [0] = 1 is restricted, degree 1

⇒ rcR(n) ∈ O(n) for TRS R for double

42G. Bonfante, A. Cichon, J. Marion, H. Touzet: Algorithms with polynomial interpretation termination proof,
JFP ’01

84/111

Runtime Complexity from Polynomial Interpretations

Polynomial interpretations can induce upper bounds to runtime complexity:42

Definition (Strongly linear polynomial, restricted interpretation)
Polynomial p is strongly linear iff
p(x1, . . . , xn) = x1 + · · ·+ xn + a for some a ∈ N.
Polynomial interpretation [·] is restricted iff
for all constructor symbols f , [f](x1, . . . , xn) is strongly linear.

Idea: [t] ≤ c · |t| for fixed c ∈ N.

Theorem (Upper bounds for rcR(n) from restricted interpretations)
Termination proof for TRS R with restricted interpretation [·] of degree at most d for [f]

⇒ rcR(n) ∈ O(nd)

Example: [double](x) = 3 · x, [s](x) = x+ 1, [0] = 1 is restricted, degree 1

⇒ rcR(n) ∈ O(n) for TRS R for double

42G. Bonfante, A. Cichon, J. Marion, H. Touzet: Algorithms with polynomial interpretation termination proof,
JFP ’01

84/111

Runtime Complexity from Polynomial Interpretations

Polynomial interpretations can induce upper bounds to runtime complexity:42

Definition (Strongly linear polynomial, restricted interpretation)
Polynomial p is strongly linear iff
p(x1, . . . , xn) = x1 + · · ·+ xn + a for some a ∈ N.
Polynomial interpretation [·] is restricted iff
for all constructor symbols f , [f](x1, . . . , xn) is strongly linear.

Idea: [t] ≤ c · |t| for fixed c ∈ N.

Theorem (Upper bounds for rcR(n) from restricted interpretations)
Termination proof for TRS R with restricted interpretation [·] of degree at most d for [f]

⇒ rcR(n) ∈ O(nd)

Example: [double](x) = 3 · x, [s](x) = x+ 1, [0] = 1 is restricted, degree 1

⇒ rcR(n) ∈ O(n) for TRS R for double
42G. Bonfante, A. Cichon, J. Marion, H. Touzet: Algorithms with polynomial interpretation termination proof,

JFP ’01
84/111

Dependency Tuples for Innermost Runtime Complexity irc

Here: innermost rewriting (≈ call-by-value)

Example (reverse)

app(nil, y) −→ y app(add(n, x), y) −→ add(n, app(x, y))

reverse(nil) −→ nil reverse(add(n, x)) −→ app(reverse(x), add(n, nil))

For rule ` −→ r, eval of ` costs 1 + eval of all function calls in r together:

Example (Dependency Tuples43 for reverse)

app](nil, y) −→ Com0

app](add(n, x), y) −→ Com1(app](x, y))

reverse](nil) −→ Com0

reverse](add(n, x)) −→ Com2(app](reverse(x), add(n, nil)), reverse](x))

Function calls to count marked with]
Compound symbols Comk group function calls together

43L. Noschinski, F. Emmes, J. Giesl: Analyzing innermost runtime complexity of term rewriting by dependency
pairs, JAR ’13

85/111

Dependency Tuples for Innermost Runtime Complexity irc

Here: innermost rewriting (≈ call-by-value)

Example (reverse)

app(nil, y) −→ y app(add(n, x), y) −→ add(n, app(x, y))

reverse(nil) −→ nil reverse(add(n, x)) −→ app(reverse(x), add(n, nil))

For rule ` −→ r, eval of ` costs 1 + eval of all function calls in r together:

Example (Dependency Tuples43 for reverse)

app](nil, y) −→ Com0

app](add(n, x), y) −→ Com1(app](x, y))

reverse](nil) −→ Com0

reverse](add(n, x)) −→ Com2(app](reverse(x), add(n, nil)), reverse](x))

Function calls to count marked with]
Compound symbols Comk group function calls together

43L. Noschinski, F. Emmes, J. Giesl: Analyzing innermost runtime complexity of term rewriting by dependency
pairs, JAR ’13

85/111

Dependency Tuples for Innermost Runtime Complexity irc

Here: innermost rewriting (≈ call-by-value)

Example (reverse)

app(nil, y) −→ y app(add(n, x), y) −→ add(n, app(x, y))

reverse(nil) −→ nil reverse(add(n, x)) −→ app(reverse(x), add(n, nil))

For rule ` −→ r, eval of ` costs 1 + eval of all function calls in r together:

Example (Dependency Tuples43 for reverse)

app](nil, y) −→ Com0

app](add(n, x), y) −→ Com1(app](x, y))

reverse](nil) −→ Com0

reverse](add(n, x)) −→ Com2(app](reverse(x), add(n, nil)), reverse](x))

Function calls to count marked with]
Compound symbols Comk group function calls together

43L. Noschinski, F. Emmes, J. Giesl: Analyzing innermost runtime complexity of term rewriting by dependency
pairs, JAR ’13

85/111

Polynomial Interpretations for Dependency Tuples

Example (reverse, Dependency Tuples for reverse)

app](nil, y) −→ Com0

app](add(n, x), y) −→ Com1(app](x, y))

reverse](nil) −→ Com0

reverse](add(n, x)) −→ Com2(app](reverse(x), add(n, nil)), reverse](x))

app(nil, y) −→ y app(add(n, x), y) −→ add(n, app(x, y))

reverse(nil) −→ nil reverse(add(n, x)) −→ app(reverse(x), add(n, nil))

Use interpretation [·] with [Comk](x1, . . . , xk) = x1 + · · ·+ xk and

[nil] = 0 [add](x1, x2) = x2 + 1 (≤ restricted interpretation)
[app](x1, x2) = x1 + x2 [reverse](x1) = x1 (bounds helper function’s result size)
[app]](x1, x2) = x1 + 1 [reverse]](x1) = x21 + x1 + 1 (complexity of function)

to show [`] ≥ [r] for all rules and [`] ≥ 1 + [r] for all Dependency Tuples

Maximum degree of [f]] is 2 ⇒ ircR(n) ∈ O(n2)

86/111

Polynomial Interpretations for Dependency Tuples

Example (reverse, Dependency Tuples for reverse)

app](nil, y) −→ Com0

app](add(n, x), y) −→ Com1(app](x, y))

reverse](nil) −→ Com0

reverse](add(n, x)) −→ Com2(app](reverse(x), add(n, nil)), reverse](x))

app(nil, y) −→ y app(add(n, x), y) −→ add(n, app(x, y))

reverse(nil) −→ nil reverse(add(n, x)) −→ app(reverse(x), add(n, nil))

Use interpretation [·] with [Comk](x1, . . . , xk) = x1 + · · ·+ xk and

[nil] = 0 [add](x1, x2) = x2 + 1 (≤ restricted interpretation)
[app](x1, x2) = x1 + x2 [reverse](x1) = x1 (bounds helper function’s result size)
[app]](x1, x2) = x1 + 1 [reverse]](x1) = x21 + x1 + 1 (complexity of function)

to show [`] ≥ [r] for all rules and [`] ≥ 1 + [r] for all Dependency Tuples

Maximum degree of [f]] is 2 ⇒ ircR(n) ∈ O(n2)
86/111

Related Techniques

Dependency Tuples are an adaptation of Dependency Pairs (DPs) from termination analysis to
complexity analysis, allow for incremental complexity proofs with several techniques

Further adaptation of DPs (incomparable): Weak (Innermost) Dependency Pairs for
(innermost) runtime complexity44

Extensions by polynomial path orders45, usable replacement maps46, a combination framework
for complexity analysis47, . . .

44N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency pair method, IJCAR ’08
45M. Avanzini, G. Moser: Dependency pairs and polynomial path orders, RTA ’09
46N. Hirokawa, G. Moser: Automated complexity analysis based on context-sensitive rewriting, RTA-TLCA ’14
47M. Avanzini, G. Moser: A combination framework for complexity, IC ’16

87/111

Related Techniques

Dependency Tuples are an adaptation of Dependency Pairs (DPs) from termination analysis to
complexity analysis, allow for incremental complexity proofs with several techniques
Further adaptation of DPs (incomparable): Weak (Innermost) Dependency Pairs for
(innermost) runtime complexity44

Extensions by polynomial path orders45, usable replacement maps46, a combination framework
for complexity analysis47, . . .

44N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency pair method, IJCAR ’08

45M. Avanzini, G. Moser: Dependency pairs and polynomial path orders, RTA ’09
46N. Hirokawa, G. Moser: Automated complexity analysis based on context-sensitive rewriting, RTA-TLCA ’14
47M. Avanzini, G. Moser: A combination framework for complexity, IC ’16

87/111

Related Techniques

Dependency Tuples are an adaptation of Dependency Pairs (DPs) from termination analysis to
complexity analysis, allow for incremental complexity proofs with several techniques
Further adaptation of DPs (incomparable): Weak (Innermost) Dependency Pairs for
(innermost) runtime complexity44

Extensions by polynomial path orders45, usable replacement maps46, a combination framework
for complexity analysis47, . . .

44N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency pair method, IJCAR ’08
45M. Avanzini, G. Moser: Dependency pairs and polynomial path orders, RTA ’09
46N. Hirokawa, G. Moser: Automated complexity analysis based on context-sensitive rewriting, RTA-TLCA ’14
47M. Avanzini, G. Moser: A combination framework for complexity, IC ’16

87/111

A Landscape of Complexity Properties and Transformations

dc rc

TRS

88/111

A Landscape of Complexity Properties and Transformations

idc

dc

irc

rc

idc, irc: like dc, rc,
but for innermost rewriting

TRS

88/111

A Landscape of Complexity Properties and Transformations

idc

dc

irc

rc

idc, irc: like dc, rc,
but for innermost rewriting

TRS

LPAR’1748

48F. Frohn, J. Giesl: Analyzing runtime complexity via innermost runtime complexity, LPAR ’17
88/111

A Landscape of Complexity Properties and Transformations

idc

dc

irc

rc

idc, irc: like dc, rc,
but for innermost rewriting

TRS

LPAR’1748

FroCoS’1949

FroCoS’19

48F. Frohn, J. Giesl: Analyzing runtime complexity via innermost runtime complexity, LPAR ’17
49C. Fuhs: Transforming Derivational Complexity of Term Rewriting to Runtime Complexity, FroCoS ’19

88/111

Transforming Derivational Complexity to Runtime Complexity

The big picture:
Have: Tool for automated analysis of runtime complexity rcR

Want: Tool for automated analysis of derivational complexity dcR

Idea:
“rcR analysis tool + transformation on TRS R = dcR analysis tool”

Benefits:
Get analysis of derivational complexity “for free”
Progress in runtime complexity analysis automatically improves derivational complexity analysis

89/111

Transforming Derivational Complexity to Runtime Complexity

The big picture:
Have: Tool for automated analysis of runtime complexity rcR

Want: Tool for automated analysis of derivational complexity dcR

Idea:
“rcR analysis tool + transformation on TRS R = dcR analysis tool”

Benefits:
Get analysis of derivational complexity “for free”
Progress in runtime complexity analysis automatically improves derivational complexity analysis

89/111

Transforming Derivational Complexity to Runtime Complexity

The big picture:
Have: Tool for automated analysis of runtime complexity rcR

Want: Tool for automated analysis of derivational complexity dcR

Idea:
“rcR analysis tool + transformation on TRS R = dcR analysis tool”

Benefits:
Get analysis of derivational complexity “for free”
Progress in runtime complexity analysis automatically improves derivational complexity analysis

89/111

Transforming Derivational Complexity to Runtime Complexity

The big picture:
Have: Tool for automated analysis of runtime complexity rcR

Want: Tool for automated analysis of derivational complexity dcR

Idea:
“rcR analysis tool + transformation on TRS R = dcR analysis tool”

Benefits:
Get analysis of derivational complexity “for free”
Progress in runtime complexity analysis automatically improves derivational complexity analysis

89/111

From dc to rc: Results

program transformation such that runtime complexity of transformed TRS is identical to
derivational complexity of original TRS

transformation correct also from idc to irc

implemented in program analysis tool AProVE

evaluated successfully on TPDB relative to state of the art TcT

90/111

From dc to rc: Results

program transformation such that runtime complexity of transformed TRS is identical to
derivational complexity of original TRS

transformation correct also from idc to irc

implemented in program analysis tool AProVE

evaluated successfully on TPDB relative to state of the art TcT

90/111

From dc to rc: Results

program transformation such that runtime complexity of transformed TRS is identical to
derivational complexity of original TRS

transformation correct also from idc to irc

implemented in program analysis tool AProVE

evaluated successfully on TPDB relative to state of the art TcT

90/111

From dc to rc: Results

program transformation such that runtime complexity of transformed TRS is identical to
derivational complexity of original TRS

transformation correct also from idc to irc

implemented in program analysis tool AProVE

evaluated successfully on TPDB50 relative to state of the art TcT

50Termination Problem DataBase, standard benchmark source for annual Termination Competition (termCOMP)
with 1000s of problems, http://termination-portal.org/wiki/TPDB

90/111

http://termination-portal.org/wiki/TPDB

From dc to rc: Transformation

Issue:
Runtime complexity assumes basic terms as start terms
We want to analyse complexity for arbitrary terms

Idea:
Introduce constructor symbol cf for defined symbol f
Add generator rewrite rules G to reconstruct arbitrary term with f from basic term with cf

Represent

t = double(double(double(s(0))))

by basic variant

bv(t) = encdouble(cdouble(cdouble(s(0))))

Then:
bv(t) is basic term, size |t|
bv(t) −→∗G t

Example (Generator rules G)
encdouble(x) −→ double(argenc(x))

enc0 −→ 0

encs(x) −→ s(argenc(x))

argenc(cdouble(x)) −→ double(argenc(x))

argenc(0) −→ 0

argenc(s(x)) −→ s(argenc(x))

91/111

From dc to rc: Transformation

Issue:
Runtime complexity assumes basic terms as start terms
We want to analyse complexity for arbitrary terms

Idea:
Introduce constructor symbol cf for defined symbol f

Add generator rewrite rules G to reconstruct arbitrary term with f from basic term with cf

Represent

t = double(double(double(s(0))))

by basic variant

bv(t) = encdouble(cdouble(cdouble(s(0))))

Then:
bv(t) is basic term, size |t|
bv(t) −→∗G t

Example (Generator rules G)
encdouble(x) −→ double(argenc(x))

enc0 −→ 0

encs(x) −→ s(argenc(x))

argenc(cdouble(x)) −→ double(argenc(x))

argenc(0) −→ 0

argenc(s(x)) −→ s(argenc(x))

91/111

From dc to rc: Transformation

Issue:
Runtime complexity assumes basic terms as start terms
We want to analyse complexity for arbitrary terms

Idea:
Introduce constructor symbol cf for defined symbol f
Add generator rewrite rules G to reconstruct arbitrary term with f from basic term with cf

Represent

t = double(double(double(s(0))))

by basic variant

bv(t) = encdouble(cdouble(cdouble(s(0))))

Then:
bv(t) is basic term, size |t|
bv(t) −→∗G t

Example (Generator rules G)
encdouble(x) −→ double(argenc(x))

enc0 −→ 0

encs(x) −→ s(argenc(x))

argenc(cdouble(x)) −→ double(argenc(x))

argenc(0) −→ 0

argenc(s(x)) −→ s(argenc(x))

91/111

From dc to rc: Transformation

Issue:
Runtime complexity assumes basic terms as start terms
We want to analyse complexity for arbitrary terms

Idea:
Introduce constructor symbol cf for defined symbol f
Add generator rewrite rules G to reconstruct arbitrary term with f from basic term with cf

Represent

t = double(double(double(s(0))))

by basic variant

bv(t) = encdouble(cdouble(cdouble(s(0))))

Then:
bv(t) is basic term, size |t|
bv(t) −→∗G t

Example (Generator rules G)
encdouble(x) −→ double(argenc(x))

enc0 −→ 0

encs(x) −→ s(argenc(x))

argenc(cdouble(x)) −→ double(argenc(x))

argenc(0) −→ 0

argenc(s(x)) −→ s(argenc(x))

91/111

From dc to rc: Transformation

Issue:
Runtime complexity assumes basic terms as start terms
We want to analyse complexity for arbitrary terms

Idea:
Introduce constructor symbol cf for defined symbol f
Add generator rewrite rules G to reconstruct arbitrary term with f from basic term with cf

Represent

t = double(double(double(s(0))))

by basic variant

bv(t) = encdouble(cdouble(cdouble(s(0))))

Then:
bv(t) is basic term, size |t|
bv(t) −→∗G t

Example (Generator rules G)
encdouble(x) −→ double(argenc(x))

enc0 −→ 0

encs(x) −→ s(argenc(x))

argenc(cdouble(x)) −→ double(argenc(x))

argenc(0) −→ 0

argenc(s(x)) −→ s(argenc(x))

91/111

From dc to rc: Transformation

Issue:
Runtime complexity assumes basic terms as start terms
We want to analyse complexity for arbitrary terms

Idea:
Introduce constructor symbol cf for defined symbol f
Add generator rewrite rules G to reconstruct arbitrary term with f from basic term with cf

Represent

t = double(double(double(s(0))))

by basic variant

bv(t) = encdouble(cdouble(cdouble(s(0))))

Then:
bv(t) is basic term, size |t|
bv(t) −→∗G t

Example (Generator rules G)
encdouble(x) −→ double(argenc(x))

enc0 −→ 0

encs(x) −→ s(argenc(x))

argenc(cdouble(x)) −→ double(argenc(x))

argenc(0) −→ 0

argenc(s(x)) −→ s(argenc(x))

91/111

From dc to rc: Transformation

Issue:
Runtime complexity assumes basic terms as start terms
We want to analyse complexity for arbitrary terms

Idea:
Introduce constructor symbol cf for defined symbol f
Add generator rewrite rules G to reconstruct arbitrary term with f from basic term with cf

Represent

t = double(double(double(s(0))))

by basic variant

bv(t) = encdouble(cdouble(cdouble(s(0))))

Then:
bv(t) is basic term, size |t|

bv(t) −→∗G t

Example (Generator rules G)
encdouble(x) −→ double(argenc(x))

enc0 −→ 0

encs(x) −→ s(argenc(x))

argenc(cdouble(x)) −→ double(argenc(x))

argenc(0) −→ 0

argenc(s(x)) −→ s(argenc(x))

91/111

From dc to rc: Transformation

Issue:
Runtime complexity assumes basic terms as start terms
We want to analyse complexity for arbitrary terms

Idea:
Introduce constructor symbol cf for defined symbol f
Add generator rewrite rules G to reconstruct arbitrary term with f from basic term with cf

Represent

t = double(double(double(s(0))))

by basic variant

bv(t) = encdouble(cdouble(cdouble(s(0))))

Then:
bv(t) is basic term, size |t|
bv(t) −→∗G t

Example (Generator rules G)
encdouble(x) −→ double(argenc(x))

enc0 −→ 0

encs(x) −→ s(argenc(x))

argenc(cdouble(x)) −→ double(argenc(x))

argenc(0) −→ 0

argenc(s(x)) −→ s(argenc(x))

91/111

General Case: Relative Rewriting

Issue:
−→R∪G has extra rewrite steps not present in −→R
may change complexity

Solution:
add G as relative rewrite rules:
−→G steps are not counted for complexity analysis!
transform R to R/G (−→R steps are counted, −→G steps are not)
more generally: transform R/S to R/(S ∪ G)
(input may contain relative rules S, too)

92/111

General Case: Relative Rewriting

Issue:
−→R∪G has extra rewrite steps not present in −→R
may change complexity

Solution:
add G as relative rewrite rules:
−→G steps are not counted for complexity analysis!
transform R to R/G (−→R steps are counted, −→G steps are not)

more generally: transform R/S to R/(S ∪ G)
(input may contain relative rules S, too)

92/111

General Case: Relative Rewriting

Issue:
−→R∪G has extra rewrite steps not present in −→R
may change complexity

Solution:
add G as relative rewrite rules:
−→G steps are not counted for complexity analysis!
transform R to R/G (−→R steps are counted, −→G steps are not)
more generally: transform R/S to R/(S ∪ G)
(input may contain relative rules S, too)

92/111

From dc to rc: Correctness

Theorem (Derivational Complexity via Runtime Complexity)
Let R/S be a relative TRS, let G be the generator rules for R/S. Then

1 dcR/S(n) = rcR/(S∪G)(n) (arbitrary rewrite strategies)
2 idcR/S(n) = ircR/(S∪G)(n) (innermost rewriting)

Note: equalities hold also non-asymptotically!

93/111

From (i)dc to (i)rc: Experiments

Experiments on TPDB, compare with state of the art in TcT:

upper bounds idc: both AProVE and TcT with transformation are stronger than standard TcT

upper bounds dc: TcT stronger than AProVE and TcT with transformation, but AProVE still
solves some new examples

lower bounds idc and dc: heuristics do not seem to benefit much

⇒ Transformation-based approach should be part of the portfolio of analysis tools for derivational
complexity

94/111

From (i)dc to (i)rc: Experiments

Experiments on TPDB, compare with state of the art in TcT:

upper bounds idc: both AProVE and TcT with transformation are stronger than standard TcT

upper bounds dc: TcT stronger than AProVE and TcT with transformation, but AProVE still
solves some new examples

lower bounds idc and dc: heuristics do not seem to benefit much

⇒ Transformation-based approach should be part of the portfolio of analysis tools for derivational
complexity

94/111

Derivational Complexity: Applications and Extensions

Possible applications
compiler simplifications
SMT solver preprocessing

Start terms may have nested defined symbols, so dcR is appropriate

Go between derivational and runtime complexity
So far: encode full term universe T via basic terms Tbasic
Generalise: write relative rules to generate arbitrary set U of terms “between” basic and all terms
(Tbasic ⊆ U ⊆ T).

95/111

Derivational Complexity: Applications and Extensions

Possible applications
compiler simplifications
SMT solver preprocessing

Start terms may have nested defined symbols, so dcR is appropriate

Go between derivational and runtime complexity
So far: encode full term universe T via basic terms Tbasic
Generalise: write relative rules to generate arbitrary set U of terms “between” basic and all terms
(Tbasic ⊆ U ⊆ T).

95/111

A Landscape of Complexity Properties and Transformations

idc

dc

irc

rc

idc, irc: like dc, rc,
but for innermost rewriting

Rec. ITS irc ITS irc

TRS

LPAR’17

FroCoS’19

FroCoS’19

50M. Naaf, F. Frohn, M. Brockschmidt, C. Fuhs, J. Giesl: Complexity analysis for term rewriting by integer
transition systems, FroCoS ’17

96/111

A Landscape of Complexity Properties and Transformations

idc

dc

irc

rc

idc, irc: like dc, rc,
but for innermost rewriting

Rec. ITS irc ITS irc

TRS

LPAR’17

FroCoS’19

FroCoS’19

FroCoS’1751 FroCoS’17

51M. Naaf, F. Frohn, M. Brockschmidt, C. Fuhs, J. Giesl: Complexity analysis for term rewriting by integer
transition systems, FroCoS ’17

96/111

A Landscape of Complexity Properties and Transformations

idc

dc

irc

rc

idc, irc: like dc, rc,
but for innermost rewriting

Rec. ITS irc ITS irc

TRS

LPAR’17

FroCoS’19

FroCoS’19

FroCoS’1751 FroCoS’17

51M. Naaf, F. Frohn, M. Brockschmidt, C. Fuhs, J. Giesl: Complexity analysis for term rewriting by integer
transition systems, FroCoS ’17

96/111

Derivational_Complexity_Full_Rewriting/AG01/#3.12, TPDB

app(nil, y) −→ y app(add(n, x), y) −→ add(n, app(x, y))

reverse(nil) −→ nil reverse(add(n, x)) −→ app(reverse(x), add(n, nil))

shuffle(nil) −→ nil shuffle(add(n, x)) −→ add(n, shuffle(reverse(x)))

AProVE finds (tight) upper bound O(n4) for dcR:

1 Add generator rules G, so analyse rcR/G instead (FroCoS’19)
2 Detect: innermost is worst case here, analyse ircR/G instead (LPAR’17)
3 Transform TRS to Recursive Integer Transition System (RITS), analyse complexity of RITS

instead (FroCoS’17)
4 ITS tools CoFloCo and KoAT find upper bounds for runtime and size of individual RITS

functions, combine to complexity of RITS
5 Upper bound O(n4) for RITS complexity carries over to dcR of input!

AProVE finds lower bound Ω(n3) for dcR.52

52F. Frohn, J. Giesl, J. Hensel, C. Aschermann, and T. Ströder: Lower bounds for runtime complexity of term
rewriting, JAR ’17

97/111

Derivational_Complexity_Full_Rewriting/AG01/#3.12

Derivational_Complexity_Full_Rewriting/AG01/#3.12, TPDB

app(nil, y) −→ y app(add(n, x), y) −→ add(n, app(x, y))

reverse(nil) −→ nil reverse(add(n, x)) −→ app(reverse(x), add(n, nil))

shuffle(nil) −→ nil shuffle(add(n, x)) −→ add(n, shuffle(reverse(x)))

AProVE finds (tight) upper bound O(n4) for dcR:

1 Add generator rules G, so analyse rcR/G instead (FroCoS’19)
2 Detect: innermost is worst case here, analyse ircR/G instead (LPAR’17)
3 Transform TRS to Recursive Integer Transition System (RITS), analyse complexity of RITS

instead (FroCoS’17)
4 ITS tools CoFloCo and KoAT find upper bounds for runtime and size of individual RITS

functions, combine to complexity of RITS
5 Upper bound O(n4) for RITS complexity carries over to dcR of input!

AProVE finds lower bound Ω(n3) for dcR.52

52F. Frohn, J. Giesl, J. Hensel, C. Aschermann, and T. Ströder: Lower bounds for runtime complexity of term
rewriting, JAR ’17

97/111

Derivational_Complexity_Full_Rewriting/AG01/#3.12

Derivational_Complexity_Full_Rewriting/AG01/#3.12, TPDB

app(nil, y) −→ y app(add(n, x), y) −→ add(n, app(x, y))

reverse(nil) −→ nil reverse(add(n, x)) −→ app(reverse(x), add(n, nil))

shuffle(nil) −→ nil shuffle(add(n, x)) −→ add(n, shuffle(reverse(x)))

AProVE finds (tight) upper bound O(n4) for dcR:

1 Add generator rules G, so analyse rcR/G instead (FroCoS’19)

2 Detect: innermost is worst case here, analyse ircR/G instead (LPAR’17)
3 Transform TRS to Recursive Integer Transition System (RITS), analyse complexity of RITS

instead (FroCoS’17)
4 ITS tools CoFloCo and KoAT find upper bounds for runtime and size of individual RITS

functions, combine to complexity of RITS
5 Upper bound O(n4) for RITS complexity carries over to dcR of input!

AProVE finds lower bound Ω(n3) for dcR.52

52F. Frohn, J. Giesl, J. Hensel, C. Aschermann, and T. Ströder: Lower bounds for runtime complexity of term
rewriting, JAR ’17

97/111

Derivational_Complexity_Full_Rewriting/AG01/#3.12

Derivational_Complexity_Full_Rewriting/AG01/#3.12, TPDB

app(nil, y) −→ y app(add(n, x), y) −→ add(n, app(x, y))

reverse(nil) −→ nil reverse(add(n, x)) −→ app(reverse(x), add(n, nil))

shuffle(nil) −→ nil shuffle(add(n, x)) −→ add(n, shuffle(reverse(x)))

AProVE finds (tight) upper bound O(n4) for dcR:

1 Add generator rules G, so analyse rcR/G instead (FroCoS’19)
2 Detect: innermost is worst case here, analyse ircR/G instead (LPAR’17)

3 Transform TRS to Recursive Integer Transition System (RITS), analyse complexity of RITS
instead (FroCoS’17)

4 ITS tools CoFloCo and KoAT find upper bounds for runtime and size of individual RITS
functions, combine to complexity of RITS

5 Upper bound O(n4) for RITS complexity carries over to dcR of input!

AProVE finds lower bound Ω(n3) for dcR.52

52F. Frohn, J. Giesl, J. Hensel, C. Aschermann, and T. Ströder: Lower bounds for runtime complexity of term
rewriting, JAR ’17

97/111

Derivational_Complexity_Full_Rewriting/AG01/#3.12

Derivational_Complexity_Full_Rewriting/AG01/#3.12, TPDB

app(nil, y) −→ y app(add(n, x), y) −→ add(n, app(x, y))

reverse(nil) −→ nil reverse(add(n, x)) −→ app(reverse(x), add(n, nil))

shuffle(nil) −→ nil shuffle(add(n, x)) −→ add(n, shuffle(reverse(x)))

AProVE finds (tight) upper bound O(n4) for dcR:

1 Add generator rules G, so analyse rcR/G instead (FroCoS’19)
2 Detect: innermost is worst case here, analyse ircR/G instead (LPAR’17)
3 Transform TRS to Recursive Integer Transition System (RITS), analyse complexity of RITS

instead (FroCoS’17)

4 ITS tools CoFloCo and KoAT find upper bounds for runtime and size of individual RITS
functions, combine to complexity of RITS

5 Upper bound O(n4) for RITS complexity carries over to dcR of input!

AProVE finds lower bound Ω(n3) for dcR.52

52F. Frohn, J. Giesl, J. Hensel, C. Aschermann, and T. Ströder: Lower bounds for runtime complexity of term
rewriting, JAR ’17

97/111

Derivational_Complexity_Full_Rewriting/AG01/#3.12

Derivational_Complexity_Full_Rewriting/AG01/#3.12, TPDB

app(nil, y) −→ y app(add(n, x), y) −→ add(n, app(x, y))

reverse(nil) −→ nil reverse(add(n, x)) −→ app(reverse(x), add(n, nil))

shuffle(nil) −→ nil shuffle(add(n, x)) −→ add(n, shuffle(reverse(x)))

AProVE finds (tight) upper bound O(n4) for dcR:

1 Add generator rules G, so analyse rcR/G instead (FroCoS’19)
2 Detect: innermost is worst case here, analyse ircR/G instead (LPAR’17)
3 Transform TRS to Recursive Integer Transition System (RITS), analyse complexity of RITS

instead (FroCoS’17)
4 ITS tools CoFloCo and KoAT find upper bounds for runtime and size of individual RITS

functions, combine to complexity of RITS

5 Upper bound O(n4) for RITS complexity carries over to dcR of input!

AProVE finds lower bound Ω(n3) for dcR.52

52F. Frohn, J. Giesl, J. Hensel, C. Aschermann, and T. Ströder: Lower bounds for runtime complexity of term
rewriting, JAR ’17

97/111

Derivational_Complexity_Full_Rewriting/AG01/#3.12

Derivational_Complexity_Full_Rewriting/AG01/#3.12, TPDB

app(nil, y) −→ y app(add(n, x), y) −→ add(n, app(x, y))

reverse(nil) −→ nil reverse(add(n, x)) −→ app(reverse(x), add(n, nil))

shuffle(nil) −→ nil shuffle(add(n, x)) −→ add(n, shuffle(reverse(x)))

AProVE finds (tight) upper bound O(n4) for dcR:

1 Add generator rules G, so analyse rcR/G instead (FroCoS’19)
2 Detect: innermost is worst case here, analyse ircR/G instead (LPAR’17)
3 Transform TRS to Recursive Integer Transition System (RITS), analyse complexity of RITS

instead (FroCoS’17)
4 ITS tools CoFloCo and KoAT find upper bounds for runtime and size of individual RITS

functions, combine to complexity of RITS
5 Upper bound O(n4) for RITS complexity carries over to dcR of input!

AProVE finds lower bound Ω(n3) for dcR.52

52F. Frohn, J. Giesl, J. Hensel, C. Aschermann, and T. Ströder: Lower bounds for runtime complexity of term
rewriting, JAR ’17

97/111

Derivational_Complexity_Full_Rewriting/AG01/#3.12

Derivational_Complexity_Full_Rewriting/AG01/#3.12, TPDB

app(nil, y) −→ y app(add(n, x), y) −→ add(n, app(x, y))

reverse(nil) −→ nil reverse(add(n, x)) −→ app(reverse(x), add(n, nil))

shuffle(nil) −→ nil shuffle(add(n, x)) −→ add(n, shuffle(reverse(x)))

AProVE finds (tight) upper bound O(n4) for dcR:

1 Add generator rules G, so analyse rcR/G instead (FroCoS’19)
2 Detect: innermost is worst case here, analyse ircR/G instead (LPAR’17)
3 Transform TRS to Recursive Integer Transition System (RITS), analyse complexity of RITS

instead (FroCoS’17)
4 ITS tools CoFloCo and KoAT find upper bounds for runtime and size of individual RITS

functions, combine to complexity of RITS
5 Upper bound O(n4) for RITS complexity carries over to dcR of input!

AProVE finds lower bound Ω(n3) for dcR.52

52F. Frohn, J. Giesl, J. Hensel, C. Aschermann, and T. Ströder: Lower bounds for runtime complexity of term
rewriting, JAR ’17

97/111

Derivational_Complexity_Full_Rewriting/AG01/#3.12

Input for Automated Tools (1/4)

Automated tools for TRS Complexity at recent Termination Competitions:
AProVE: https://aprove.informatik.rwth-aachen.de/
TcT: https://tcs-informatik.uibk.ac.at/tools/tct/

Web interfaces available:
AProVE: https://aprove.informatik.rwth-aachen.de/interface
TcT: http://colo6-c703.uibk.ac.at/tct/tct-trs/

Input format for runtime complexity:53

(VAR x y)
(GOAL COMPLEXITY)
(STARTTERM CONSTRUCTOR-BASED)
(RULES
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

)

53For TcT Web, use only VAR and RULES entries in the text format and configure other aspects (e.g., start terms) in
the web interface.

98/111

https://aprove.informatik.rwth-aachen.de/
https://tcs-informatik.uibk.ac.at/tools/tct/
https://aprove.informatik.rwth-aachen.de/interface
http://colo6-c703.uibk.ac.at/tct/tct-trs/

Input for Automated Tools (1/4)

Automated tools for TRS Complexity at recent Termination Competitions:
AProVE: https://aprove.informatik.rwth-aachen.de/
TcT: https://tcs-informatik.uibk.ac.at/tools/tct/

Web interfaces available:
AProVE: https://aprove.informatik.rwth-aachen.de/interface
TcT: http://colo6-c703.uibk.ac.at/tct/tct-trs/

Input format for runtime complexity:53

(VAR x y)
(GOAL COMPLEXITY)
(STARTTERM CONSTRUCTOR-BASED)
(RULES
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

)

53For TcT Web, use only VAR and RULES entries in the text format and configure other aspects (e.g., start terms) in
the web interface.

98/111

https://aprove.informatik.rwth-aachen.de/
https://tcs-informatik.uibk.ac.at/tools/tct/
https://aprove.informatik.rwth-aachen.de/interface
http://colo6-c703.uibk.ac.at/tct/tct-trs/

Input for Automated Tools (1/4)

Automated tools for TRS Complexity at recent Termination Competitions:
AProVE: https://aprove.informatik.rwth-aachen.de/
TcT: https://tcs-informatik.uibk.ac.at/tools/tct/

Web interfaces available:
AProVE: https://aprove.informatik.rwth-aachen.de/interface
TcT: http://colo6-c703.uibk.ac.at/tct/tct-trs/

Input format for runtime complexity:53

(VAR x y)
(GOAL COMPLEXITY)
(STARTTERM CONSTRUCTOR-BASED)
(RULES
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

)

53For TcT Web, use only VAR and RULES entries in the text format and configure other aspects (e.g., start terms) in
the web interface.

98/111

https://aprove.informatik.rwth-aachen.de/
https://tcs-informatik.uibk.ac.at/tools/tct/
https://aprove.informatik.rwth-aachen.de/interface
http://colo6-c703.uibk.ac.at/tct/tct-trs/

Input for Automated Tools (2/4)

Innermost runtime complexity:

(VAR x y)
(GOAL COMPLEXITY)
(STARTTERM CONSTRUCTOR-BASED)
(STRATEGY INNERMOST)
(RULES
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

)

99/111

Input for Automated Tools (3/4)

Derivational complexity:

(VAR x y)
(GOAL COMPLEXITY)
(STARTTERM UNRESTRICTED)
(RULES
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

)

100/111

Input for Automated Tools (4/4)

Innermost derivational complexity:

(VAR x y)
(GOAL COMPLEXITY)
(STARTTERM UNRESTRICTED)
(STRATEGY INNERMOST)
(RULES
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

)

101/111

A Landscape of Complexity Properties and Transformations

idc

dc

irc

rc

idc, irc: like dc, rc,
but for innermost rewriting

Rec. ITS irc ITS irc

TRS

LPAR’17

FroCoS’19

FroCoS’19

FroCoS’17 FroCoS’17

102/111

A Landscape of Complexity Properties and Transformations

Prolog

OCaml

Java

idc

dc

irc

rc

idc, irc: like dc, rc,
but for innermost rewriting

Rec. ITS irc ITS irc

TRS

LPAR’17

FroCoS’19

FroCoS’19

FroCoS’17 FroCoS’17

102/111

A Landscape of Complexity Properties and Transformations

Prolog

OCaml

Java

idc

dc

irc

rc

idc, irc: like dc, rc,
but for innermost rewriting

Rec. ITS irc ITS irc

TRS

ICFP’1554

IC’1855

PPDP’1256

LPAR’17

FroCoS’19

FroCoS’19

FroCoS’17 FroCoS’17

54M. Avanzini, U. Dal Lago, G. Moser: Analysing the Complexity of Functional Programs: Higher-Order Meets
First-Order, ICFP ’15

55G. Moser, M. Schaper: From Jinja bytecode to term rewriting: A complexity reflecting transformation, IC ’18
56J. Giesl, T. Ströder, P. Schneider-Kamp, F. Emmes, C. Fuhs: Symbolic evaluation graphs and term rewriting: A

general methodology for analyzing logic programs, PPDP ’12
102/111

Program Complexity Analysis via Term Rewriting: OCaml

Complexity analysis for functional programs (OCaml) by translation to term rewriting

Challenge for translation to TRS: OCaml is higher-order – functions can take functions as
arguments: map(F, xs)

Solution:
Defunctionalisation to: a(a(map, F), xs)

Analyse start term with non-functional parameter types, then partially evaluate functions to
instantiate higher-order variables
Further program transformations

⇒ First-order TRS R with rcR(n) an upper bound for the complexity of the OCaml program

103/111

Program Complexity Analysis via Term Rewriting: OCaml

Complexity analysis for functional programs (OCaml) by translation to term rewriting

Challenge for translation to TRS: OCaml is higher-order – functions can take functions as
arguments: map(F, xs)

Solution:
Defunctionalisation to: a(a(map, F), xs)

Analyse start term with non-functional parameter types, then partially evaluate functions to
instantiate higher-order variables
Further program transformations

⇒ First-order TRS R with rcR(n) an upper bound for the complexity of the OCaml program

103/111

Program Complexity Analysis via Term Rewriting: OCaml

Complexity analysis for functional programs (OCaml) by translation to term rewriting

Challenge for translation to TRS: OCaml is higher-order – functions can take functions as
arguments: map(F, xs)

Solution:
Defunctionalisation to: a(a(map, F), xs)

Analyse start term with non-functional parameter types, then partially evaluate functions to
instantiate higher-order variables
Further program transformations

⇒ First-order TRS R with rcR(n) an upper bound for the complexity of the OCaml program

103/111

Program Complexity Analysis via Term Rewriting: Prolog and Java

Complexity analysis for Prolog programs and for Java programs by translation to term rewriting

Common ideas:
Analyse program via symbolic execution and generalisation (a form of abstract interpretation57)
Deal with language specifics in program analysis
Extract TRS R such that rcR(n) is provably at least as high as runtime of program on input of
size n
Can represent tree structures of program as terms in TRS!

57P. Cousot, R. Cousot: Abstract interpretation: a unified lattice model for static analysis of programs by
construction or approximation of fixpoints, POPL ’77

104/111

Program Complexity Analysis via Term Rewriting: Prolog and Java

Complexity analysis for Prolog programs and for Java programs by translation to term rewriting

Common ideas:
Analyse program via symbolic execution and generalisation (a form of abstract interpretation57)
Deal with language specifics in program analysis
Extract TRS R such that rcR(n) is provably at least as high as runtime of program on input of
size n
Can represent tree structures of program as terms in TRS!

57P. Cousot, R. Cousot: Abstract interpretation: a unified lattice model for static analysis of programs by
construction or approximation of fixpoints, POPL ’77

104/111

Current Developments

amortised complexity analysis for term rewriting58

probabilistic term rewriting −→ upper bounds on expected runtime59

complexity analysis for logically constrained rewriting with built-in data types from SMT
theories (integers, booleans, arrays, . . .)60

direct analysis of complexity for higher-order term rewriting61

analysis of parallel-innermost runtime complexity62

58G. Moser, M. Schneckenreither: Automated amortised resource analysis for term rewrite systems, SCP ’20

59M. Avanzini, U. Dal Lago, A. Yamada: On probabilistic term rewriting, SCP ’20
60S. Winkler, G. Moser: Runtime complexity analysis of logically constrained rewriting, LOPSTR ’20
61C. Kop, D. Vale: Tuple interpretations for higher-order rewriting, FSCD ’21
62T. Baudon, C. Fuhs, L. Gonnord: Analysing parallel complexity of term rewriting, LOPSTR ’22

105/111

Current Developments

amortised complexity analysis for term rewriting58

probabilistic term rewriting −→ upper bounds on expected runtime59

complexity analysis for logically constrained rewriting with built-in data types from SMT
theories (integers, booleans, arrays, . . .)60

direct analysis of complexity for higher-order term rewriting61

analysis of parallel-innermost runtime complexity62

58G. Moser, M. Schneckenreither: Automated amortised resource analysis for term rewrite systems, SCP ’20
59M. Avanzini, U. Dal Lago, A. Yamada: On probabilistic term rewriting, SCP ’20

60S. Winkler, G. Moser: Runtime complexity analysis of logically constrained rewriting, LOPSTR ’20
61C. Kop, D. Vale: Tuple interpretations for higher-order rewriting, FSCD ’21
62T. Baudon, C. Fuhs, L. Gonnord: Analysing parallel complexity of term rewriting, LOPSTR ’22

105/111

Current Developments

amortised complexity analysis for term rewriting58

probabilistic term rewriting −→ upper bounds on expected runtime59

complexity analysis for logically constrained rewriting with built-in data types from SMT
theories (integers, booleans, arrays, . . .)60

direct analysis of complexity for higher-order term rewriting61

analysis of parallel-innermost runtime complexity62

58G. Moser, M. Schneckenreither: Automated amortised resource analysis for term rewrite systems, SCP ’20
59M. Avanzini, U. Dal Lago, A. Yamada: On probabilistic term rewriting, SCP ’20
60S. Winkler, G. Moser: Runtime complexity analysis of logically constrained rewriting, LOPSTR ’20

61C. Kop, D. Vale: Tuple interpretations for higher-order rewriting, FSCD ’21
62T. Baudon, C. Fuhs, L. Gonnord: Analysing parallel complexity of term rewriting, LOPSTR ’22

105/111

Current Developments

amortised complexity analysis for term rewriting58

probabilistic term rewriting −→ upper bounds on expected runtime59

complexity analysis for logically constrained rewriting with built-in data types from SMT
theories (integers, booleans, arrays, . . .)60

direct analysis of complexity for higher-order term rewriting61

analysis of parallel-innermost runtime complexity62

58G. Moser, M. Schneckenreither: Automated amortised resource analysis for term rewrite systems, SCP ’20
59M. Avanzini, U. Dal Lago, A. Yamada: On probabilistic term rewriting, SCP ’20
60S. Winkler, G. Moser: Runtime complexity analysis of logically constrained rewriting, LOPSTR ’20
61C. Kop, D. Vale: Tuple interpretations for higher-order rewriting, FSCD ’21

62T. Baudon, C. Fuhs, L. Gonnord: Analysing parallel complexity of term rewriting, LOPSTR ’22

105/111

Current Developments

amortised complexity analysis for term rewriting58

probabilistic term rewriting −→ upper bounds on expected runtime59

complexity analysis for logically constrained rewriting with built-in data types from SMT
theories (integers, booleans, arrays, . . .)60

direct analysis of complexity for higher-order term rewriting61

analysis of parallel-innermost runtime complexity62

58G. Moser, M. Schneckenreither: Automated amortised resource analysis for term rewrite systems, SCP ’20
59M. Avanzini, U. Dal Lago, A. Yamada: On probabilistic term rewriting, SCP ’20
60S. Winkler, G. Moser: Runtime complexity analysis of logically constrained rewriting, LOPSTR ’20
61C. Kop, D. Vale: Tuple interpretations for higher-order rewriting, FSCD ’21
62T. Baudon, C. Fuhs, L. Gonnord: Analysing parallel complexity of term rewriting, LOPSTR ’22

105/111

III. Termination and Complexity Proof
Certification

106/111

Certification: Who Watches the Watchers?

Termination and complexity analysis tools are large, e.g., AProVE has several 100,000s LOC –
most likely with bugs!

Observation in early Termination Competitions: some tools disagreed on YES / NO for
termination
Step 1: Require human-readable proof output. But: can be large!
Step 2: Machine-readable XML proof output, can be certified independently by trustworthy
tools based on Coq and Isabelle
∼ 2007/8: projects A3PAT63, CoLoR64, IsaFoR65 formalise term rewriting, termination, proof
techniques −→ automatic proof checkers
performance bottleneck: computations in theorem prover
solution: extract source code (Haskell, OCaml, . . .) for proof checker
−→ CeTA tool from IsaFoR

63E. Contejean,P. Courtieu, J. Forest, O. Pons, X. Urbain: Automated Certified Proofs with CiME3, RTA ’11
64F. Blanqui, A. Koprowski: CoLoR: a Coq library on well-founded rewrite relations and its application to the

automated verification of termination certificates, MSCS ’11
65R. Thiemann, C. Sternagel: Certification of Termination Proofs using CeTA, TPHOLs ’09

107/111

Certification: Who Watches the Watchers?

Termination and complexity analysis tools are large, e.g., AProVE has several 100,000s LOC –
most likely with bugs!
Observation in early Termination Competitions: some tools disagreed on YES / NO for
termination

Step 1: Require human-readable proof output. But: can be large!
Step 2: Machine-readable XML proof output, can be certified independently by trustworthy
tools based on Coq and Isabelle
∼ 2007/8: projects A3PAT63, CoLoR64, IsaFoR65 formalise term rewriting, termination, proof
techniques −→ automatic proof checkers
performance bottleneck: computations in theorem prover
solution: extract source code (Haskell, OCaml, . . .) for proof checker
−→ CeTA tool from IsaFoR

63E. Contejean,P. Courtieu, J. Forest, O. Pons, X. Urbain: Automated Certified Proofs with CiME3, RTA ’11
64F. Blanqui, A. Koprowski: CoLoR: a Coq library on well-founded rewrite relations and its application to the

automated verification of termination certificates, MSCS ’11
65R. Thiemann, C. Sternagel: Certification of Termination Proofs using CeTA, TPHOLs ’09

107/111

Certification: Who Watches the Watchers?

Termination and complexity analysis tools are large, e.g., AProVE has several 100,000s LOC –
most likely with bugs!
Observation in early Termination Competitions: some tools disagreed on YES / NO for
termination
Step 1: Require human-readable proof output. But: can be large!

Step 2: Machine-readable XML proof output, can be certified independently by trustworthy
tools based on Coq and Isabelle
∼ 2007/8: projects A3PAT63, CoLoR64, IsaFoR65 formalise term rewriting, termination, proof
techniques −→ automatic proof checkers
performance bottleneck: computations in theorem prover
solution: extract source code (Haskell, OCaml, . . .) for proof checker
−→ CeTA tool from IsaFoR

63E. Contejean,P. Courtieu, J. Forest, O. Pons, X. Urbain: Automated Certified Proofs with CiME3, RTA ’11
64F. Blanqui, A. Koprowski: CoLoR: a Coq library on well-founded rewrite relations and its application to the

automated verification of termination certificates, MSCS ’11
65R. Thiemann, C. Sternagel: Certification of Termination Proofs using CeTA, TPHOLs ’09

107/111

Certification: Who Watches the Watchers?

Termination and complexity analysis tools are large, e.g., AProVE has several 100,000s LOC –
most likely with bugs!
Observation in early Termination Competitions: some tools disagreed on YES / NO for
termination
Step 1: Require human-readable proof output. But: can be large!
Step 2: Machine-readable XML proof output, can be certified independently by trustworthy
tools based on Coq and Isabelle

∼ 2007/8: projects A3PAT63, CoLoR64, IsaFoR65 formalise term rewriting, termination, proof
techniques −→ automatic proof checkers
performance bottleneck: computations in theorem prover
solution: extract source code (Haskell, OCaml, . . .) for proof checker
−→ CeTA tool from IsaFoR

63E. Contejean,P. Courtieu, J. Forest, O. Pons, X. Urbain: Automated Certified Proofs with CiME3, RTA ’11
64F. Blanqui, A. Koprowski: CoLoR: a Coq library on well-founded rewrite relations and its application to the

automated verification of termination certificates, MSCS ’11
65R. Thiemann, C. Sternagel: Certification of Termination Proofs using CeTA, TPHOLs ’09

107/111

Certification: Who Watches the Watchers?

Termination and complexity analysis tools are large, e.g., AProVE has several 100,000s LOC –
most likely with bugs!
Observation in early Termination Competitions: some tools disagreed on YES / NO for
termination
Step 1: Require human-readable proof output. But: can be large!
Step 2: Machine-readable XML proof output, can be certified independently by trustworthy
tools based on Coq and Isabelle
∼ 2007/8: projects A3PAT63, CoLoR64, IsaFoR65 formalise term rewriting, termination, proof
techniques −→ automatic proof checkers

performance bottleneck: computations in theorem prover
solution: extract source code (Haskell, OCaml, . . .) for proof checker
−→ CeTA tool from IsaFoR

63E. Contejean,P. Courtieu, J. Forest, O. Pons, X. Urbain: Automated Certified Proofs with CiME3, RTA ’11
64F. Blanqui, A. Koprowski: CoLoR: a Coq library on well-founded rewrite relations and its application to the

automated verification of termination certificates, MSCS ’11
65R. Thiemann, C. Sternagel: Certification of Termination Proofs using CeTA, TPHOLs ’09

107/111

Certification: Who Watches the Watchers?

Termination and complexity analysis tools are large, e.g., AProVE has several 100,000s LOC –
most likely with bugs!
Observation in early Termination Competitions: some tools disagreed on YES / NO for
termination
Step 1: Require human-readable proof output. But: can be large!
Step 2: Machine-readable XML proof output, can be certified independently by trustworthy
tools based on Coq and Isabelle
∼ 2007/8: projects A3PAT63, CoLoR64, IsaFoR65 formalise term rewriting, termination, proof
techniques −→ automatic proof checkers
performance bottleneck: computations in theorem prover

solution: extract source code (Haskell, OCaml, . . .) for proof checker
−→ CeTA tool from IsaFoR

63E. Contejean,P. Courtieu, J. Forest, O. Pons, X. Urbain: Automated Certified Proofs with CiME3, RTA ’11
64F. Blanqui, A. Koprowski: CoLoR: a Coq library on well-founded rewrite relations and its application to the

automated verification of termination certificates, MSCS ’11
65R. Thiemann, C. Sternagel: Certification of Termination Proofs using CeTA, TPHOLs ’09

107/111

Certification: Who Watches the Watchers?

Termination and complexity analysis tools are large, e.g., AProVE has several 100,000s LOC –
most likely with bugs!
Observation in early Termination Competitions: some tools disagreed on YES / NO for
termination
Step 1: Require human-readable proof output. But: can be large!
Step 2: Machine-readable XML proof output, can be certified independently by trustworthy
tools based on Coq and Isabelle
∼ 2007/8: projects A3PAT63, CoLoR64, IsaFoR65 formalise term rewriting, termination, proof
techniques −→ automatic proof checkers
performance bottleneck: computations in theorem prover
solution: extract source code (Haskell, OCaml, . . .) for proof checker
−→ CeTA tool from IsaFoR

63E. Contejean,P. Courtieu, J. Forest, O. Pons, X. Urbain: Automated Certified Proofs with CiME3, RTA ’11
64F. Blanqui, A. Koprowski: CoLoR: a Coq library on well-founded rewrite relations and its application to the

automated verification of termination certificates, MSCS ’11
65R. Thiemann, C. Sternagel: Certification of Termination Proofs using CeTA, TPHOLs ’09

107/111

Proof Certification with CeTA

http://cl-informatik.uibk.ac.at/isafor/

CeTA can certify proofs for...

termination of TRSs (several flavours), ITSs, and LLVM programs66

non-termination for TRSs
upper bounds for complexity
confluence and non-confluence proofs for TRSs
safety: invariants for ITSs67

If certification unsuccessful:
CeTA indicates which part of the proof it could not follow

66M. Haslbeck, R. Thiemann: An Isabelle/HOL formalization of AProVE’s termination method for LLVM IR,
CPP ’21

67M. Brockschmidt, S. Joosten, R. Thiemann, A. Yamada: Certifying Safety and Termination Proofs for Integer
Transition Systems, CADE ’17

108/111

http://cl-informatik.uibk.ac.at/isafor/

Proof Certification with CeTA

http://cl-informatik.uibk.ac.at/isafor/

CeTA can certify proofs for...
termination of TRSs (several flavours), ITSs, and LLVM programs66

non-termination for TRSs
upper bounds for complexity
confluence and non-confluence proofs for TRSs
safety: invariants for ITSs67

If certification unsuccessful:
CeTA indicates which part of the proof it could not follow

66M. Haslbeck, R. Thiemann: An Isabelle/HOL formalization of AProVE’s termination method for LLVM IR,
CPP ’21

67M. Brockschmidt, S. Joosten, R. Thiemann, A. Yamada: Certifying Safety and Termination Proofs for Integer
Transition Systems, CADE ’17

108/111

http://cl-informatik.uibk.ac.at/isafor/

Proof Certification with CeTA

http://cl-informatik.uibk.ac.at/isafor/

CeTA can certify proofs for...
termination of TRSs (several flavours), ITSs, and LLVM programs66

non-termination for TRSs

upper bounds for complexity
confluence and non-confluence proofs for TRSs
safety: invariants for ITSs67

If certification unsuccessful:
CeTA indicates which part of the proof it could not follow

66M. Haslbeck, R. Thiemann: An Isabelle/HOL formalization of AProVE’s termination method for LLVM IR,
CPP ’21

67M. Brockschmidt, S. Joosten, R. Thiemann, A. Yamada: Certifying Safety and Termination Proofs for Integer
Transition Systems, CADE ’17

108/111

http://cl-informatik.uibk.ac.at/isafor/

Proof Certification with CeTA

http://cl-informatik.uibk.ac.at/isafor/

CeTA can certify proofs for...
termination of TRSs (several flavours), ITSs, and LLVM programs66

non-termination for TRSs
upper bounds for complexity

confluence and non-confluence proofs for TRSs
safety: invariants for ITSs67

If certification unsuccessful:
CeTA indicates which part of the proof it could not follow

66M. Haslbeck, R. Thiemann: An Isabelle/HOL formalization of AProVE’s termination method for LLVM IR,
CPP ’21

67M. Brockschmidt, S. Joosten, R. Thiemann, A. Yamada: Certifying Safety and Termination Proofs for Integer
Transition Systems, CADE ’17

108/111

http://cl-informatik.uibk.ac.at/isafor/

Proof Certification with CeTA

http://cl-informatik.uibk.ac.at/isafor/

CeTA can certify proofs for...
termination of TRSs (several flavours), ITSs, and LLVM programs66

non-termination for TRSs
upper bounds for complexity
confluence and non-confluence proofs for TRSs

safety: invariants for ITSs67

If certification unsuccessful:
CeTA indicates which part of the proof it could not follow

66M. Haslbeck, R. Thiemann: An Isabelle/HOL formalization of AProVE’s termination method for LLVM IR,
CPP ’21

67M. Brockschmidt, S. Joosten, R. Thiemann, A. Yamada: Certifying Safety and Termination Proofs for Integer
Transition Systems, CADE ’17

108/111

http://cl-informatik.uibk.ac.at/isafor/

Proof Certification with CeTA

http://cl-informatik.uibk.ac.at/isafor/

CeTA can certify proofs for...
termination of TRSs (several flavours), ITSs, and LLVM programs66

non-termination for TRSs
upper bounds for complexity
confluence and non-confluence proofs for TRSs
safety: invariants for ITSs67

If certification unsuccessful:
CeTA indicates which part of the proof it could not follow

66M. Haslbeck, R. Thiemann: An Isabelle/HOL formalization of AProVE’s termination method for LLVM IR,
CPP ’21

67M. Brockschmidt, S. Joosten, R. Thiemann, A. Yamada: Certifying Safety and Termination Proofs for Integer
Transition Systems, CADE ’17

108/111

http://cl-informatik.uibk.ac.at/isafor/

Proof Certification with CeTA

http://cl-informatik.uibk.ac.at/isafor/

CeTA can certify proofs for...
termination of TRSs (several flavours), ITSs, and LLVM programs66

non-termination for TRSs
upper bounds for complexity
confluence and non-confluence proofs for TRSs
safety: invariants for ITSs67

If certification unsuccessful:
CeTA indicates which part of the proof it could not follow

66M. Haslbeck, R. Thiemann: An Isabelle/HOL formalization of AProVE’s termination method for LLVM IR,
CPP ’21

67M. Brockschmidt, S. Joosten, R. Thiemann, A. Yamada: Certifying Safety and Termination Proofs for Integer
Transition Systems, CADE ’17

108/111

http://cl-informatik.uibk.ac.at/isafor/

termCOMP with Certification (X) (1/2)

109/111

termCOMP with Certification (X) (2/2)

Let’s zoom in . . .

⇒ proof certification is competitive!

110/111

termCOMP with Certification (X) (2/2)

Let’s zoom in . . .

⇒ proof certification is competitive!
110/111

Termination and Complexity: Conclusion

Termination and complexity analysis: active fields of research

Push-button tools to prove (non-)termination and to infer upper (and lower) complexity bounds
available – SAT/SMT solvers find the proof steps!

Cross-fertilisation between techniques for different formalisms (integer transition systems,
functional programs, . . .)

Certification helps raise trust in automatically found proofs of (non-)termination and complexity
bounds

Thanks a lot for your attention!

111/111

Termination and Complexity: Conclusion

Termination and complexity analysis: active fields of research

Push-button tools to prove (non-)termination and to infer upper (and lower) complexity bounds
available – SAT/SMT solvers find the proof steps!

Cross-fertilisation between techniques for different formalisms (integer transition systems,
functional programs, . . .)

Certification helps raise trust in automatically found proofs of (non-)termination and complexity
bounds

Thanks a lot for your attention!

111/111

Termination and Complexity: Conclusion

Termination and complexity analysis: active fields of research

Push-button tools to prove (non-)termination and to infer upper (and lower) complexity bounds
available – SAT/SMT solvers find the proof steps!

Cross-fertilisation between techniques for different formalisms (integer transition systems,
functional programs, . . .)

Certification helps raise trust in automatically found proofs of (non-)termination and complexity
bounds

Thanks a lot for your attention!

111/111

Termination and Complexity: Conclusion

Termination and complexity analysis: active fields of research

Push-button tools to prove (non-)termination and to infer upper (and lower) complexity bounds
available – SAT/SMT solvers find the proof steps!

Cross-fertilisation between techniques for different formalisms (integer transition systems,
functional programs, . . .)

Certification helps raise trust in automatically found proofs of (non-)termination and complexity
bounds

Thanks a lot for your attention!

111/111

Termination and Complexity: Conclusion

Termination and complexity analysis: active fields of research

Push-button tools to prove (non-)termination and to infer upper (and lower) complexity bounds
available – SAT/SMT solvers find the proof steps!

Cross-fertilisation between techniques for different formalisms (integer transition systems,
functional programs, . . .)

Certification helps raise trust in automatically found proofs of (non-)termination and complexity
bounds

Thanks a lot for your attention!

111/111

References I

E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. Cost analysis of object-oriented
bytecode programs. Theoretical Computer Science, 413(1):142–159, 2012.

C. Alias, A. Darte, P. Feautrier, and L. Gonnord. Multi-dimensional rankings, program
termination, and complexity bounds of flowchart programs. In SAS ’10, pages 117–133, 2010.

T. Arts and J. Giesl. Termination of term rewriting using dependency pairs. Theoretical
Computer Science, 236(1-2):133–178, 2000.

M. Avanzini and G. Moser. Dependency pairs and polynomial path orders. In RTA ’09, pages
48–62, 2009.

M. Avanzini and G. Moser. A combination framework for complexity. Information and
Computation, 248:22–55, 2016.

M. Avanzini, G. Moser, and M. Schaper. TcT: Tyrolean Complexity Tool. In TACAS ’16, pages
407–423, 2016.

112/111

References II

M. Avanzini, U. Dal Lago, and A. Yamada. On probabilistic term rewriting. Science of Computer
Programming, 185, 2020.

T. Baudon, C. Fuhs, and L. Gonnord. Analysing parallel complexity of term rewriting. In
LOPSTR ’22, pages 3–23, 2022.

J. Berdine, B. Cook, D. Distefano, and P. W. O’Hearn. Automatic termination proofs for
programs with shape-shifting heaps. In CAV ’06, pages 386–400, 2006.

R. Blanc, T. A. Henzinger, T. Hottelier, and L. Kovács. ABC: algebraic bound computation for
loops. In LPAR (Dakar) ’10, pages 103–118, 2010.

F. Blanqui and A. Koprowski. CoLoR: a Coq library on well-founded rewrite relations and its
application to the automated verification of termination certificates. Mathematical Structures in
Computer Science, 21(4):827–859, 2011.

G. Bonfante, A. Cichon, J. Marion, and H. Touzet. Algorithms with polynomial interpretation
termination proof. Journal of Functional Programming, 11(1):33–53, 2001.

113/111

References III

C. Borralleras, S. Lucas, A. Oliveras, E. Rodríguez-Carbonell, and A. Rubio. SAT modulo linear
arithmetic for solving polynomial constraints. Journal of Automated Reasoning, 48(1):107–131,
2012.

M. Brockschmidt, C. Otto, and J. Giesl. Modular termination proofs of recursive Java Bytecode
programs by term rewriting. In RTA ’11, pages 155–170, 2011.

M. Brockschmidt, R. Musiol, C. Otto, and J. Giesl. Automated termination proofs for Java
programs with cyclic data. In CAV ’12, pages 105–122, 2012a.

M. Brockschmidt, T. Ströder, C. Otto, and J. Giesl. Automated detection of non-termination
and NullPointerExceptions for Java Bytecode. In FoVeOOS ’11, pages 123–141, 2012b.

M. Brockschmidt, B. Cook, and C. Fuhs. Better termination proving through cooperation. In
CAV ’13, pages 413–429, 2013.

M. Brockschmidt, B. Cook, S. Ishtiaq, H. Khlaaf, and N. Piterman. T2: temporal property
verification. In TACAS ’16, pages 387–393, 2016a.

114/111

References IV

M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. Analyzing runtime and size
complexity of integer programs. ACM Transactions on Programming Languages and Systems, 38
(4), 2016b.

M. Brockschmidt, S. J. C. Joosten, R. Thiemann, and A. Yamada. Certifying safety and
termination proofs for integer transition systems. In CADE ’17, pages 454–471, 2017.

H.-Y. Chen, B. Cook, C. Fuhs, K. Nimkar, and P. W. O’Hearn. Proving nontermination via
safety. In TACAS ’14, pages 156–171, 2014.

E. Çiçek, M. Bouaziz, S. Cho, and D. Distefano. Static resource analysis at scale (extended
abstract). In SAS ’20, pages 3–6. Springer, 2020.

Ş. Ciobâcă and D. Lucanu. A coinductive approach to proving reachability properties in logically
constrained term rewriting systems. In IJCAR ’18, pages 295–311, 2018.

Ş. Ciobâcă, D. Lucanu, and A. Buruiana. Operationally-based program equivalence proofs using
LCTRSs. Journal of Logical and Algebraic Methods in Programming, 135:100894, 2023.

115/111

References V

M. Codish, J. Giesl, P. Schneider-Kamp, and R. Thiemann. SAT solving for termination proofs
with recursive path orders and dependency pairs. Journal of Automated Reasoning, 49(1):53–93,
2012.

E. Contejean, P. Courtieu, J. Forest, O. Pons, and X. Urbain. Automated certified proofs with
CiME3. In RTA ’11, pages 21–30, 2011.

B. Cook, A. Podelski, and A. Rybalchenko. Terminator: Beyond safety. In CAV ’06, pages
415–418, 2006a.

B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code. In PLDI ’06,
pages 415–426, 2006b.

B. Cook, A. Podelski, and A. Rybalchenko. Proving thread termination. In PLDI ’07, pages
320–330, 2007.

B. Cook, C. Fuhs, K. Nimkar, and P. W. O’Hearn. Disproving termination with
overapproximation. In FMCAD ’14, pages 67–74, 2014.

116/111

References VI

B. Cook, H. Khlaaf, and N. Piterman. Verifying increasingly expressive temporal logics for
infinite-state systems. Journal of the ACM, 64(2):15:1–15:39, 2017.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In POPL ’77, pages 238–252, 1977.

N. Dershowitz. Orderings for term-rewriting systems. Theoretical Computer Science, 17(3):
279–301, 1982.

N. Dershowitz and Z. Manna. Proving termination with multiset orderings. Communications of
the ACM, 22(8):465–476, 1979.

F. Emmes, T. Enger, and J. Giesl. Proving non-looping non-termination automatically. In
IJCAR ’12, pages 225–240, 2012.

J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving termination of
term rewriting. Journal of Automated Reasoning, 40(2–3):195–220, 2008.

117/111

References VII

S. Falke and D. Kapur. A term rewriting approach to the automated termination analysis of
imperative programs. In CADE ’09, pages 277–293, 2009.

A. Flores-Montoya and R. Hähnle. Resource analysis of complex programs with cost equations.
In APLAS ’14, pages 275–295, 2014.

F. Frohn and J. Giesl. Analyzing runtime complexity via innermost runtime complexity. In Proc.
LPAR ’17, pages 249–268, 2017a.

F. Frohn and J. Giesl. Complexity analysis for Java with AProVE. In iFM ’17, pages 85–101,
2017b.

F. Frohn and J. Giesl. Proving non-termination and lower runtime bounds with loat (system
description). In IJCAR ’22, pages 712–722, 2022.

F. Frohn, J. Giesl, J. Hensel, C. Aschermann, and T. Ströder. Lower bounds for runtime
complexity of term rewriting. Journal of Automated Reasoning, 59(1):121–163, 2017.

118/111

References VIII

F. Frohn, M. Naaf, M. Brockschmidt, and J. Giesl. Inferring lower runtime bounds for integer
programs. ACM Transactions on Programming Languages and Systems, 42(3):13:1–13:50, 2020.

C. Fuhs. Transforming derivational complexity of term rewriting to runtime complexity. In
FroCoS ’19, pages 348–364, 2019.

C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl. SAT solving
for termination analysis with polynomial interpretations. In SAT ’07, pages 340–354, 2007.

C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and H. Zankl. Maximal
termination. In RTA ’08, pages 110–125, 2008a.

C. Fuhs, R. Navarro-Marset, C. Otto, J. Giesl, S. Lucas, and P. Schneider-Kamp. Search
techniques for rational polynomial orders. In AISC ’08, pages 109–124, 2008b.

C. Fuhs, J. Giesl, M. Plücker, P. Schneider-Kamp, and S. Falke. Proving termination of integer
term rewriting. In RTA ’09, pages 32–47, 2009.

119/111

References IX

C. Fuhs, C. Kop, and N. Nishida. Verifying procedural programs via constrained rewriting
induction. ACM Transactions on Computational Logic, 18(2):14:1–14:50, 2017.

A. Geser, D. Hofbauer, and J. Waldmann. Match-bounded string rewriting systems. Applicable
Algebra in Engineering, Communication and Computing, 15(3–4):149–171, 2004.

J. Giesl, R. Thiemann, and P. Schneider-Kamp. Proving and disproving termination of
higher-order functions. In FroCoS ’05, pages 216–231, 2005.

J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Mechanizing and improving
dependency pairs. Journal of Automated Reasoning, 37(3):155–203, 2006.

J. Giesl, M. Raffelsieper, P. Schneider-Kamp, S. Swiderski, and R. Thiemann. Automated
termination proofs for Haskell by term rewriting. ACM Transactions on Programming Languages
and Systems, 33(2):1–39, 2011. See also
http://aprove.informatik.rwth-aachen.de/eval/Haskell/.

120/111

http://aprove.informatik.rwth-aachen.de/eval/Haskell/

References X

J. Giesl, T. Ströder, P. Schneider-Kamp, F. Emmes, and C. Fuhs. Symbolic evaluation graphs
and term rewriting: A general methodology for analyzing logic programs. In PPDP ’12, pages
1–12, 2012.

J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, J. Hensel, C. Otto,
M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swiderski, and R. Thiemann. Analyzing program
termination and complexity automatically with AProVE. Journal of Automated Reasoning, 58
(1):3–31, 2017.

S. Gulwani, K. K. Mehra, and T. M. Chilimbi. SPEED: precise and efficient static estimation of
program computational complexity. In POPL ’09, pages 127–139, 2009.

A. Gupta, T. A. Henzinger, R. Majumdar, A. Rybalchenko, and R.-G. Xu. Proving
non-termination. In POPL ’08, pages 147–158, 2008.

M. W. Haslbeck and R. Thiemann. An Isabelle/HOL formalization of AProVE’s termination
method for LLVM IR. In CPP ’21, pages 238–249, 2021.

121/111

References XI

J. Hensel and J. Giesl. Proving termination of C programs with lists. In CADE ’23, pages
266–285, 2023.

J. Hensel, J. Giesl, F. Frohn, and T. Ströder. Termination and complexity analysis for programs
with bitvector arithmetic by symbolic execution. Journal of Logical and Algebraic Methods in
Programming, 97:105–130, 2018.

N. Hirokawa and A. Middeldorp. Tyrolean Termination Tool: Techniques and features.
Information and Computation, 205(4):474–511, 2007.

N. Hirokawa and G. Moser. Automated complexity analysis based on the dependency pair
method. In IJCAR ’08, pages 364–379, 2008.

N. Hirokawa and G. Moser. Automated complexity analysis based on context-sensitive rewriting.
In RTA-TLCA ’14, pages 257–271, 2014.

D. Hofbauer and C. Lautemann. Termination proofs and the length of derivations. In RTA ’89,
pages 167–177, 1989.

122/111

References XII

J. Hoffmann and S. Jost. Two decades of automatic amortized resource analysis. Mathematical
Structures in Computer Science, pages 1–31, 2022.

J. Hoffmann and Z. Shao. Type-based amortized resource analysis with integers and arrays.
Journal of Functional Programming, 25, 2015.

J. Hoffmann, K. Aehlig, and M. Hofmann. Resource aware ML. In CAV ’12, pages 781–786,
2012.

H. Hong and D. Jakuš. Testing positiveness of polynomials. Journal of Automated Reasoning, 21
(1):23–38, 1998.

I. S. Hristakiev. Confluence Analysis for a Graph Programming Language. PhD thesis, University
of York, 2009.

S. Kamin and J.-J. Lévy. Two generalizations of the recursive path ordering. Unpublished
Manuscript, University of Illinois, Urbana, IL, USA, 1980.

123/111

References XIII

J. Kassing and J. Giesl. Proving almost-sure innermost termination of probabilistic term
rewriting using dependency pairs. In CADE ’23, pages 344–364, 2023.

D. E. Knuth and P. B. Bendix. Simple word problems in universal algebras. Computational
Problems in Abstract Algebra, pages 263–297, 1970.

M. Kojima and N. Nishida. Reducing non-occurrence of specified runtime errors to all-path
reachability problems of constrained rewriting. Journal of Logical and Algebraic Methods in
Programming, 135:100903, 2023.

C. Kop. Higher Order Termination. PhD thesis, VU Amsterdam, 2012.

C. Kop. Termination of LCTRSs. In WST ’13, pages 59–63, 2013.

C. Kop and N. Nishida. Term rewriting with logical constraints. In FroCoS ’13, pages 343–358,
2013.

C. Kop and D. Vale. Tuple interpretations for higher-order complexity. In FSCD ’21, pages
31:1–31:22, 2021.

124/111

References XIV

A. Koprowski and J. Waldmann. Max/plus tree automata for termination of term rewriting. Acta
Cybernetica, 19(2):357–392, 2009.

K. Korovin and A. Voronkov. Orienting rewrite rules with the Knuth-Bendix order. Information
and Computation, 183(2):165–186, 2003.

M. Korp, C. Sternagel, H. Zankl, and A. Middeldorp. Tyrolean Termination Tool 2. In RTA ’09,
pages 295–304, 2009.

D. S. Lankford. Canonical algebraic simplification in computational logic. Technical Report
ATP-25, University of Texas, 1975.

D. Larraz, A. Oliveras, E. Rodríguez-Carbonell, and A. Rubio. Proving termination of imperative
programs using Max-SMT. In FMCAD ’13, pages 218–225, 2013.

L. Leutgeb, G. Moser, and F. Zuleger. Automated expected amortised cost analysis of
probabilistic data structures. In CAV ’22, Part II, pages 70–91, 2022.

125/111

References XV

N. Lommen, F. Meyer, and J. Giesl. Automatic complexity analysis of integer programs via
triangular weakly non-linear loops. In IJCAR ’22, pages 734–754, 2022.

S. Lucas. Polynomials over the reals in proofs of termination: from theory to practice. RAIRO -
Theoretical Informatics and Applications, 39(3):547–586, 2005.

S. Lucas. Context-sensitive rewriting. ACM Computing Surveys, 53(4):78:1–78:36, 2020.

J. McCarthy. Recursive functions of symbolic expressions and their computation by machine,
part I. Communications of the ACM, 3(4):184–195, 1960.

A. Merayo Corcoba. Resource analysis of integer and abstract programs. PhD thesis, Universidad
Complutense de Madrid, 2022.

F. Meyer, M. Hark, and J. Giesl. Inferring expected runtimes of probabilistic integer programs
using expected sizes. In TACAS ’21, Part I, pages 250–269, 2021.

G. Moser and M. Schaper. From Jinja bytecode to term rewriting: A complexity reflecting
transformation. Information and Computation, 261:116–143, 2018.

126/111

References XVI

G. Moser and A. Schnabl. The derivational complexity induced by the dependency pair method.
Logical Methods in Computer Science, 7(3), 2011a.

G. Moser and A. Schnabl. Termination proofs in the dependency pair framework may induce
multiple recursive derivational complexity. In RTA ’11, pages 235–250, 2011b.

G. Moser and M. Schneckenreither. Automated amortised resource analysis for term rewrite
systems. Science of Computer Programming, 185, 2020.

G. Moser, A. Schnabl, and J. Waldmann. Complexity analysis of term rewriting based on matrix
and context dependent interpretations. In FSTTCS ’08, pages 304–315, 2008.

M. Naaf, F. Frohn, M. Brockschmidt, C. Fuhs, and J. Giesl. Complexity analysis for term
rewriting by integer transition systems. In FroCoS ’17, pages 132–150, 2017.

F. Neurauter, H. Zankl, and A. Middeldorp. Revisiting matrix interpretations for polynomial
derivational complexity of term rewriting. In LPAR (Yogyakarta) ’10, pages 550–564, 2010.

127/111

References XVII

N. Nishida and S. Winkler. Loop detection by logically constrained term rewriting. In
VSTTE ’18, pages 309–321, 2018.

L. Noschinski, F. Emmes, and J. Giesl. Analyzing innermost runtime complexity of term
rewriting by dependency pairs. Journal of Automated Reasoning, 51(1):27–56, 2013.

C. Otto, M. Brockschmidt, C. v. Essen, and J. Giesl. Automated termination analysis of Java
Bytecode by term rewriting. In RTA ’10, pages 259–276, 2010.

É. Payet. Loop detection in term rewriting using the eliminating unfoldings. Theoretical
Computer Science, 403(2-3), 2008.

A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear ranking
functions. In VMCAI ’04, pages 239–251, 2004.

A. Schnabl and J. G. Simonsen. The exact hardness of deciding derivational and runtime
complexity. In CSL ’11, pages 481–495, 2011.

128/111

References XVIII

P. Schneider-Kamp, J. Giesl, A. Serebrenik, and R. Thiemann. Automated termination proofs for
logic programs by term rewriting. ACM Transactions on Computational Logic, 11(1):1–52, 2009.

J. Schöpf and A. Middeldorp. Confluence criteria for logically constrained rewrite systems. In
CADE ’23, pages 474–490, 2023.

M. Sinn, F. Zuleger, and H. Veith. A simple and scalable static analysis for bound analysis and
amortized complexity analysis. In CAV ’14, pages 745–761, 2014.

T. Ströder, F. Emmes, P. Schneider-Kamp, J. Giesl, and C. Fuhs. A linear operational semantics
for termination and complexity analysis of ISO Prolog. In LOPSTR ’11, pages 237–252, 2012.

T. Ströder, J. Giesl, M. Brockschmidt, F. Frohn, C. Fuhs, J. Hensel, P. Schneider-Kamp, and
C. Aschermann. Automatically proving termination and memory safety for programs with pointer
arithmetic. Journal of Automated Reasoning, 58(1):33–65, 2017.

A. Stump, G. Sutcliffe, and C. Tinelli. Starexec: A cross-community infrastructure for logic
solving. In IJCAR ’14, pages 367–373, 2014. https://www.starexec.org/.

129/111

https://www.starexec.org/

References XIX

R. Thiemann and C. Sternagel. Certification of termination proofs using CeTA. In TPHOLs ’09,
pages 452–468, 2009.

A. M. Turing. On computable numbers, with an application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society, 42(2):230–265, 1936.

A. M. Turing. Checking a large routine. In Report of a Conference on High Speed Automatic
Calculating Machines, pages 67–69, 1949.

F. van Raamsdonk. Translating logic programs into conditional rewriting systems. In ICLP ’97,
pages 168–182, 1997.

S. G. Vorobyov. Conditional rewrite rule systems with built-in arithmetic and induction. In
RTA ’89, pages 492–512, 1989.

P. Wang, H. Fu, A. K. Goharshady, K. Chatterjee, X. Qin, and W. Shi. Cost analysis of
nondeterministic probabilistic programs. In PLDI ’19, pages 204–220, 2019.

130/111

References XX

A. Weiermann. Termination proofs for term rewriting systems by lexicographic path orderings
imply multiply recursive derivation lengths. Theoretical Computer Science, 139(1&2):355–362,
1995.

S. Winkler and G. Moser. Runtime complexity analysis of logically constrained rewriting. In
LOPSTR ’20, pages 37–55, 2020.

A. Yamada. Tuple interpretations for termination of term rewriting. Journal of Automated
Reasoning, 66(4):667–688, 2022.

A. Yamada, K. Kusakari, and T. Sakabe. A unified ordering for termination proving. Science of
Computer Programming, 111:110–134, 2015.

H. Zankl and A. Middeldorp. Satisfiability of non-linear (ir)rational arithmetic. In LPAR
(Dakar) ’10, pages 481–500, 2010.

H. Zankl, N. Hirokawa, and A. Middeldorp. KBO orientability. Journal of Automated Reasoning,
43(2):173–201, 2009.

131/111

References XXI

H. Zankl, C. Sternagel, D. Hofbauer, and A. Middeldorp. Finding and certifying loops. In
SOFSEM ’10, pages 755–766, 2010.

132/111

	Program Analysis: Overview
	Termination Analysis
	Termination Analysis: Overview
	Termination Analysis of Term Rewrite Systems
	Termination Analysis of Programs on Integers
	Termination analysis of Java programs

	Complexity Analysis
	Complexity Analysis for Programs on Integers
	Complexity Analysis for Term Rewriting
	Finding Upper Bounds
	Transformations
	Program Complexity Analysis via Term Rewriting

	Certification
	Termination and Complexity Proof Certification

