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Quality Assurance for Software by Program Analysis

Two approaches:

Dynamic analysis:
Run the program on example inputs (testing).
+ goal: find errors
---- requires good choice of test cases
---- in general no guarantee for absence of errors

Static analysis:
Analyse the program text without actually running the program.
+ can prove (verify) correctness of the program
−→ important for safety-critical applications
−→ motivating example: first flight of Ariane 5 rocket in 1996

https://www.youtube.com/watch?v=PK_yguLapgA

https://en.wikipedia.org/wiki/Ariane_5_Flight_501

---- manual static analysis requires high effort and expertise
⇒ for broad applicability:

Use automatic reasoning for static analysis!
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Static Analysis: the User’s Perspective (1/2)

For the user (programmer): Use static analysis tools as “black boxes”.

What properties of programs do we want to analyse?

Termination
−→ will my program give an output for all inputs in finitely many steps?

(Quantitative) Resource Use aka Complexity
−→ how many steps will my program need in the worst case? (runtime complexity)
−→ how large can my data become? (size complexity)

Equivalence. Do two programs always produce the same result?
−→ correctness of refactoring
−→ translation validation for compilers

Confluence. For languages with non-deterministic rules/commands:
Does one program always produce the same result?

Confluence is a property that establishes the global determinism
of a computation despite possible local non-determinism.
[Hristakiev, PhD thesis ’17 ]
−→ does the order of applying compiler optimisation rules matter?
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Ask me in the coffee break!
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Static analysis: the user’s perspective (2/2)

Safety properties.
Partial Correctness
−→ will my program always produce the right result?

Assertions by the programmer.
assert x > 0;

−→ will this always be true?
Memory Safety
−→ are my memory accesses always legal?

int* x = NULL; *x = 42;
−→ undefined behaviour!
−→ replacing all files on the computer with cat GIFs
−→ information leaks (Heartbleed OpenSSL attack)
−→ non-termination

Note: All these properties are undecidable!
⇒ use automatable sufficient criteria in practice
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. . . since 2001

Program analysis tool developed in Aachen, London, Innsbruck, . . .

Fully automated, hundreds of techniques for termination, time complexity bounds, . . .
Highly configurable via strategy language
Proofs usually have many steps −→ construct proof tree
Founding tool of Termination Competition, since 2004
Initially: analyse termination of term rewrite systems (TRSs), later also complexity bounds
Since 2006 more input languages: Prolog, Haskell, Java, C (via LLVM)

1 dedicated program analysis by symbolic execution and abstraction
2 extract

constrained

rewrite system

(constraints in integer arithmetic)

3 termination of

constrained

rewrite system ⇒ termination of program

︸ ︷︷ ︸
Frontends

︸ ︷︷ ︸
Backend
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What is Static Program Analysis About?

Goal: (Automatically) prove whether a given program P has (un)desirable property
Approach: Often in two phases

Front-End
Input: Program in Java, C, Prolog, Haskell, . . .
Output: Mathematical representation amenable to automated analysis (usually some kind of
transition system)
Often over-approximation, preserves the property of interest

Back-End
Performs the analysis of the desired property

⇒ Result carries over to original program
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I. Termination Analysis
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Why Analyse Termination?

1 Program: produces result (no spec needed!)

2 Input handler: system reacts

3 Mathematical proof: the induction is valid

4 Biological process: reaches a stable state

Variations of the same problem:
2 special case of 1

3 can be interpreted as 1

4 probabilistic version of 1

2011: PHP and Java issues with floating-point number parser
http://www.exploringbinary.com/php-hangs-on-numeric-value-2-2250738585072011e-308/

http://www.exploringbinary.com/java-hangs-when-converting-2-2250738585072012e-308/
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The Bad News

Theorem (Turing 1936)
The question if a given program terminates on a fixed input is undecidable.

We want to solve the (harder) question if a given program terminates on all inputs.
That’s not even semi-decidable!
But, fear not . . .
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Termination Analysis, Classically

Turing 1949

“Finally the checker has to verify that the process comes to an end. [...] This may take the form of a
quantity which is asserted to decrease continually and vanish when the machine stops.”

1 Find ranking function f (“quantity”)

2 Prove f to have a lower bound (“vanish when the machine stops”)

3 Prove that f decreases over time

Example (Does this program terminate for all x ∈ Z?)
while x > 0:

x = x − 1
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Termination Analysis, in the Era of Automated Reasoning

Question: Does program P terminate?

Approach: Encode termination proof template to logical constraint ϕ,

Approach:

ask SMT solver
−→ SMT = SATisfiability Modulo Theories, solve constraints like

b > 0 ∧ (4 a b− 7 b2 > 1 ∨ 3 a+ c ≥ b3)

Answer:
1 ϕ satisfiable, model M (e.g., a = 3, b = 1, c = 1):
⇒ P terminating, M fills in the gaps in the termination proof

2 ϕ unsatisfiable:
⇒ termination status of P unknown
⇒ try a different template (proof technique)

In practice:
Encode only one proof step at a time
−→ try to prove only part of the program terminating
Repeat until the whole program is proved terminating
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Termination Proving in the Back-End and in the Front-End

Back-End:
1 Term Rewrite Systems (TRSs)
2 Imperative Programs (as Integer Transition Systems, ITSs)
3 Both together! Logically Constrained Term Rewrite Systems

Front-End: processing practical programming languages
Example: Java
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I.1 Termination Analysis of Term Rewrite
Systems
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What’s Term Rewriting?

Syntactic approach for reasoning in equational first-order logic

Core functional programming language without many restrictions (and features) of “real” FP:
first-order (usually)
no fixed evaluation strategy −→ non-determinism!
no fixed order of rules to apply (Haskell: top to bottom) −→ non-determinism!
untyped (unless you really want types)
no pre-defined data structures (integers, arrays, . . .)
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Show Me an Example!

Represent natural numbers by terms (inductively defined data structure):

0, s(0), s(s(0)), . . .

Example (A Term Rewrite System (TRS) for Division)

R =


minus(x, 0) −→ x

minus(s(x), s(y)) −→ minus(x, y)

quot(0, s(y)) −→ 0

quot(s(x), s(y)) −→ s(quot(minus(x, y), s(y)))

Calculation:

minus(s(s(0)), s(0)) −→R minus(s(0), 0) −→R s(0)
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Why Care about Termination of Term Rewriting?

Termination needed by theorem provers

Translate program P with inductive data structures (trees) to TRS, represent data structures as
terms

⇒ Termination of TRS implies termination of P

Logic programming: Prolog
[van Raamsdonk, ICLP ’97; Schneider-Kamp et al, TOCL ’09; Giesl et al, PPDP ’12]

(Lazy) functional programming: Haskell [Giesl et al, TOPLAS ’11 ]

Object-oriented programming: Java [Otto et al, RTA ’10 ]
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Example (Division)

R =


minus(x, 0) −→ x

minus(s(x), s(y)) −→ minus(x, y)

quot(0, s(y)) −→ 0

quot(s(x), s(y)) −→ s(quot(minus(x, y), s(y)))

DP =


minus](s(x), s(y)) −→ minus](x, y)

quot](s(x), s(y)) −→ minus](x, y)

quot](s(x), s(y)) −→ quot](minus(x, y), s(y))

Term rewriting: Evaluate terms by applying rules from R

minus(s(s(0)), s(0)) −→R minus(s(0), 0) −→R s(0)

Termination: No infinite evaluation sequences t1 −→R t2 −→R t3 −→R . . .
Show termination using Dependency Pairs
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Dependency Pairs [Arts, Giesl, TCS ’00 ]

For TRS R build dependency pairs DP (∼ function calls)
Show: No ∞ call sequence with DP (eval of DP’s args via R)
Dependency Pair Framework [Giesl et al, JAR ’06 ] (simplified):

while DP 6= ∅ :

find well-founded order � with DP ∪R ⊆ %
delete s −→ t with s � t from DP

Find � automatically and efficiently
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Polynomial Interpretations

Get � via polynomial interpretations [ · ] over N [Lankford ’75]

Example

∀x, y. x+ 1 = [

minus(s(x), s(y))

]

%

[

minus(x, y)

] = x

Use [ · ] with
[minus](x1, x2) = x1

[s](x1) = x1 + 1

Extend to terms:
[x] = x

[ f(t1, . . . , tn)] = [ f ]([t1], . . . , [tn])

� boils down to > over N
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Example (Constraints for Division)

R =


minus(x, 0) % x

minus(s(x), s(y)) % minus(x, y)
quot(0, s(y)) % 0

quot(s(x), s(y)) % s(quot(minus(x, y), s(y)))

DP =


minus](s(x), s(y))

(
%

)
minus](x, y)

quot](s(x), s(y))
(
%

)
minus](x, y)

quot](s(x), s(y))
(
%

)
quot](minus(x, y), s(y))

Use interpretation [ · ] over N with

[quot]](x1, x2) = x1 . [quot](x1, x2) = x1 + x2
[minus]](x1, x2) = x1 [minus](x1, x2) = x1

[0] = 0 [s](x1) = x1 + 1

y order solves all constraints

y DP = ∅
y termination of division algorithm proved �
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Remark

Polynomial interpretations play several roles for program analysis:

Ranking function: [quot]] and [minus]]

Summary: [quot] and [minus]

Abstraction (aka norm) for data structures: [0] and [s]
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Automation

Task: Solve minus(s(x), s(y)) % minus(x, y)

1 Fix template polynomials with parametric coefficients, get interpretation template:

[minus](x, y) = am + bm x+ cm y, [s](x) = as + bs x

2 From term constraint to polynomial constraint:

s % t y [s] ≥ [t]

Here: ∀x, y. (as bm + as cm) + (bs bm − bm)x+ (bs cm − cm) y ≥ 0

3 Eliminate ∀x, y by absolute positiveness criterion [Hong, Jakuš, JAR ’98 ]:

Here: as bm + as cm ≥ 0 ∧ bs bm − bm ≥ 0 ∧ bs cm − cm ≥ 0

Non-linear constraints, even for linear interpretations

Task: Show satisfiability of non-linear constraints over N (−→ SMT solver!)
y Prove termination of given term rewrite system
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Non-Linear Constraint Solving

Satisfiability of non-linear SMT formulas over N undecidable (Hilbert’s 10th problem)
Restrict unknowns to finite domain {0, . . . , n}
Problem NP-complete

Approach [Fuhs et al, SAT ’07 ]
Encode non-linear SMT formula to pure SAT
−→ bit-blasting for QF_NIA
Use SAT solver to get solution
Eager Approach to SMT, but any SMT solver will do!
Observation: if a model over N exists, usually small n suffices (e.g., n = 3)
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Extensions of Polynomial Interpretations

Polynomials with negative coefficients and max-operator
[Hirokawa, Middeldorp, IC ’07; Fuhs et al, SAT ’07, RTA ’08]

can model behaviour of functions more closely: [pred](x1) = max(x1 − 1, 0)
automation via encoding to non-linear constraints, more complex Boolean structure

Polynomials over Q+ and R+ [Lucas, RAIRO ’05 ]
non-integer coefficients increase proving power
SMT-based automation [Fuhs et al, AISC ’08; Zankl, Middeldorp, LPAR ’10; Borralleras et al,
JAR ’12]

Matrix interpretations [Endrullis, Waldmann, Zantema, JAR ’08 ]
linear interpretation to vectors over Nk, coefficients are matrices
useful for deeply nested terms
automation: constraints with more complex atoms
several flavours: plus-times-semiring, max-plus-semiring [Koprowski, Waldmann, Acta Cyb. ’09 ], . . .
generalisation to tuple interpretations [Kop, Vale, FSCD ’21; Yamada, JAR ’22]

. . .
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SAT and SMT Solving for Path Orders

Path orders: based on precedences on function symbols

Knuth-Bendix Order [Knuth, Bendix, CPAA ’70 ]
−→ polynomial time algorithm [Korovin, Voronkov, IC ’03 ]
−→ SMT encoding [Zankl, Hirokawa, Middeldorp, JAR ’09 ]

Lexicographic Path Order [Kamin, Lévy, Unpublished Manuscript ’80 ] and
Recursive Path Order [Dershowitz, Manna, CACM ’79; Dershowitz, TCS ’82]
−→ SAT encoding [Codish et al, JAR ’11 ]

Weighted Path Order [Yamada, Kusakari, Sakabe, SCP ’15 ]
−→ SMT encoding
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Automation of the Order Search (1/2)

Dependency Pair Framework (simplified):

while DP 6= ∅ :
find well-founded order � with DP ∪R ⊆ %
delete s −→ t with s � t from DP

Implementation
Launch several concurrent instances of the order search.
Each one uses different parameters (e.g., type of order, degree, max. coefficient, . . . ).
SAT/SMT solver launched as external process on file/stdin.
First SATISFIABLE answer wins, kill all other instances.
If internal timeout elapses (or everyone says UNSATISFIABLE):
−→ kill all search instances; retry with larger search space.

In addition: try non-SAT/SMT-based techniques
−→ decompose problem into Strongly Connected Components, prove non-termination, . . .
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Automation of the Order Search (2/2)

Requirements on SAT/SMT solver:
return model quickly (at most 5–10 seconds)
performance for unsatisfiable instances not really important

Current SAT solver of choice in AProVE: MiniSat 2.2 [Eén, Sörensson, SAT ’03 ]
(version from around 2008; finds models quickly)

Survey among tool authors (Aug/Sep 2022):
https://lists.rwth-aachen.de/hyperkitty/list/termtools@lists.rwth-aachen.de/thread/

FNDNU5Y7TGXYXX34YWKFO2ICSRT6M3ME/
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Further Techniques and Settings for TRSs

Proving non-termination (an infinite run is possible)
[Giesl, Thiemann, Schneider-Kamp, FroCoS ’05; Payet, TCS ’08; Zankl et al, SOFSEM ’10;
Emmes, Enger, Giesl, IJCAR ’12; . . . ]

Specific rewrite strategies: innermost, outermost, context-sensitive rewriting [Lucas, ACM
Comput. Surv. ’20 ], . . .
Higher-order rewriting: functional variables, higher types, β-reduction [Kop, PhD thesis ’12 ]

map(F ,Cons(x, xs)) −→ Cons(F (x),map(F , xs))

Probabilistic term rewriting: (Positive/Strong) Almost Sure Termination
[Avanzini, Dal Lago, Yamada, SCP ’20; Kassing, Giesl, CADE ’23]
Complexity analysis [Hirokawa, Moser, IJCAR ’08; Noschinski, Emmes, Giesl, JAR ’13; . . . ]
Can re-use termination machinery to infer and prove statements like “runtime complexity of this
TRS is in O(n3)”

26/111



Further Techniques and Settings for TRSs

Proving non-termination (an infinite run is possible)
[Giesl, Thiemann, Schneider-Kamp, FroCoS ’05; Payet, TCS ’08; Zankl et al, SOFSEM ’10;
Emmes, Enger, Giesl, IJCAR ’12; . . . ]
Specific rewrite strategies: innermost, outermost, context-sensitive rewriting [Lucas, ACM
Comput. Surv. ’20 ], . . .

Higher-order rewriting: functional variables, higher types, β-reduction [Kop, PhD thesis ’12 ]
map(F ,Cons(x, xs)) −→ Cons(F (x),map(F , xs))

Probabilistic term rewriting: (Positive/Strong) Almost Sure Termination
[Avanzini, Dal Lago, Yamada, SCP ’20; Kassing, Giesl, CADE ’23]
Complexity analysis [Hirokawa, Moser, IJCAR ’08; Noschinski, Emmes, Giesl, JAR ’13; . . . ]
Can re-use termination machinery to infer and prove statements like “runtime complexity of this
TRS is in O(n3)”

26/111



Further Techniques and Settings for TRSs

Proving non-termination (an infinite run is possible)
[Giesl, Thiemann, Schneider-Kamp, FroCoS ’05; Payet, TCS ’08; Zankl et al, SOFSEM ’10;
Emmes, Enger, Giesl, IJCAR ’12; . . . ]
Specific rewrite strategies: innermost, outermost, context-sensitive rewriting [Lucas, ACM
Comput. Surv. ’20 ], . . .
Higher-order rewriting: functional variables, higher types, β-reduction [Kop, PhD thesis ’12 ]

map(F ,Cons(x, xs)) −→ Cons(F (x),map(F , xs))

Probabilistic term rewriting: (Positive/Strong) Almost Sure Termination
[Avanzini, Dal Lago, Yamada, SCP ’20; Kassing, Giesl, CADE ’23]
Complexity analysis [Hirokawa, Moser, IJCAR ’08; Noschinski, Emmes, Giesl, JAR ’13; . . . ]
Can re-use termination machinery to infer and prove statements like “runtime complexity of this
TRS is in O(n3)”

26/111



Further Techniques and Settings for TRSs

Proving non-termination (an infinite run is possible)
[Giesl, Thiemann, Schneider-Kamp, FroCoS ’05; Payet, TCS ’08; Zankl et al, SOFSEM ’10;
Emmes, Enger, Giesl, IJCAR ’12; . . . ]
Specific rewrite strategies: innermost, outermost, context-sensitive rewriting [Lucas, ACM
Comput. Surv. ’20 ], . . .
Higher-order rewriting: functional variables, higher types, β-reduction [Kop, PhD thesis ’12 ]

map(F ,Cons(x, xs)) −→ Cons(F (x),map(F , xs))

Probabilistic term rewriting: (Positive/Strong) Almost Sure Termination
[Avanzini, Dal Lago, Yamada, SCP ’20; Kassing, Giesl, CADE ’23]

Complexity analysis [Hirokawa, Moser, IJCAR ’08; Noschinski, Emmes, Giesl, JAR ’13; . . . ]
Can re-use termination machinery to infer and prove statements like “runtime complexity of this
TRS is in O(n3)”

26/111



Further Techniques and Settings for TRSs

Proving non-termination (an infinite run is possible)
[Giesl, Thiemann, Schneider-Kamp, FroCoS ’05; Payet, TCS ’08; Zankl et al, SOFSEM ’10;
Emmes, Enger, Giesl, IJCAR ’12; . . . ]
Specific rewrite strategies: innermost, outermost, context-sensitive rewriting [Lucas, ACM
Comput. Surv. ’20 ], . . .
Higher-order rewriting: functional variables, higher types, β-reduction [Kop, PhD thesis ’12 ]

map(F ,Cons(x, xs)) −→ Cons(F (x),map(F , xs))

Probabilistic term rewriting: (Positive/Strong) Almost Sure Termination
[Avanzini, Dal Lago, Yamada, SCP ’20; Kassing, Giesl, CADE ’23]
Complexity analysis [Hirokawa, Moser, IJCAR ’08; Noschinski, Emmes, Giesl, JAR ’13; . . . ]
Can re-use termination machinery to infer and prove statements like “runtime complexity of this
TRS is in O(n3)”

26/111



SMT Solvers from Termination Analysis

Annual SMT-COMP, division QF_NIA (Quantifier-Free Non-linear Integer Arithmetic)

Year Winner
2009 Barcelogic-QF_NIA
2010 MiniSmt

(spin-off of TTT2)

2011 AProVE
2012 no QF_NIA
2013 no SMT-COMP
2014 AProVE
2015 AProVE
2016 Yices
. . . . . .

⇒ Termination provers can also be successful SMT solvers!

(disclaimer: Z3 participated only hors concours)
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The Termination Competition (termCOMP) (1/3)

https://termination-portal.org/wiki/Termination_Competition
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The Termination Competition (termCOMP) (2/3)

termCOMP 2022 participants (2024 similar):
AProVE (RWTH Aachen, Birkbeck U London, U Innsbruck, . . . )
iRankFinder (UC Madrid)
LoAT (RWTH Aachen)
Matchbox (HTWK Leipzig)
Mu-Term (UP Valencia)
MultumNonMulta (BA Saarland)
NaTT (AIST Tokyo)
NTI+cTI (U Réunion)
SOL (Gunma U)
TcT (U Innsbruck, INRIA Sophia Antipolis)
TTT2 (U Innsbruck)
Ultimate Automizer (U Freiburg)
Wanda (RU Nijmegen)
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The Termination Competition (termCOMP) (3/3)

Benchmark set: Termination Problem DataBase (TPDB)
https://termination-portal.org/wiki/TPDB
−→ 1000s of termination and complexity problems

Timeout: 300 seconds
Run on StarExec platform [Stump, Sutcliffe, Tinelli, IJCAR ’14 ]
Categories for proving (non-)termination and for inferring upper/lower complexity bounds for
different programming languages
Part of the Olympic Games at the Federated Logic Conference
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Input for Automated Tools

Web interfaces available:
AProVE: https://aprove.informatik.rwth-aachen.de/interface
iRankFinder: http://irankfinder.loopkiller.com:8081/

Mu-Term: http://zenon.dsic.upv.es/muterm/index.php/web-interface/

TTT2: http://colo6-c703.uibk.ac.at/ttt2/web/

Input format for termination of TRSs:
(VAR x y)
(RULES
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

)
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I.2 Termination Analysis of Programs on
Integers
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Papers on termination of imperative programs often about integers as data

Example (Imperative Program)

`0:

if (x ≥ 0)

`1:

while (x 6= 0)

`2:

x = x − 1;

Does this program terminate?
(x ranges over Z)

Example (Equivalent Translation to an Integer Transition System, cf. [McCarthy, CACM ’60 ])

`0(x) −→ `1(x) [x ≥ 0]

`0(x) −→ `3(x) [x < 0]

`1(x) −→ `2(x) [x 6= 0]

`2(x) −→ `1(x− 1)

`1(x) −→ `3(x) [x = 0]

Oh no! `1(−1) −→ `2(−1) −→ `1(−2) −→ `2(−2) −→ `1(−3) −→ · · ·

⇒ Restrict initial states to `0(z) for z ∈ Z
⇒ Find invariant x ≥ 0 at `1, `2 (exercise)
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Proving Termination with Invariants

Example (Transition system with invariants)

`0(x) −→ `1(x) [x ≥ 0]

`1(x) −→ `2(x) [x 6= 0 ∧ x ≥ 0]

`2(x) −→ `1(x− 1) [x ≥ 0]

`1(x) −→ `3(x) [x = 0 ∧ x ≥ 0]

Prove termination by ranking function [ · ] with [`0](x) = [`1](x) = · · · = x

Automate search using parametric ranking function:

[`0](x) = a0 + b0 · x, [`1](x) = a1 + b1 · x, . . .

Constraints here:

x ≥ 0 ⇒ a2 + b2 · x > a1 + b1 · (x− 1) “decrease . . . ”
x ≥ 0 ⇒ a2 + b2 · x ≥ 0 “. . . against a bound”

Use Farkas’ Lemma to eliminate ∀x, solver for linear constraints gives model for ai, bi.
More: [Podelski, Rybalchenko, VMCAI ’04; Alias et al, SAS ’10]
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Searching for Invariants Using SMT

Termination prover needs to find invariants for programs on integers

Statically before the translation [Otto et al, RTA ’10; Ströder et al, JAR ’17, . . . ]
−→ abstract interpretation [Cousot, Cousot, POPL ’77]
−→ more about this in a few minutes!

By counterexample-based reasoning + safety prover: Terminator
[Cook, Podelski, Rybalchenko, CAV ’06, PLDI ’06 ]
−→ prove termination of single program runs
−→ termination argument often generalises

. . . also cooperating with removal of terminating rules (as for TRSs): T2
[Brockschmidt, Cook, Fuhs, CAV ’13; Brockschmidt et al, TACAS ’16]

Using Max-SMT: VeryMax
[Larraz, Oliveras, Rodríguez-Carbonell, Rubio, FMCAD ’13 ]

Nowadays all SMT-based!
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Extensions

Proving non-termination (infinite run is possible from initial states)
[Gupta et al, POPL ’08, Brockschmidt et al, FoVeOOS ’11, Chen et al, TACAS ’14, Larraz et
al, CAV ’14, Cook et al, FMCAD ’14, . . . ]

Complexity bounds
[Alias et al, SAS ’10, Hoffmann, Shao, JFP ’15, Brockschmidt et al, TOPLAS ’16, . . . ]

CTL∗ model checking for infinite state systems based on termination and non-termination
provers [Cook, Khlaaf, Piterman, JACM ’17 ]

Beyond sequential programs on integers:
structs/classes [Berdine et al, CAV ’06; Otto et al, RTA ’10; . . . ]
arrays (pointer arithmetic) [Ströder et al, JAR ’17, . . . ]
multi-threaded programs [Cook et al, PLDI ’07, . . . ]
. . .
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Why Care about Termination of Term Rewriting?

Termination needed by theorem provers

Translate program P with inductive data structures (trees) to TRS, represent data structures as
terms

⇒ Termination of TRS implies termination of P

Logic programming: Prolog
[van Raamsdonk, ICLP ’97; Schneider-Kamp et al, TOCL ’09; Giesl et al, PPDP ’12]

(Lazy) functional programming: Haskell [Giesl et al, TOPLAS ’11 ]

Object-oriented programming: Java [Otto et al, RTA ’10 ]

37/111



Beyond Classic TRSs for Program Analysis

So far, so good . . .
but do we really want to represent 1000000 as s(s(s(...)))?!

Drawbacks:
throws away domain knowledge about built-in data types like integers
need to analyse recursive rules for minus, quot, . . . over and over
does not benefit from dedicated constraint solvers
(e.g., SMT solvers) for arithmetic operations in programs

Solution: use constrained term rewriting
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Constrained Term Rewriting, What’s That?

Term rewriting “with batteries included”
first-order
no fixed evaluation strategy
no fixed order of rules to apply

typed
with pre-defined data structures (integers, arrays, bitvectors, ...),
usually from SMT-LIB theories
rewrite rules with SMT constraints

⇒ Term rewriting + SMT solving for automated reasoning

Constrained rewriting known at least since [Vorobyov, RTA ’89 ]
General forms available, e.g., Logically Constrained TRSs [Kop, Nishida, FroCoS ’13 ]
For program termination: use term rewriting with integers
[Falke, Kapur, CADE ’09; Fuhs et al, RTA ’09; Giesl et al, JAR ’17]
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Logically Constrained TRSs: Adoption

Analysis techniques for Logically Constrained TRSs:
Termination [Kop, WST ’13; Nishida, Winkler, VSTTE ’18]
Complexity [Winkler, Moser, LOPSTR ’20 ]
Equivalence [Fuhs, Kop, Nishida, TOCL ’17; Ciobâcă, Lucanu, Buruiana, JLAMP ’23]
Confluence [Schöpf, Middeldorp, CADE ’23; Schöpf, Mitterwallner, Middeldorp, IJCAR ’24]
Reachability / Safety [Ciobâcă, Lucanu, IJCAR ’18; Kojima, Nishida, JLAMP ’23]
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Constrained Rewriting by Example

Example (Constrained Rewrite System)

`0(n, r) −→ `1(n, r,Nil)

`1(n, r, xs) −→ `1(n− 1, r + 1,Cons(r, xs)) [n > 0]

`1(n, r, xs) −→ `2(xs) [n = 0]

Possible rewrite sequence:

`0(2, 7)

−→ `1(2, 7,Nil)

−→ `1(1, 8,Cons(7,Nil))

−→ `1(0, 9,Cons(8,Cons(7,Nil)))

−→ `2(Cons(8,Cons(7,Nil)))

Here 7, 8, . . . are predefined constants.

Termination proof: reuse techniques for TRSs and integer programs
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Conclusion: Termination Proving Back-Ends

Automated termination analysis for term rewriting and for imperative programs developed in
parallel over the last ∼ 25 years

Term rewriting: handles inductive data structures well
Imperative programs on integers: need to consider reachability/safety and invariants
Since a few years cross-fertilisation
Constrained term rewriting: best of both worlds as back-end language
Proof search heavily relies on SMT solving for automation
Needs of termination analysis have also led to better SMT solvers
More information . . .

e.g., on the annual Termination Competition:

http://termination-portal.org

Behind (almost) every successful termination prover . . .

. . . there is a powerful SAT / SMT solver!
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More information . . .

e.g., on the annual Termination Competition:

http://termination-portal.org

Behind (almost) every successful termination prover . . .

. . . there is a powerful SAT / SMT solver!
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I.3 Termination Analysis of Java programs
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Front-End: from Program to Constrained Term Rewriting, high-level

execute program symbolically from initial states of the program, handle language peculiarities
here (−→ Java: sharing, cyclicity analysis)

use generalisation of program states, get over-approximation of all possible program runs
(≈ control-flow graph with extra info)
closely related: Abstract Interpretation
extract TRS from cycles in the representation
if TRS terminates
⇒ any concrete program execution can use cycles only finitely often
⇒ the program must terminate

f : if ...
...

else
...
g : while ...

...
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Application: Termination Analysis of Programs

Recipe for proving program termination by reusing TRS termination provers

Decide on suitable symbolic representation of abstract program states (abstract domain)
−→ here: what data objects can we represent as terms?
Execute program symbolically from its initial states
Use generalisation of program states to get closed finite representation (symbolic execution
graph, abstract interpretation)
Extract rewrite rules that “over-approximate” program executions in strongly-connected
components of graph
Prove termination of these rewrite rules
⇒ implies termination of program from initial states
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Java Challenges

Java: object-oriented imperative language
sharing and aliasing (several references to the same object)
side effects
cyclic data objects (e.g., list.next == list)
object-orientation with inheritance
. . .
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Java Example

Does count terminate for all inputs? Why (not)?
(Assume that num and limit are not references to the same object.)

47/111

public class MyInt {

// only wrap a primitive int
private int val;

// count "num" up to the value in "limit"
public static void count(MyInt num, MyInt limit) {

if (num == null || limit == null) {
return;

}
// introduce sharing
MyInt copy = num;
while (num.val < limit.val) {

copy.val++;
}

}
}



Approach to Termination Analysis of Java

Tailor two-stage approach to Java [Otto et al, RTA ’10 ]

Back-end: From rewrite system to termination proof
Constrained term rewriting with integers [Giesl et al, JAR ’17 ]
Termination techniques for rewriting and for integers can be integrated

Front-end: From Java to constrained rewrite system
Build symbolic execution graph that over-approximates all runs of Java program (abstract
interpretation)
Symbolic execution graph has invariants for integers and heap object shape (trees?)
Extract rewrite system from symbolic execution graph

Implemented in the tool AProVE (−→ web interface)

http://aprove.informatik.rwth-aachen.de/
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Java: Source Code vs Bytecode

[Otto et al, RTA ’10 ] describe their technique for compiled Java programs: Java Bytecode

desugared machine code for a (virtual) stack machine,
still has all the (relevant) information from source code
input for Java interpreter and for many program analysis tools
somewhat inconvenient for presentation, though . . .

Here: Java source code
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00: aload_0
01: ifnull 8
04: aload_1
05: ifnonnull 9
08: return
09: aload_0
10: astore_2
11: aload_0
12: getfield val
15: aload_1
16: getfield val
19: if_icmpge 35
22: aload_2
23: aload_2
24: getfield val
27: iconst_1
28: iadd
29: putfield val
32: goto 11
35: return
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Ingredients for the Abstract Domain

1 program counter value (line number)
2 values of variables (treating int as Z)
3 over-approximating info on possible variable values

integers: use intervals, e.g. x ∈ [4, 7] or y ∈ [0, ∞)
heap memory with objects, no sharing unless stated otherwise
MyInt(?): maybe null, maybe a MyInt object

Heap predicates:
Two references may be equal: o1=? o2

Two references may share: o1%$o2
Reference may have cycles: o1 !

03 | num : o1, limit : o2
o1 : MyInt(?)
o2 : MyInt(val = i1)
i1 : [4, 80]
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Building the Symbolic Execution Graph

1 | num : o1, limit : o2
o1 : MyInt(?)
o2 : MyInt(?)

A
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public class MyInt {
private int val;
static void count(MyInt num, MyInt limit) {

1: if (num == null
2: || limit == null)
3: return;
4: MyInt copy = num;
5: while (num.val < limit.val)
6: copy.val++;
7: } }
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o2 : MyInt(?)
i1 : (−∞,∞)

C

o1 = null

o1 6= null

X Y
cond

means: refine X with cond , then evaluate to Y; here combined for brevity
(narrowing)
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public class MyInt {
private int val;
static void count(MyInt num, MyInt limit) {

1: if (num == null
2: || limit == null)
3: return;
4: MyInt copy = num;
5: while (num.val < limit.val)
6: copy.val++;
7: } }



From Java to Symbolic Execution Graphs

Symbolic Execution Graphs
symbolic over-approximation of all computations
(abstract interpretation)
expand nodes until all leaves correspond to program ends
by suitable generalisation steps (widening),
one can always get a finite symbolic execution graph
state s1 is instance of state s2
if all concrete states described by s1 are also described by s2

Using Symbolic Execution Graphs for Termination Proofs
every concrete Java computation corresponds to a computation path in the symbolic
execution graph
symbolic execution graph is called terminating
iff it has no infinite computation path
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Transformation of Objects to Terms (1/2)

16 | num : o1, limit : o2, x : o3, y : o4, z : i1
o1 : MyInt(?)
o2 : MyInt(val = i2)
o3 : null
o4 : MyList(?)
o4 !
i1 : [7,∞)
i2 : (−∞,∞)

Q

For every class C with n fields, introduce an n-ary function symbol C

term for o1: o1
term for o2: MyInt(i2)

term for o3: null

term for o4: x (new variable)
term for i1: i1 with side constraint i1 ≥ 7

(add invariant i1 ≥ 7 to constrained rewrite rules from state Q)
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Transformation of Objects to Terms (2/2)

public class A {
int a;

}

public class B extends A {
int b;

}

...
A x = new A();
x.a = 1;

B y = new B();
y.a = 2;
y.b = 3;

Dealing with subclasses:

for every class C with n fields,
introduce (n+ 1)-ary function symbol C

first argument: part of the object corresponding to
subclasses of C
term for x:

jlO(

A(eoc, 1)

)

−→ eoc for end of class
term for y:

jlO(

A(B(eoc, 3), 2)

)

every class extends Object!
(−→ jlO ≡ java.lang.Object)
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From the Symbolic Execution Graph to Terms and Rules

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

F

6 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i1)
o2 : MyInt(val = i2)
i1 : (−∞,∞)
i2 : (−∞,∞)

H

5 | num : o1, limit : o2, copy : o1
o1 : MyInt(val = i3)
o2 : MyInt(val = i2)
i3 : (−∞,∞)
i2 : (−∞,∞)

I

i1 < i2

i3 = i1 + 1

State F: `F( jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2)) )

−→

State H: `H( jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2)) )

[i1 < i2]

State H: `H( jlO(MyInt(eoc, i1)), jlO(MyInt(eoc, i2)) )

−→

State I: `F( jlO(MyInt(eoc, i1 + 1)), jlO(MyInt(eoc, i2)) )

Termination easy to show (intuitively: i2 − i1 decreases against bound 0)
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Extensions

modular termination proofs and recursion [Brockschmidt et al, RTA ’11 ]
proving reachability and non-termination (uses only symbolic execution graph)
[Brockschmidt et al, FoVeOOS ’11 ]
proving termination with cyclic data objects (preprocessing in symbolic execution graph)
[Brockschmidt et al, CAV ’12 ]
proving upper bounds for time complexity (abstracts terms to numbers)
[Frohn and Giesl, iFM ’17 ]
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Front-Ends for Haskell and Prolog

Haskell [Giesl et al, TOPLAS ’11 ]
lazy evaluation
polymorphic types
higher-order

⇒ abstract domain: a single term; extract (non-constrained) TRS

Prolog [Schneider-Kamp et al, TOCL ’09; Giesl et al, PPDP ’12]
backtracking
uses unification instead of matching
extra-logical language features (e.g., cut)

⇒ abstract domain based on equivalent linear Prolog semantics [Ströder et al, LOPSTR ’11 ],
tracks which variables are for ground terms vs arbitrary terms
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Front-End for LLVM

LLVM [Ströder et al, JAR ’17 ]
LLVM bitcode: intermediate language of LLVM compiler framework
clang compiler has prominent frontend for C
challenges: memory safety, pointer arithmetic

⇒ abstract domain tracks information about allocated memory and its content; extract Integer
Transition System

Extensions:
bitvector int semantics [Hensel et al, JLAMP ’18 ]
linked lists [Hensel, Giesl, CADE ’23 ]
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Conclusion: Termination Analysis for Programs

Termination proving for (LC)TRSs driven by SMT solvers

Constrained rewriting: Term rewriting + pre-defined primitive data structures

Common theme for analysis of program termination by (constrained) rewriting:
handle language specifics in front-end
transitions between program states become (constrained) rewrite rules
for termination back-end

Works across paradigms: Java, C, Haskell, Prolog
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II. Complexity Analysis
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II.1 Complexity Analysis for Programs on
Integers
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What Do You Mean by Complexity?

Literature uses many alternative names:
(Computational/Algorithmic) complexity analysis
(Computational) cost analysis
Resource analysis
Static profiling
. . .

Resource:
Number of evaluation steps
Number of network requests
Peak memory use
Battery power
. . .

Given: Program P .
Task: Provide upper/lower bounds on the resource use of running P

Task:

as a function of the input (size) in the worst case
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Why Care About Computational Cost, Anyway?

Mobile devices: Bound energy usage

Security: Denial of Service attacks

−→ related DARPA project: Space/Time Analysis for Cybersecurity
https://www.darpa.mil/program/space-time-analysis-for-cybersecurity

Embedded devices: Bound memory usage
Specifications: What guarantees can we make to the API’s user?

“The size, isEmpty, get, set, iterator, and listIterator operations run in constant time. The
add operation runs in amortized constant time, that is, adding n elements requires O(n)
time. All of the other operations run in linear time (roughly speaking).”
https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

−→ computational cost as a non-functional requirement!

Profiling: Which parts of the code need most runtime as inputs grow larger?
Smart contracts: Bound execution cost (as “gas”, i.e., money)
More: see Section 1.1.2 of PhD thesis by Alicia Merayo Corcoba1

1A. Merayo Corcoba: Resource analysis of integer and abstract programs, PhD thesis, U Complutense Madrid, 2022
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Show Me Some Examples!

Question: Write a Python function that returns the sum 1 + 2 + · · ·+ n.

def sum1(n):
r = 0
i = 1
while i <= n:
r = r + i
i = i + 1

return r

def sum2(n):
r = 0
i = 1
while i <= n:
r = r + i

return r

def sum3(n):
r = 0
i = 1
while i <= n:

j = 0
while j < i:
r = r + 1
j = j + 1

i = i + 1
return r

def sum4(n):
return n*(n+1)//2

runtime in O(f(n)) means:
for an input of “size” n, the program needs at most about f(n) steps
the runtime is “of order f(n)”
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Is There a Tool that Finds such Bounds Automatically?

Fully automatic open-source tool KoAT:

https://github.com/s-falke/kittel-koat

Journal paper about the automated analysis implemented in KoAT:

M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, J. Giesl,
Analyzing runtime and size complexity of integer programs
ACM Transactions on Programming Languages and Systems 38 (4), pp. 1 – 50, 2016.

Experiments:

http://aprove.informatik.rwth-aachen.de/eval/IntegerComplexity-Journal
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How Can We Make the Computer Do the Work for Us?

Idea: Countdown.
For each loop find a ranking function f on the variables:
expression that gets smaller each time round the loop, but never goes below 0.

⇒ Gives us a bound on the number of times we go through the loop
Termination analysis tools find ranking functions automatically!

def twoLoops1(x, z):
while x > 0:

x = x - 1

while z > 0:
z = z - 1

def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

while z > 0:
z = z - 1

Loop 1: ranking function x
Loop 2: ranking function z
⇒ runtime in O(x+ z)

Loop 1: ranking function x
Loop 2: ranking function z
⇒ runtime in ... oops.

Best runtime bound: O(x2 + z)
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How Can we Fix our Approach?

def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

while z > 0:
z = z - 1

Loop 1: ranking function f1(x, z) = x

Loop 2: ranking function f2(x, z) = z

Problem:
Loop 1 writes to z. In Loop 2, z is much larger than its initial value z0!
Now an oracle tells us:

Oh, when you reach Loop 2, z is at most z0 + x20.
So:

1 we can make at most f2(x, z) = z steps in Loop 2
2 when we enter Loop 2, we know z ≤ z0 + x20

⇒ f2(..., z0 + x20) = z0 + x20 gives runtime bound for Loop 2: O(z0 + x20)

Data size influences runtime.
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⇒ f2(..., z0 + x20) = z0 + x20 gives runtime bound for Loop 2: O(z0 + x20)

Data size influences runtime.
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How Can We Build such an Oracle for Size Bounds?
def twoLoops2(x, z):
while x > 0:
x = x - 1
z = z + x

# (*)
while z > 0:
z = z - 1

Loop 1: ranking function f1(x, z) = x

Loop 2: ranking function f2(x, z) = z

Wanted: automatic oracle to tell how big z can be at (*).
We know:

1 each time round Loop 1, x goes down by 1, from x0 until 0
⇒ in Loop 1: x ≤ x0

2 each time round Loop 1, z goes up by x (≤ x0)
3 we run through Loop 1 at most f1(x0, z0) = x0 times

⇒ at (*), z will be at most z0 + x0 · x0 = z0 + x20 !

Runtime influences data size.
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Are There Other Techniques and Tools?
Using techniques from termination proving: ABC2, AProVE, CoFloCo3, COSTA/PUBS4,
Loopus5, Rank6, TcT7, . . .

Using invariant generation: SPEED8

Using abstract interpretation: Infer9

Using type-based amortised analysis:10 RAML11, . . .

2R. Blanc, T. Henzinger, L. Kovács: ABC: Algebraic Bound Computation for Loops, LPAR (Dakar) ’10
3A. Flores-Montoya and R. Hähnle: Resource Analysis of Complex Programs with Cost Equations, APLAS ’14
4E. Albert, P. Arenas, S. Genaim, G. Puebla, D.Zanardini: Cost analysis of object-oriented bytecode programs,

TCS ’12
5M. Sinn, F. Zuleger, H. Veith: A Simple and Scalable Static Analysis for Bound Analysis and Amortized

Complexity Analysis, CAV ’14
6C. Alias, A. Darte, P. Feautrier, L. Gonnord: Multi-dimensional Rankings, Program Termination, and Complexity

Bounds of Flowchart Programs, SAS ’10
7M. Avanzini, G. Moser, M. Schaper: TcT: Tyrolean Complexity Tool, TACAS ’16

8S. Gulwani, K. Mehro, T. Chilimbi: SPEED: precise and efficient static estimation of program computational
complexity, POPL ’09

9E. Çiçek, M. Bouaziz, S. Cho, D. Distefano: Static Resource Analysis at Scale (Extended Abstract), SAS ’20
10J. Hoffmann, S. Jost: Two decades of automatic amortized resource analysis, MSCS ’22
11J. Hoffmann, K. Aehlig, M. Hofmann: Resource Aware ML, CAV ’12

69/111



Are There Other Techniques and Tools?
Using techniques from termination proving: ABC2, AProVE, CoFloCo3, COSTA/PUBS4,
Loopus5, Rank6, TcT7, . . .
Using invariant generation: SPEED8

Using abstract interpretation: Infer9

Using type-based amortised analysis:10 RAML11, . . .

2R. Blanc, T. Henzinger, L. Kovács: ABC: Algebraic Bound Computation for Loops, LPAR (Dakar) ’10
3A. Flores-Montoya and R. Hähnle: Resource Analysis of Complex Programs with Cost Equations, APLAS ’14
4E. Albert, P. Arenas, S. Genaim, G. Puebla, D.Zanardini: Cost analysis of object-oriented bytecode programs,

TCS ’12
5M. Sinn, F. Zuleger, H. Veith: A Simple and Scalable Static Analysis for Bound Analysis and Amortized

Complexity Analysis, CAV ’14
6C. Alias, A. Darte, P. Feautrier, L. Gonnord: Multi-dimensional Rankings, Program Termination, and Complexity

Bounds of Flowchart Programs, SAS ’10
7M. Avanzini, G. Moser, M. Schaper: TcT: Tyrolean Complexity Tool, TACAS ’16
8S. Gulwani, K. Mehro, T. Chilimbi: SPEED: precise and efficient static estimation of program computational

complexity, POPL ’09

9E. Çiçek, M. Bouaziz, S. Cho, D. Distefano: Static Resource Analysis at Scale (Extended Abstract), SAS ’20
10J. Hoffmann, S. Jost: Two decades of automatic amortized resource analysis, MSCS ’22
11J. Hoffmann, K. Aehlig, M. Hofmann: Resource Aware ML, CAV ’12

69/111



Are There Other Techniques and Tools?
Using techniques from termination proving: ABC2, AProVE, CoFloCo3, COSTA/PUBS4,
Loopus5, Rank6, TcT7, . . .
Using invariant generation: SPEED8

Using abstract interpretation: Infer9

Using type-based amortised analysis:10 RAML11, . . .

2R. Blanc, T. Henzinger, L. Kovács: ABC: Algebraic Bound Computation for Loops, LPAR (Dakar) ’10
3A. Flores-Montoya and R. Hähnle: Resource Analysis of Complex Programs with Cost Equations, APLAS ’14
4E. Albert, P. Arenas, S. Genaim, G. Puebla, D.Zanardini: Cost analysis of object-oriented bytecode programs,

TCS ’12
5M. Sinn, F. Zuleger, H. Veith: A Simple and Scalable Static Analysis for Bound Analysis and Amortized

Complexity Analysis, CAV ’14
6C. Alias, A. Darte, P. Feautrier, L. Gonnord: Multi-dimensional Rankings, Program Termination, and Complexity

Bounds of Flowchart Programs, SAS ’10
7M. Avanzini, G. Moser, M. Schaper: TcT: Tyrolean Complexity Tool, TACAS ’16
8S. Gulwani, K. Mehro, T. Chilimbi: SPEED: precise and efficient static estimation of program computational

complexity, POPL ’09
9E. Çiçek, M. Bouaziz, S. Cho, D. Distefano: Static Resource Analysis at Scale (Extended Abstract), SAS ’20

10J. Hoffmann, S. Jost: Two decades of automatic amortized resource analysis, MSCS ’22
11J. Hoffmann, K. Aehlig, M. Hofmann: Resource Aware ML, CAV ’12

69/111



Are There Other Techniques and Tools?
Using techniques from termination proving: ABC2, AProVE, CoFloCo3, COSTA/PUBS4,
Loopus5, Rank6, TcT7, . . .
Using invariant generation: SPEED8

Using abstract interpretation: Infer9

Using type-based amortised analysis:10 RAML11, . . .
2R. Blanc, T. Henzinger, L. Kovács: ABC: Algebraic Bound Computation for Loops, LPAR (Dakar) ’10
3A. Flores-Montoya and R. Hähnle: Resource Analysis of Complex Programs with Cost Equations, APLAS ’14
4E. Albert, P. Arenas, S. Genaim, G. Puebla, D.Zanardini: Cost analysis of object-oriented bytecode programs,

TCS ’12
5M. Sinn, F. Zuleger, H. Veith: A Simple and Scalable Static Analysis for Bound Analysis and Amortized

Complexity Analysis, CAV ’14
6C. Alias, A. Darte, P. Feautrier, L. Gonnord: Multi-dimensional Rankings, Program Termination, and Complexity

Bounds of Flowchart Programs, SAS ’10
7M. Avanzini, G. Moser, M. Schaper: TcT: Tyrolean Complexity Tool, TACAS ’16
8S. Gulwani, K. Mehro, T. Chilimbi: SPEED: precise and efficient static estimation of program computational

complexity, POPL ’09
9E. Çiçek, M. Bouaziz, S. Cho, D. Distefano: Static Resource Analysis at Scale (Extended Abstract), SAS ’20

10J. Hoffmann, S. Jost: Two decades of automatic amortized resource analysis, MSCS ’22
11J. Hoffmann, K. Aehlig, M. Hofmann: Resource Aware ML, CAV ’12

69/111



Current Developments

Precise handling of loops with computable complexity in the KoAT approach12

Inference of lower bounds for worst-case runtime complexity13: LoAT14

Cost analysis for Java programs via Integer Transition Systems15

Cost analysis for probabilistic programs161718

12N. Lommen, F. Meyer, J. Giesl: Automatic Complexity Analysis of Integer Programs via Triangular Weakly
Non-Linear Loops, IJCAR ’22

13F. Frohn, M. Naaf, M. Brockschmidt, J. Giesl: Inferring Lower Runtime Bounds for Integer Programs,
TOPLAS ’20

14F. Frohn, J. Giesl: Proving Non-Termination and Lower Runtime Bounds with LoAT (System Description),
IJCAR ’22

15F. Frohn, J. Giesl: Complexity Analysis for Java with AProVE, iFM ’17
16P. Wang, H. Fu, A. Goharshady, K. Chatterjee, X. Qin, W. Shi: Cost analysis of nondeterministic probabilistic

programs, PLDI ’19
17F. Meyer, M. Hark, J. Giesl: Inferring Expected Runtimes of Probabilistic Integer Programs Using Expected Sizes,

TACAS ’21
18L. Leutgeb, G. Moser, F. Zuleger: Automated Expected Amortised Cost Analysis of Probabilistic Data Structures,

CAV ’22
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Complexity of Integer Programs: What to Take Home?

Key insights:

Data size influences runtime
Runtime influences data size
Other influences minor

Solution:
Alternating size/runtime analysis
Modularity by using only these results
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II.2 Complexity Analysis for Term Rewriting
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What is Term Rewriting?

(1) Core functional programming language without many restrictions (and features) of “real” FP:

first-order (usually)
no fixed evaluation strategy
untyped
no pre-defined data structures (integers, arrays, . . .)

(2) Syntactic approach for reasoning in equational first-order logic

Example (Term Rewrite System (TRS) R)
double(0) −→ 0

double(s(x)) −→ s(s(double(x))

Compute “double of 3 is 6”:
double(s(s(s(0))))

−→R s(s(double(s(s(0)))))

−→R s(s(s(s(double(s(0))))))

−→R s(s(s(s(s(s(double(0)))))))

−→R s(s(s(s(s(s(0))))))

in 4 steps with −→R
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What is Complexity of Term Rewriting?

Given: TRS R (e.g., { double(0) −→ 0, double(s(x)) −→ s(s(double(x))) })

Question: How long can a −→R sequence from a term of size n become?
(worst case)

Here: Does R have complexity Θ(n)?

(1) Yes!
double(sn−2(0)) −→n−1

R s2n−4(0)

basic terms f(t1, . . ., tn) with ti constructor terms allow only n steps
runtime complexity rcR(n): basic terms as start terms
rcR(n) for program analysis

(2) No!

double3(s(0)) −→2
R double2(s2(0)) −→3

R double(s4(0)) −→5
R s8(0) in 10 steps

doublen−2(s(0)) allows Θ(2n) many steps to s2
n−2

(0)
derivational complexity dcR(n): no restrictions on start terms
dcR(n) for equational reasoning: cost of solving the word problem E |= s ≡ t
by rewriting s and t via an equivalent convergent TRS RE
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A Short Timeline (1/2)

1989: Derivational complexity introduced, linked to termination proofs19

2001: Techniques for polynomial upper complexity bounds20

2008: Runtime complexity introduced with first analysis techniques21

2008: First automated tools to find complexity bounds: TcT22, CaT23

2008: First complexity analysis categories in the Termination Competition (termCOMP)
. . .

19D. Hofbauer, C. Lautemann: Termination proofs and the length of derivations, RTA ’89

20G. Bonfante, A. Cichon, J. Marion, and H. Touzet: Algorithms with polynomial interpretation termination proof,
JFP ’01

21N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency pair method, IJCAR ’08
22M. Avanzini, G. Moser, M. Schaper: TcT: Tyrolean Complexity Tool, TACAS ’16,

https://tcs-informatik.uibk.ac.at/tools/tct/
23M. Korp, C. Sternagel, H. Zankl, A. Middeldorp: Tyrolean Termination Tool 2, RTA ’09,

http://cl-informatik.uibk.ac.at/software/cat/
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Some Definitions

Definition (Derivation Height dh)

For a term t ∈ T (F ,V) and a relation −→, the derivation height is:

dh(t,−→) = sup { n | ∃t′. t −→n
t′ }

If t starts an infinite −→-sequence, we set dh(t,−→) = ω.

dh(t,−→): length of the longest −→-sequence from t.

Example: dh( double(s(s(s(0)))), −→R ) = 4

Definition (Derivational Complexity dc)
For a TRS R, the derivational complexity is:

dcR(n) = sup { dh(t,−→R) | t ∈ T (F ,V), |t| ≤ n }

dcR(n): length of the longest −→R-sequence from a term of size at most n

Example: For R for double, we have dcR(n) ∈ Θ(2n).
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Upper Bounds

The Bad News for automation:

For a given TRS R, the following questions are undecidable:

dcR(n) = ω for some n? (−→ termination!)
dcR(n) polynomially bounded?24

Goal: find approximations for derivational complexity

Initial focus: find upper bounds
dcR(n) ∈ O(...)

24A. Schnabl and J. G. Simonsen: The exact hardness of deciding derivational and runtime complexity, CSL ’11
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Derivational Complexity from Polynomial Interpretations (1/2)

Example (double)

double(0) −→ 0

3 > 1

double(s(x)) −→ s(s(double(x))

3 · x+ 3 > 3 · x+ 2

Show dcR(n) < ω by termination proof with reduction order � on terms.
Get � via polynomial interpretation25 [ · ] over N: ` � r ⇐⇒ [`] � [r]

Example: [double](x) = 3 · x, [s](x) = x+ 1, [0] = 1

Extend to terms:
[x] = x

[f(t1, . . . , tn)] = [f ]([t1], . . . , [tn])

Automated search for [ · ] via SAT26 or SMT27 solving
25D. Lankford: Canonical algebraic simplification in computational logic, U Texas ’75
26C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, H. Zankl: SAT solving for termination

analysis with polynomial interpretations, SAT ’07
27C. Borralleras, S. Lucas, A. Oliveras, E. Rodríguez-Carbonell, A. Rubio: SAT modulo linear arithmetic for solving

polynomial constraints, JAR ’12
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Derivational Complexity from Polynomial Interpretations (2/2)

Example (double)

double(0) � 0 3 > 1
double(s(x)) � s(s(double(x)) 3 · x+ 3 > 3 · x+ 2

Example: [double](x) = 3 · x, [s](x) = x+ 1, [0] = 1

This proves more than just termination. . .

Theorem (Upper bounds for dcR(n) from polynomial interpretations28)
Termination proof for TRS R with polynomial interpretation

⇒ dcR(n) ∈ 22
O(n)

Termination proof for TRS R with linear polynomial interpretation
⇒ dcR(n) ∈ 2O(n)

28D. Hofbauer, C. Lautemann: Termination proofs and the length of derivations, RTA ’89
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Derivational Complexity from Termination Proofs (1/2)

Termination proof for TRS R with . . .
matchbounds29 ⇒ dcR(n) ∈ O(n)

arctic matrix interpretations30 ⇒ dcR(n) ∈ O(n)

triangular matrix interpretation31 ⇒ dcR(n) is at most polynomial
matrix interpretation of spectral radius32 ≤ 1 ⇒ dcR(n) is at most polynomial
standard matrix interpretation33 ⇒ dcR(n) is at most exponential

29A. Geser, D. Hofbauer, J. Waldmann: Match-bounded string rewriting systems, AAECC ’04
30A. Koprowski, J. Waldmann: Max/plus tree automata for termination of term rewriting, Acta Cyb. ’09

31G. Moser, A. Schnabl, J. Waldmann: Complexity analysis of term rewriting based on matrix and context
dependent interpretations, FSTTCS ’08

32F. Neurauter, H. Zankl, A. Middeldorp: Revisiting matrix interpretations for polynomial derivational complexity of
term rewriting, LPAR (Yogyakarta) ’10

33J. Endrullis, J. Waldmann, and H. Zantema: Matrix interpretations for proving termination of term rewriting,
JAR ’08

81/111



Derivational Complexity from Termination Proofs (1/2)

Termination proof for TRS R with . . .
matchbounds29 ⇒ dcR(n) ∈ O(n)

arctic matrix interpretations30 ⇒ dcR(n) ∈ O(n)

triangular matrix interpretation31 ⇒ dcR(n) is at most polynomial
matrix interpretation of spectral radius32 ≤ 1 ⇒ dcR(n) is at most polynomial

standard matrix interpretation33 ⇒ dcR(n) is at most exponential

29A. Geser, D. Hofbauer, J. Waldmann: Match-bounded string rewriting systems, AAECC ’04
30A. Koprowski, J. Waldmann: Max/plus tree automata for termination of term rewriting, Acta Cyb. ’09
31G. Moser, A. Schnabl, J. Waldmann: Complexity analysis of term rewriting based on matrix and context

dependent interpretations, FSTTCS ’08
32F. Neurauter, H. Zankl, A. Middeldorp: Revisiting matrix interpretations for polynomial derivational complexity of

term rewriting, LPAR (Yogyakarta) ’10

33J. Endrullis, J. Waldmann, and H. Zantema: Matrix interpretations for proving termination of term rewriting,
JAR ’08

81/111



Derivational Complexity from Termination Proofs (1/2)

Termination proof for TRS R with . . .
matchbounds29 ⇒ dcR(n) ∈ O(n)

arctic matrix interpretations30 ⇒ dcR(n) ∈ O(n)

triangular matrix interpretation31 ⇒ dcR(n) is at most polynomial
matrix interpretation of spectral radius32 ≤ 1 ⇒ dcR(n) is at most polynomial
standard matrix interpretation33 ⇒ dcR(n) is at most exponential

29A. Geser, D. Hofbauer, J. Waldmann: Match-bounded string rewriting systems, AAECC ’04
30A. Koprowski, J. Waldmann: Max/plus tree automata for termination of term rewriting, Acta Cyb. ’09
31G. Moser, A. Schnabl, J. Waldmann: Complexity analysis of term rewriting based on matrix and context

dependent interpretations, FSTTCS ’08
32F. Neurauter, H. Zankl, A. Middeldorp: Revisiting matrix interpretations for polynomial derivational complexity of

term rewriting, LPAR (Yogyakarta) ’10
33J. Endrullis, J. Waldmann, and H. Zantema: Matrix interpretations for proving termination of term rewriting,

JAR ’08
81/111



Derivational Complexity from Termination Proofs (2/2)

Termination proof for TRS R with . . .
Lexicographic Path Order34 ⇒ dcR(n) is at most multiple recursive35

Dependency Pairs method36 with dependency graphs and usable rules
⇒ dcR(n) is at most primitive recursive37

Dependency Pairs framework3839 with dependency graphs, reduction pairs, subterm criterion
⇒ dcR(n) is at most multiple recursive40

34S. Kamin, J.-J. Lévy: Two generalizations of the recursive path ordering, U Illinois ’80
35A. Weiermann: Termination proofs for term rewriting systems by lexicographic path orderings imply multiply

recursive derivation lengths, TCS ’95

36T. Arts, J. Giesl: Termination of term rewriting using dependency pairs, TCS ’00
37G. Moser, A. Schnabl: The derivational complexity induced by the dependency pair method, LMCS ’11
38J. Giesl, R. Thiemann, P. Schneider-Kamp, S. Falke: Mechanizing and improving dependency pairs, JAR ’06
39N. Hirokawa and A. Middeldorp: Tyrolean Termination Tool: Techniques and features, IC ’07
40G. Moser, A. Schnabl: Termination proofs in the dependency pair framework may induce multiple recursive

derivational complexity, RTA ’11
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Runtime Complexity

So far: upper bounds for derivational complexity

But: derivational complexity counter-intuitive, often infeasible
Wanted: complexity of evaluation of double on data: double(sn(0))

Definition (Basic Term41)
For defined symbols D and constructor symbols C, the term

f(t1, . . ., tn)

is in the set Tbasic of basic terms iff f ∈ D and t1, . . ., tn ∈ T (C,V).

Definition (Runtime Complexity rc41)
For a TRS R, the runtime complexity is:

rcR(n) = sup { dh(t,−→R) | t ∈ Tbasic, |t| ≤ n }

rcR(n): like derivational complexity. . . but for basic terms only!

41N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency pair method, IJCAR ’08
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Runtime Complexity from Polynomial Interpretations

Polynomial interpretations can induce upper bounds to runtime complexity:42

Definition (Strongly linear polynomial, restricted interpretation)
Polynomial p is strongly linear iff
p(x1, . . . , xn) = x1 + · · ·+ xn + a for some a ∈ N.
Polynomial interpretation [ · ] is restricted iff
for all constructor symbols f , [f ](x1, . . . , xn) is strongly linear.

Idea: [t] ≤ c · |t| for fixed c ∈ N.

Theorem (Upper bounds for rcR(n) from restricted interpretations)
Termination proof for TRS R with restricted interpretation [ · ] of degree at most d for [f ]

⇒ rcR(n) ∈ O(nd)

Example: [double](x) = 3 · x, [s](x) = x+ 1, [0] = 1 is restricted, degree 1

⇒ rcR(n) ∈ O(n) for TRS R for double

42G. Bonfante, A. Cichon, J. Marion, H. Touzet: Algorithms with polynomial interpretation termination proof,
JFP ’01
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Dependency Tuples for Innermost Runtime Complexity irc

Here: innermost rewriting (≈ call-by-value)

Example (reverse)

app(nil, y) −→ y app(add(n, x), y) −→ add(n, app(x, y))

reverse(nil) −→ nil reverse(add(n, x)) −→ app(reverse(x), add(n, nil))

For rule ` −→ r, eval of ` costs 1 + eval of all function calls in r together:

Example (Dependency Tuples43 for reverse)

app](nil, y) −→ Com0

app](add(n, x), y) −→ Com1(app](x, y))

reverse](nil) −→ Com0

reverse](add(n, x)) −→ Com2(app](reverse(x), add(n, nil)), reverse](x))

Function calls to count marked with ]
Compound symbols Comk group function calls together

43L. Noschinski, F. Emmes, J. Giesl: Analyzing innermost runtime complexity of term rewriting by dependency
pairs, JAR ’13
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Example (reverse)

app(nil, y) −→ y app(add(n, x), y) −→ add(n, app(x, y))

reverse(nil) −→ nil reverse(add(n, x)) −→ app(reverse(x), add(n, nil))

For rule ` −→ r, eval of ` costs 1 + eval of all function calls in r together:

Example (Dependency Tuples43 for reverse)

app](nil, y) −→ Com0

app](add(n, x), y) −→ Com1(app](x, y))

reverse](nil) −→ Com0

reverse](add(n, x)) −→ Com2(app](reverse(x), add(n, nil)), reverse](x))

Function calls to count marked with ]
Compound symbols Comk group function calls together

43L. Noschinski, F. Emmes, J. Giesl: Analyzing innermost runtime complexity of term rewriting by dependency
pairs, JAR ’13
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Polynomial Interpretations for Dependency Tuples

Example (reverse, Dependency Tuples for reverse)

app](nil, y) −→ Com0

app](add(n, x), y) −→ Com1(app](x, y))

reverse](nil) −→ Com0

reverse](add(n, x)) −→ Com2(app](reverse(x), add(n, nil)), reverse](x))

app(nil, y) −→ y app(add(n, x), y) −→ add(n, app(x, y))

reverse(nil) −→ nil reverse(add(n, x)) −→ app(reverse(x), add(n, nil))

Use interpretation [ · ] with [Comk](x1, . . . , xk) = x1 + · · ·+ xk and

[nil] = 0 [add](x1, x2) = x2 + 1 (≤ restricted interpretation)
[app](x1, x2) = x1 + x2 [reverse](x1) = x1 (bounds helper function’s result size)
[app]](x1, x2) = x1 + 1 [reverse]](x1) = x21 + x1 + 1 (complexity of function)

to show [`] ≥ [r] for all rules and [`] ≥ 1 + [r] for all Dependency Tuples

Maximum degree of [f ]] is 2 ⇒ ircR(n) ∈ O(n2)
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Related Techniques

Dependency Tuples are an adaptation of Dependency Pairs (DPs) from termination analysis to
complexity analysis, allow for incremental complexity proofs with several techniques

Further adaptation of DPs (incomparable): Weak (Innermost) Dependency Pairs for
(innermost) runtime complexity44

Extensions by polynomial path orders45, usable replacement maps46, a combination framework
for complexity analysis47, . . .

44N. Hirokawa, G. Moser: Automated complexity analysis based on the dependency pair method, IJCAR ’08
45M. Avanzini, G. Moser: Dependency pairs and polynomial path orders, RTA ’09
46N. Hirokawa, G. Moser: Automated complexity analysis based on context-sensitive rewriting, RTA-TLCA ’14
47M. Avanzini, G. Moser: A combination framework for complexity, IC ’16
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A Landscape of Complexity Properties and Transformations
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Transforming Derivational Complexity to Runtime Complexity

The big picture:
Have: Tool for automated analysis of runtime complexity rcR

Want: Tool for automated analysis of derivational complexity dcR

Idea:
“rcR analysis tool + transformation on TRS R = dcR analysis tool”

Benefits:
Get analysis of derivational complexity “for free”
Progress in runtime complexity analysis automatically improves derivational complexity analysis

89/111



Transforming Derivational Complexity to Runtime Complexity

The big picture:
Have: Tool for automated analysis of runtime complexity rcR

Want: Tool for automated analysis of derivational complexity dcR

Idea:
“rcR analysis tool + transformation on TRS R = dcR analysis tool”

Benefits:
Get analysis of derivational complexity “for free”
Progress in runtime complexity analysis automatically improves derivational complexity analysis

89/111



Transforming Derivational Complexity to Runtime Complexity

The big picture:
Have: Tool for automated analysis of runtime complexity rcR

Want: Tool for automated analysis of derivational complexity dcR

Idea:
“rcR analysis tool + transformation on TRS R = dcR analysis tool”

Benefits:
Get analysis of derivational complexity “for free”
Progress in runtime complexity analysis automatically improves derivational complexity analysis

89/111



Transforming Derivational Complexity to Runtime Complexity

The big picture:
Have: Tool for automated analysis of runtime complexity rcR

Want: Tool for automated analysis of derivational complexity dcR

Idea:
“rcR analysis tool + transformation on TRS R = dcR analysis tool”

Benefits:
Get analysis of derivational complexity “for free”
Progress in runtime complexity analysis automatically improves derivational complexity analysis

89/111



From dc to rc: Results

program transformation such that runtime complexity of transformed TRS is identical to
derivational complexity of original TRS

transformation correct also from idc to irc

implemented in program analysis tool AProVE

evaluated successfully on TPDB relative to state of the art TcT
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From dc to rc: Results

program transformation such that runtime complexity of transformed TRS is identical to
derivational complexity of original TRS

transformation correct also from idc to irc

implemented in program analysis tool AProVE

evaluated successfully on TPDB50 relative to state of the art TcT

50Termination Problem DataBase, standard benchmark source for annual Termination Competition (termCOMP)
with 1000s of problems, http://termination-portal.org/wiki/TPDB
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From dc to rc: Transformation

Issue:
Runtime complexity assumes basic terms as start terms
We want to analyse complexity for arbitrary terms

Idea:
Introduce constructor symbol cf for defined symbol f
Add generator rewrite rules G to reconstruct arbitrary term with f from basic term with cf

Represent

t = double(double(double(s(0))))

by basic variant

bv(t) = encdouble(cdouble(cdouble(s(0))))

Then:
bv(t) is basic term, size |t|
bv(t) −→∗G t

Example (Generator rules G)
encdouble(x) −→ double(argenc(x))

enc0 −→ 0

encs(x) −→ s(argenc(x))

argenc(cdouble(x)) −→ double(argenc(x))

argenc(0) −→ 0

argenc(s(x)) −→ s(argenc(x))
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General Case: Relative Rewriting

Issue:
−→R∪G has extra rewrite steps not present in −→R
may change complexity

Solution:
add G as relative rewrite rules:
−→G steps are not counted for complexity analysis!
transform R to R/G (−→R steps are counted, −→G steps are not)
more generally: transform R/S to R/(S ∪ G)
(input may contain relative rules S, too)
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From dc to rc: Correctness

Theorem (Derivational Complexity via Runtime Complexity)
Let R/S be a relative TRS, let G be the generator rules for R/S. Then

1 dcR/S(n) = rcR/(S∪G)(n) (arbitrary rewrite strategies)
2 idcR/S(n) = ircR/(S∪G)(n) (innermost rewriting)

Note: equalities hold also non-asymptotically!
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From (i)dc to (i)rc: Experiments

Experiments on TPDB, compare with state of the art in TcT:

upper bounds idc: both AProVE and TcT with transformation are stronger than standard TcT

upper bounds dc: TcT stronger than AProVE and TcT with transformation, but AProVE still
solves some new examples

lower bounds idc and dc: heuristics do not seem to benefit much

⇒ Transformation-based approach should be part of the portfolio of analysis tools for derivational
complexity
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Derivational Complexity: Applications and Extensions

Possible applications
compiler simplifications
SMT solver preprocessing

Start terms may have nested defined symbols, so dcR is appropriate

Go between derivational and runtime complexity
So far: encode full term universe T via basic terms Tbasic
Generalise: write relative rules to generate arbitrary set U of terms “between” basic and all terms
(Tbasic ⊆ U ⊆ T ).
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A Landscape of Complexity Properties and Transformations

idc

dc

irc

rc

idc, irc: like dc, rc,
but for innermost rewriting

Rec. ITS irc ITS irc

TRS

LPAR’17

FroCoS’19

FroCoS’19

50M. Naaf, F. Frohn, M. Brockschmidt, C. Fuhs, J. Giesl: Complexity analysis for term rewriting by integer
transition systems, FroCoS ’17
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Derivational_Complexity_Full_Rewriting/AG01/#3.12, TPDB

app(nil, y) −→ y app(add(n, x), y) −→ add(n, app(x, y))

reverse(nil) −→ nil reverse(add(n, x)) −→ app(reverse(x), add(n, nil))

shuffle(nil) −→ nil shuffle(add(n, x)) −→ add(n, shuffle(reverse(x)))

AProVE finds (tight) upper bound O(n4) for dcR:

1 Add generator rules G, so analyse rcR/G instead (FroCoS’19)
2 Detect: innermost is worst case here, analyse ircR/G instead (LPAR’17)
3 Transform TRS to Recursive Integer Transition System (RITS), analyse complexity of RITS

instead (FroCoS’17)
4 ITS tools CoFloCo and KoAT find upper bounds for runtime and size of individual RITS

functions, combine to complexity of RITS
5 Upper bound O(n4) for RITS complexity carries over to dcR of input!

AProVE finds lower bound Ω(n3) for dcR.52

52F. Frohn, J. Giesl, J. Hensel, C. Aschermann, and T. Ströder: Lower bounds for runtime complexity of term
rewriting, JAR ’17
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3 Transform TRS to Recursive Integer Transition System (RITS), analyse complexity of RITS

instead (FroCoS’17)
4 ITS tools CoFloCo and KoAT find upper bounds for runtime and size of individual RITS

functions, combine to complexity of RITS

5 Upper bound O(n4) for RITS complexity carries over to dcR of input!

AProVE finds lower bound Ω(n3) for dcR.52

52F. Frohn, J. Giesl, J. Hensel, C. Aschermann, and T. Ströder: Lower bounds for runtime complexity of term
rewriting, JAR ’17
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Input for Automated Tools (1/4)

Automated tools for TRS Complexity at recent Termination Competitions:
AProVE: https://aprove.informatik.rwth-aachen.de/
TcT: https://tcs-informatik.uibk.ac.at/tools/tct/

Web interfaces available:
AProVE: https://aprove.informatik.rwth-aachen.de/interface
TcT: http://colo6-c703.uibk.ac.at/tct/tct-trs/

Input format for runtime complexity:53

(VAR x y)
(GOAL COMPLEXITY)
(STARTTERM CONSTRUCTOR-BASED)
(RULES
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

)

53For TcT Web, use only VAR and RULES entries in the text format and configure other aspects (e.g., start terms) in
the web interface.
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Input for Automated Tools (2/4)

Innermost runtime complexity:

(VAR x y)
(GOAL COMPLEXITY)
(STARTTERM CONSTRUCTOR-BASED)
(STRATEGY INNERMOST)
(RULES
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

)
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Input for Automated Tools (3/4)

Derivational complexity:

(VAR x y)
(GOAL COMPLEXITY)
(STARTTERM UNRESTRICTED)
(RULES
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

)
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Input for Automated Tools (4/4)

Innermost derivational complexity:

(VAR x y)
(GOAL COMPLEXITY)
(STARTTERM UNRESTRICTED)
(STRATEGY INNERMOST)
(RULES
plus(0, y) -> y
plus(s(x), y) -> s(plus(x, y))

)
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A Landscape of Complexity Properties and Transformations

idc

dc

irc

rc

idc, irc: like dc, rc,
but for innermost rewriting

Rec. ITS irc ITS irc

TRS

LPAR’17

FroCoS’19

FroCoS’19

FroCoS’17 FroCoS’17
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Prolog

OCaml

Java

idc

dc

irc

rc

idc, irc: like dc, rc,
but for innermost rewriting

Rec. ITS irc ITS irc

TRS

ICFP’1554

IC’1855

PPDP’1256

LPAR’17

FroCoS’19

FroCoS’19

FroCoS’17 FroCoS’17

54M. Avanzini, U. Dal Lago, G. Moser: Analysing the Complexity of Functional Programs: Higher-Order Meets
First-Order, ICFP ’15

55G. Moser, M. Schaper: From Jinja bytecode to term rewriting: A complexity reflecting transformation, IC ’18
56J. Giesl, T. Ströder, P. Schneider-Kamp, F. Emmes, C. Fuhs: Symbolic evaluation graphs and term rewriting: A

general methodology for analyzing logic programs, PPDP ’12
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Program Complexity Analysis via Term Rewriting: OCaml

Complexity analysis for functional programs (OCaml) by translation to term rewriting

Challenge for translation to TRS: OCaml is higher-order – functions can take functions as
arguments: map(F, xs)

Solution:
Defunctionalisation to: a(a(map, F ), xs)

Analyse start term with non-functional parameter types, then partially evaluate functions to
instantiate higher-order variables
Further program transformations

⇒ First-order TRS R with rcR(n) an upper bound for the complexity of the OCaml program
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Program Complexity Analysis via Term Rewriting: Prolog and Java

Complexity analysis for Prolog programs and for Java programs by translation to term rewriting

Common ideas:
Analyse program via symbolic execution and generalisation (a form of abstract interpretation57)
Deal with language specifics in program analysis
Extract TRS R such that rcR(n) is provably at least as high as runtime of program on input of
size n
Can represent tree structures of program as terms in TRS!

57P. Cousot, R. Cousot: Abstract interpretation: a unified lattice model for static analysis of programs by
construction or approximation of fixpoints, POPL ’77
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Current Developments

amortised complexity analysis for term rewriting58

probabilistic term rewriting −→ upper bounds on expected runtime59

complexity analysis for logically constrained rewriting with built-in data types from SMT
theories (integers, booleans, arrays, . . . )60

direct analysis of complexity for higher-order term rewriting61

analysis of parallel-innermost runtime complexity62

58G. Moser, M. Schneckenreither: Automated amortised resource analysis for term rewrite systems, SCP ’20

59M. Avanzini, U. Dal Lago, A. Yamada: On probabilistic term rewriting, SCP ’20
60S. Winkler, G. Moser: Runtime complexity analysis of logically constrained rewriting, LOPSTR ’20
61C. Kop, D. Vale: Tuple interpretations for higher-order rewriting, FSCD ’21
62T. Baudon, C. Fuhs, L. Gonnord: Analysing parallel complexity of term rewriting, LOPSTR ’22
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III. Termination and Complexity Proof
Certification
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Certification: Who Watches the Watchers?

Termination and complexity analysis tools are large, e.g., AProVE has several 100,000s LOC –
most likely with bugs!

Observation in early Termination Competitions: some tools disagreed on YES / NO for
termination
Step 1: Require human-readable proof output. But: can be large!
Step 2: Machine-readable XML proof output, can be certified independently by trustworthy
tools based on Coq and Isabelle
∼ 2007/8: projects A3PAT63, CoLoR64, IsaFoR65 formalise term rewriting, termination, proof
techniques −→ automatic proof checkers
performance bottleneck: computations in theorem prover
solution: extract source code (Haskell, OCaml, . . . ) for proof checker
−→ CeTA tool from IsaFoR

63E. Contejean,P. Courtieu, J. Forest, O. Pons, X. Urbain: Automated Certified Proofs with CiME3, RTA ’11
64F. Blanqui, A. Koprowski: CoLoR: a Coq library on well-founded rewrite relations and its application to the

automated verification of termination certificates, MSCS ’11
65R. Thiemann, C. Sternagel: Certification of Termination Proofs using CeTA, TPHOLs ’09
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Proof Certification with CeTA

http://cl-informatik.uibk.ac.at/isafor/

CeTA can certify proofs for...

termination of TRSs (several flavours), ITSs, and LLVM programs66

non-termination for TRSs
upper bounds for complexity
confluence and non-confluence proofs for TRSs
safety: invariants for ITSs67

If certification unsuccessful:
CeTA indicates which part of the proof it could not follow

66M. Haslbeck, R. Thiemann: An Isabelle/HOL formalization of AProVE’s termination method for LLVM IR,
CPP ’21

67M. Brockschmidt, S. Joosten, R. Thiemann, A. Yamada: Certifying Safety and Termination Proofs for Integer
Transition Systems, CADE ’17
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Termination and Complexity: Conclusion

Termination and complexity analysis: active fields of research

Push-button tools to prove (non-)termination and to infer upper (and lower) complexity bounds
available – SAT/SMT solvers find the proof steps!

Cross-fertilisation between techniques for different formalisms (integer transition systems,
functional programs, . . . )

Certification helps raise trust in automatically found proofs of (non-)termination and complexity
bounds

Thanks a lot for your attention!
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