
Singular-value Decomposition
DSTA

1 Foundations

1.1 Remember eigenpairs?

Matrix A has a real λ and a vector v s.t.

Av = λv

We think of A as scaling space with a factor λ in direction v.

Singular values uncover categories and their strenghts.

The Eigen-decomposition of a square matrix seen in Goodfellow et al. can be extended to
arbitrary matrices!
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We think of A as scaling space with a factor λ in direction v.

f(x) = xT Ax

For unit vectors the max (resp. min) of f(·) corresponds to λ1 (resp. λn).

1.2 Decompose the “effect” of A

Let the square matrix A have n

• linearly-independent e-vectors {v(1) . . . v(n)}

• corresponding e-values {λ1 ≥ λ1 ≥ . . . λn}. Then

. . .

A = V diag(λ)V T

where V = [v(1)v(1) . . . v(n)]

λ = [λ1λ2 . . . λn].

diag(λ) =

λ1 0 . . .
0 λ2 . . .
...

... . . .



A =


xx ...

x
v1v2 . . . vnyy ...

y


λ1 0 . . .
0 λ2 . . .
...

... . . .



←− v1 −→
←− v2 −→
. . . . . . . . .
←− vn −→
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1.3 A general form for real symmetric Ms

A = QΛQT

where Q is an orthogonal matrix of e-vectors and Λ is a diagonal m.

For repeated λ values the decomposition is not unique.

2 Singular-Value Decomposition

2.1 Definition

Singular-value decomp. generalises eigen-decomp.:

• any real matrix has one

• even non-square m. admit one

. . .

A = V diag(λ)V −1

A(n×m) = U(n×n)D(n×m)V
T

(m×m)

• U is a orthogonal m. of left-singular (col.) vectors

• D is a diagonal matrix of singular values

• V is a orthogonal m. of right-singular (col.) vectors

. . .

Where does all this come from?

2.2 Interpreting SV-decomposition

• cols. of U will be the e-vectors of AAT

• Dii =
√

λi the i-th e-value of AT A (same for AAT )

• cols. of V will be the e-vectors of AT A

Please see § 2.7 of [Goodfellow et al.]
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3 Moore-Penrose pseudo-inverse

3.1 Motivations

solve linear systems

Ax = y

for non-square (rectangular) matrices:

• n >m: the problem is overconstrained (no solution?)

• n < m: the problem is overparametrized (many sols.?)

3.2 Ideal procedure

If A is squared (n=m) and non-singular (|A| ≠ 0) then

Ax = y

. . .

A−1Ax = A−1y

. . .

Ix = A−1y

Compute once, run for different values of y.

3.3 Define the pseudo-inverse

A+ = lim
α→0

(AT A + αI)−1AT

It is proved that A+A ≈ I so A+ will work as the left-inverse of A

Consequence: over-constrained linear systems can now be solved w. approximation.

4



3.4 SVD leads to approx. inversion

for the decomposition

A = UDV T

A+ = V D+UT

where D+, such that D+D = I is easy to calculate: D is diagonal.

Does A+A ≈ I?

Yes, because U and V are s. t. UT U = V V T = I.

. . .

V D+UT · UDV T =

. . .

V D+IDV T =

. . .

V D+DV T =

. . .

V IV T = V V T = I
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