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Abstract— The traditional image representations are not suited to conventional classification 

methods, such as the linear discriminant analysis (LDA), because of the under sample problem (USP): 

the dimensionality of the feature space is much higher than the number of training samples. Motivated 

by the successes of the two dimensional LDA (2DLDA) for face recognition, we develop a general 

tensor discriminant analysis (GTDA) as a preprocessing step for LDA. The benefits of GTDA 

compared with existing preprocessing methods, e.g., principal component analysis (PCA) and 2DLDA, 

include 1) the USP is reduced in subsequent classification by, for example, LDA; 2) the discriminative 

information in the training tensors is preserved; and 3) GTDA provides stable recognition rates 

because the alternating projection optimization algorithm to obtain a solution of GTDA converges, 

while that of 2DLDA does not. 

We use human gait recognition to validate the proposed GTDA. The averaged gait images are 

utilized for gait representation. Given the popularity of Gabor function based image decompositions 

for image understanding and object recognition, we develop three different Gabor function based 

image representations: 1) the GaborD representation is the sum of Gabor filter responses over 

directions, 2) GaborS is the sum of Gabor filter responses over scales, and 3) GaborSD is the sum of 

Gabor filter responses over scales and directions. The GaborD, GaborS and GaborSD representations 

are applied to the problem of recognizing people from their averaged gait images. 
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A large number of experiments were carried out to evaluate the effectiveness (recognition rate) of 

gait recognition based on first obtaining a Gabor, GaborD, GaborS or GaborSD image representation, 

then using GDTA to extract features and finally using LDA for classification. The proposed methods 

achieved good performance for gait recognition based on image sequences from the USF HumanID 

Database. Experimental comparisons are made with nine state of the art classification methods in gait 

recognition. 

 

Index Terms—Gabor Gait, General Tensor Discriminant Analysis, Human Gait Recognition, 

Linear Discriminant Analysis, Tensor Rank, Visual Surveillance. 

 

I. INTRODUCTION 

IOMETRICS research is a hot topic because of the demanding requirements for automatic human 

authentication and authorization in computer systems. Biometric resources, such as iris, fingerprint, 

palmprint, and shoeprint, have been thoroughly studied and employed in many applications. These biometric 

resources have two disadvantages: 1) they do not work well in low resolution images, for example those 

taken at a distance; and 2) user cooperation is required to achieve good results. 

Human gait, or manner of walking, is a biometric which does not suffer from the above two disadvantages. 

It can be obtained from images taken at a distance and it does not require user cooperation. Gait contains 

information about the walker’s physical situation and about his or her psychological state. In certain cases 

gait information is sufficient to identify the person [9]. 

The original research on measuring human gait was entirely for medical purposes. For example, Murray 

[33] used gait to classify patients into groups suited to different types of medical treatment. This 

classification was achieved by comparing the patients’ gait patterns against the gait patterns obtained from a 

control group. Johansson [18] obtained video sequences of people walking in a darkened room with lights 
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affixed to the major joints of the body. He reported that the walking people could be recognized by observers 

who were familiar with them. 

In computer vision research human motion has been studied intensively [32], and there are a number of 

works on human gait analysis and recognition. The performance of gait recognition is affected by many 

factors [34][4], such as the silhouette quality, walking speed, dynamic/static component, elapsed time, shoes, 

carrying condition [2][17], physical and medical condition, disguise, indoor/outdoor, etc. The effects of 

different factors may be correlated. For example, a change in walking surface or shoe type may bring about a 

change in speed. Although gait is affected by so many factors, it is still useful for recognition [34]. 

The effective representation of gait is a key issue. Currently there are several successful representation 

models, such as appearance–based models [6][16][19][22][29][30][34][37][40], stochastic statistical models 

[19], articulated biomechanics models [36][3][1][7], in which a set of parameters describes the gait, and 

other parameter–based models [24][8]. Several of these models can be combined to further improve the 

representation of the gait. In this paper, we focus on appearance–based models for gait representation and 

recognition, because the existing appearance–based gait recognition methods achieve the best recognition 

rates obtained so far [16][30]. 

There are many appearance–based models for human gait recognition [16][30]. Some models use the 

silhouette of the entire body [28][16][19] while others use the most discriminant parts [12][21], such as the 

torso and the thighs. In the following, we use the averaged gait image [16][30] as the appearance model. The 

effectiveness of the averaged gait image for recognition is shown experimentally in [16][30]. 

In this paper, the averaged gait image is decomposed by Gabor filtering [38]. We combine the 

decomposed images to give a new representation, which is suitable for recognition. There are three major 

reasons for introducing the Gabor based representation for the averaged gait image based recognition: 1) 

human brains seem to have a special function to process information in multi–resolution levels [31][10][11], 

which can be simulated by controlling the scale parameter in Gabor functions; 2) it is supposed that Gabor 

functions are similar to the receptive field profiles in the mammalian cortical simple cells [31][10][11]; and 3) 
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Gabor function based representations have been successfully employed in many computer vision 

applications, such as face recognition [27][25], gait recognition, and texture analysis [14]. 

Although Gabor function based representations are effective for object recognition [27][25] and image 

understanding, the computational cost of the representations is high. Therefore, three simplified Gabor 

function representations are introduced. Each representation is obtained by filtering the image with a certain 

sum of Gabor functions. This reduces the number of filtering operations that are required. The three image 

representations are: 1) the sum over directions of Gabor function based representations (GaborD), 2) the sum 

over scales of Gabor function based representations (GaborS), and 3) the sum over scales and directions of 

Gabor function based representations (GaborSD). 

In the averaged gait image based recognition, the dimensionality of the feature space is usually much 

larger than the size of the training set. This is known as the under sample problem (USP). Conventional 

classifiers, e.g., LDA, often fail when faced by USP.  One solution is to reduce the dimensionality of the 

feature space using principal component analysis (PCA) [26][16] or multilinear subspace analysis (MSA) 

[39], but unfortunately, some useful information is discarded by PCA and MSA. 

To reduce USP and to preserve discriminative information, we propose the general tensor discriminant 

analysis (GTDA) as a pre-processing step for conventional classifiers, such as LDA. GTDA is motivated by 

the successes of the two dimensional LDA (2DLDA) [43] in face recognition. The 2DLDA reduces USP, 

because it operates on matrices (in [43] grey level face images) directly and constructs projection matrices 

for each order (the row space or the column space) of the face images, i.e., 2DLDA preserves the matrix 

structure of the data. Moreover, 2DLDA preserves the information needed for classification, because it 

considers the class label information of the face images when constructing projection matrices. By utilizing 

2DLDA as a pre-processing step for LDA, the face recognition rate is improved. However, 2DLDA is not 

stable, because the optimization algorithm used in the training stage of 2DLDA fails to converge. Therefore, 

it is impossible to obtain optimal projection matrices with respect to the criterion used in 2DLDA. In order to 

obtain convergence at the training stage, the differential scatter discriminant criterion (DSDC), which is a 
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variation of LDA, is combined with the tensor representation to give GTDA. We optimize GTDA through 

the alternating projection method. Mathematical arguments show that the alternating projection method 

converges, and convergence is verified by the experimental results in Section VI.C. The combination of 

DSDC with the tensor representation of data is based on a reformulation of the DSDC in terms of tensor 

algebra. The result is GTDA. The benefits of GTDA are as follows: 1) GTDA operates on each order of the 

training tensors separately to reduce USP; 2) GTDA preserves the discriminative information in the training 

tensors by taking the class label information into account; and 3) the optimization algorithm (the training 

stage) of GTDA converges as proved mathematically in this paper. When the data is pre-processed by GTDA, 

the dimensionality of the feature space is significantly reduced to the point where LDA can be used for 

recognition. A large number of experimental results show the effectiveness of the proposed Gabor 

representations when combined with GTDA+LDA. A comparison with existing algorithms is made. 

The rest of the paper is organized as follows. Section II describes the Gabor based gait representations. In 

Section III, tensor algebra is briefly introduced. LDA is briefly reviewed in Section IV. In Section V, we 

propose GTDA and prove that the optimization algorithm for GTDA converges. The USF HumanID 

database is described in Section VI and a comparison of the proposed methods with many existing 

algorithms is made. Section VII concludes. 

II. GABOR GAIT REPRESENTATION 

As demonstrated in [16][30], the averaged gait image is a robust feature for gait recognition tasks. In Fig. 

1, the sample averaged gait images are shown for nine different people under different circumstances. It can 

be observed that: 1) the averaged gait images of the same person under different circumstances share similar 

visual effects; and 2) the averaged gait images of different people even under the same circumstance are very 

different. So, it is possible to recognize a person by his/her averaged gait images. Furthermore, according to 

research results reported in [31][23][11][10], Gabor functions based image decomposition is biologically 
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relevant to and is useful for image understanding and recognition. Consequently, it is reasonable to use 

Gabor functions to find averaged gait images. 

 

 

 

 
Fig. 1. The columns show the averaged gait images of nine different people in the Gallery of the USF 
database. The four rows in the figure from top to bottom are based on images taken from the Gallery, ProbeB, 
ProbeH, and ProbeK, respectively. The averaged gait images in each column come from the same person. 
 

A. Gabor Functions 

Marcelja [31] and Daugman [10][11] modeled the responses of the visual cortex by Gabor functions, 

because they are similar to the receptive field profiles in the mammalian cortical simple cells. Daugman 

[10][11] developed the 2D Gabor functions, a series of local spatial bandpass filters, which have good spatial 

localization, orientation selectivity, and frequency selectivity. Lee [23] gives a good introduction to image 

representation using Gabor functions. A Gabor (wavelet, kernel, or filter) function is the product of an 

elliptical Gaussian envelope and a complex plane wave, defined as: 
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where ( ),x x y=  is the variable in a spatial domain and k  is the frequency vector, which determines the 

scale and direction of Gabor functions, di
sk k e φ= , where max

s
sk k f= , max 2k π= . In our application, 

2f = , 0,1,2,3,4s = , and 8d dφ π= , for 0,1, 2,3, 4,5,6,7d = . The term ( )2exp 2σ−  is subtracted in order 

to make the kernel DC–free, and thus insensitive to illumination. Examples of the real part of Gabor 
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functions used in this paper are presented in Fig. 2. We use Gabor functions with five different scales and 

eight different orientations, making a total of forty Gabor functions. The number of oscillations under the 

Gaussian envelope is determined by 2δ π= . 

 
Fig. 2. The real part of Gabor functions for five different scales and eight different directions. 

B. Gabor based Gait Representation 

The Gabor function representation of a gait image is obtained by convolving the Gabor functions with the 

averaged gait image. The result is a 4th order tensor in 1 2 5 8N NR × × × . The first two indices give the pixel location; 

the third index gives the value of the scale and the fourth index gives the direction. The entries of the 4th 

order tensor are complex numbers and the magnitude part of this 4th order tensor is defined as the Gabor gait, 

as shown in Fig. 3. In Gabor gait, there are 40 components (images), and each one is the magnitude part of 

the output, which is obtained by convolving the averaged gait image with a Gabor function. 
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Fig. 3. Gabor gait: the rows show different scales and the columns show different directions for an averaged 
gait image. 

 
Fig. 4. Three new methods for averaged gait image representation using Gabor functions: GaborS, GaborD, 
and GaborSD. 
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Fig. 5. The thirteen columns are Gallery gait, ProbeA gait, ProbeB gait, ProbeC gait, ProbeD gait, ProbeE 
gait, ProbeF gait, ProbeG gait, ProbeH gait, ProbeI gait, ProbeJ gait, ProbeK gait, and ProbeL gait, 
respectively. The rows are the original gait, GaborD (from 0 to 5), GaborS (from 0 to 7), and GaborSD, 
respectively. 
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The gait representation method in Fig. 3 is similar to the face representation method [26][25], which is 

also Gabor functions. Although this method for representation is powerful, its computational costs both for 

recognition and calculation for representation are high compared with the original image based recognition. 

The computational cost in recognition is analyzed in Section V.D. 

We introduce three new representations of the averaged gait images. These are the sum over directions of 

Gabor functions based representation (GaborD), the sum over scales of Gabor functions based representation 

(GaborS), and the sum over scales and directions of Gabor functions based representation (GaborSD). The 

most important benefit of these new representations is that the cost of computing them is low. The 

computational cost of the Gabor based representation is given at the end of this Section and the complexity 

analysis for alternating projection optimization procedure for GTDA based dimension reduction (training 

cost) with different representations is given in Section V.D. 

GaborD is the magnitude part of the outputs generated by convolving an averaged gait image with the sum 

of Gabor functions over the eight directions with the scale fixed, 

( ) ( ) ( ) ( ) ( ), ,GaborD , , , , ,s d s d
d d

x y I x y x y I x y x yψ ψ= ∗ = ∗∑ ∑ , (3) 

where ( ),I x y  is the averaged gait image; ( ), ,s d x yψ  is the Gabor function defined in (1); and 

( )GaborD ,x y  is the output of the GaborD method for representation. Therefore, we have five different 

outputs to represent the original gait image in the GaborD decomposition. We combine the ( )GaborD ,x y  

for the different scales into a 3rd order tensor DG  in 1 2 5N NR × × . The first two indices are for the pixel locations 

and the third index is for the scale. The calculations are shown in Fig. 4. Examples of GaborD based gait 

representation are shown in Fig. 5. 

GaborS is the magnitude part of the outputs generated by convolving an averaged gait image with the sum 

of Gabor functions over the five scales with the direction fixed, 
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( ) ( ) ( ) ( ) ( ), ,GaborS , , , , ,s d s d
s s

x y I x y x y I x y x yψ ψ= ∗ = ∗∑ ∑ , (2) 

where ( ),I x y  is the averaged gait image, ( ), ,s d x yψ  is the Gabor function defined in (1), and ( )GaborS ,x y  

is the output of the GaborS method for representation. Therefore, we have eight different outputs to represent 

the original gait image in the GaborS decomposition. We combine the ( )GaborS ,x y  with different 

directions together as a 3rd order tensor SG  in 1 2 8N NR × × . The third index is for the directions. The calculations 

are shown in Fig. 4. Examples of GaborS based gait representation are shown in Fig. 5. 

GaborSD is the magnitude part of the output generated by convolving an averaged gait image with the 

sum of all forty Gabor functions, 

( ) ( ) ( ) ( ) ( ), ,GaborSD , , , , ,s d s d
s d s d

x y I x y x y I x y x yψ ψ= ∗ = ∗∑∑ ∑∑ , (4) 

where ( ),I x y  is the averaged gait image, ( ), ,s d x yψ  is the Gabor function defined in (1), and 

( )GaborSD ,x y  is the output of the GaborSD method for representation. It is a 2nd order tensor in 1 2N NR × . 

The calculation procedure is shown in Fig. 4. Examples of GaborD based gait representation are shown in 

Fig. 5. 

C. Computational Complexity 

In this paper, all the filters, which are used as discrete approximations to Gabor functions with different 

scales and directions, have a fixed size 1 2G G×  (in experiments, 1 2 64G G= = ). The averaged gait images are 

in 1 2N NR × . Therefore, the time complexities for generating a Gabor gait in 1 2 5 8N NR × × ×  , a GaborD gait in 

1 2 5N NR × × , a GaborS gait in 1 2 8N NR × × , and a GaborSD gait in 1 2N NR ×  are ( )1 2 1 240O N N G G , ( )1 2 1 25O N N G G , 

( )1 2 1 28O N N G G , and ( )1 2 1 2O N N G G , respectively. Based on this observation, the GaborD, GaborS, and 

GaborSD based gait representation can reduce the computational complexity of the Gabor based 

representation, because the numbers of filters (the sum of Gabor function) for decomposition in the 
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GaborD/GaborS/ GaborSD based representation are smaller than the number of filters (Gabor functions) for 

decomposition in Gabor based representation. The computational costs of different representations are 

ordered as: Gabor > GaborS > GaborD > GaborSD. The experiments in Section VI.B show that GaborD and 

GaborS based representations perform slightly better than Gabor based representation for gait recognition. 

III. TENSOR ALGEBRA 

Tensors are multidimensional arrays of numbers which transform linearly under coordinate 

transformations [20]. The order of a tensor 1 2 ... MN N NR × × ×∈X  is M . An element of X  is denoted by 
1 2, ,..., Mn n nX , 

where 1 i in N≤ ≤  and 1 i M≤ ≤ . We introduce the following definitions [20] relevant to this paper. 

Definition 2.1 (Tensor Product) The tensor product ⊗X Y  of a tensor 1 2 ... MN N NR × × ×∈X  and another 

tensor 1 2 '' ' ... 'MN N NR × × ×∈Y  is the tensor defined by 

( )
1 2 1 2 '1 2 1 2 '

... ' ' ... '... ' ' ... ' M MM M
n n n n n nn n n n n n × × × × × ×× × × × × × ×

⊗ =X Y X Y , (5) 

for all index values. 

Definition 2.2 (Mode–d Matricizing or Matrix Unfolding) The mode–d matricizing or matrix 

unfolding of an Mth order tensor 1 2 ... MN N NR × × ×∈X  is a matrix ( )
d dN N

dX R ×∈ , which is the ensemble of vectors 

in dNR  obtained by keeping index di  fixed and varying the other indices. Here ( )id i d
N N

≠
= ∏ . We denote 

the mode–d matricizing of X  as ( )matd X  or ( )dX . 

Definition 2.3 (Tensor Contraction) The contraction of a tensor is obtained by equating two indices and 

summing over all values of the repeated indices. Contraction reduces the tensor order by 2. A notation for 

contraction is Einstein’s summation convention1. For example, given two vectors , Nx y R∈ ; the tensor 

product of x  and y  is Z x y= ⊗ ; and the contraction of Z  is iiZ x y= ⋅ , where the repeated indices imply 

 
1 “When any two subscripts in a tensor expression are given the same symbol, it is implied that the convention is formed.” 
A. Einstein, Die Grundlage der Allgemeinen Relativitatstheorie, Ann. Phys., pp. 49-769, 1916. 
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summation. The value of iiZ  is the inner product of x  and y . In general, for tensors 

1 2 1 2... ...M LN N N K K KR × × × × × × ×∈X  and 1 2 1 2... ...M QN N N P P PR × × × × × × ×∈Y , the contraction on the tensor product ⊗X Y  is 

( ) ( ) ( ) ( )
1

1 1 1 1 2
1

... ... ... ...
1 1

; 1: 1:
M

M L M Q
M

N N

n n k k n n p p p
n n

M M
× × × × × × × × × × ×

= =

⊗ =∑ ∑X Y X Yc f "e h . (6) 

In this paper, when the contraction is conducted on all indices except the ith index on the tensor product of 

X  and Y  in 1 2 ... MN N NR × × × , we denote this procedure as 

( )( ) ( ) ( )

( ) ( )

( ) ( ) ( )

1 11

1 1 1 1 1 1
1 1 1

... ... ...
1 1 1 1

; ; 1: 1, 1: 1: 1, 1:

                         

                         mat mat

i i M

i i i M i i i M
i i M

N NN N

n n n n n n n n n n
n n n n

T
i i i

i i i i M i i M

X Y

− +

− + − +
− +

× × × × × × × × × × × ×
= = = =

⊗ = ⊗ − + − +

=

= =

∑ ∑ ∑ ∑

X Y X Y

X Y

X Y

"

c f c fd g e he h

" "

( )
T
i

, (7) 

and ( )( ); i iN Ni i R ×⊗ ∈X Yc fd ge h . 

Definition 2.3 (Mode–d product) The mode–d product d U×X  of a tensor 1 2 ... MN N NR × × ×∈X  and a matrix 

'd dN NU R ×∈  is the 1 2 1 1'd d d MN N N N N N− +× × × × × × ×" "  tensor defined by 

( ) ( ) ( ) ( )
1 2 1 11 2 1 1

; 2
d d d M dd d M

d

d i i i i i i j ii i i j i i
i

U U U d
− +− +

× × × × × × × ×× × × × × × ×
× = = ⊗∑X X X" "" "

c fe h , (8) 

for all index values. The mode–d product is a type of contraction. 

To simplify the notation in this paper, we denote 

1 1 2 2
1

i

M

M M i
i

U U U U×
=

× × × × ∏X X" �  (9) 

and 

1 1 1 1 1 1
1;

d

M

i i i i M M d i i
d d i

U U U U U U− − + + ×
= ≠

× × × × × × = ×∏X X X" " � . (10)

 

IV. LINEAR DISCRIMINANT ANALYSIS 

Given a number of training samples ;
N

i jx R∈  in c known classes, where i is the class number, 1 i c≤ ≤ , 

and j is the sample ID in the ith class with 1 ij n≤ ≤ , the aim of LDA is to find a projection of the ;i jx , which 
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is optimal for separating the different classes in a low dimensional space. In the training set, there are 

1

c
ii

n n
=

= ∑  samples; the mean vector for the individual class iC  is ( ) ;1
1 in

i i i jj
m n x

=
= ∑ ; and the total mean 

vector is ( ) ;1 1
1 ic n

i ji j
m n x

= =
= ∑ ∑ . The between-class scatter matrix bS  and the within-class scatter matrix 

wS  are: 

( ) ( ) ( )( ); ;
1 1 1

1 1 inc c TT
b i i i w i j i i j i

i i j
S n m m m m S x m x m

n n= = =

= − − = − −∑ ∑∑ . (11)

The projection, which is defined by a set of vectors [ ]1 1, , cU u u −= … , is chosen to maximize the ratio 

between the trace of bS  and the trace of wS : 

( )
( )

tr
* arg max

tr

T
b

T
U w

U S U
U

U S U
= . (12)

The projection matrix *U  can be computed from the leading eigenvectors of 1
w bS S− . If x  is a new feature 

vector, then it is projected to ( )Ty U x m= − . The vector y  is used in place of x  for representation and 

classification. If c is 2, LDA reduces to the Fisher linear discriminant. In many computer vision applications, 

the dimensionality N of the feature space is much larger than the size of the training set (i.e., N n� ). Since 

the rank of wS  is at most n c− ,  wS  is singular if N is large, and it is more difficult to construct U. This is 

known as the Under Sample Problem (USP). 

To reduce the USP, the regularization method [15] is widely used, although it is not optimal. Small 

quantities are added to the diagonal entries of the scatter matrices. In recent face recognition research, 

several new algorithms have been proposed to deal with USP, such as the direct linear discriminant analysis 

(DLDA) [44] and the null–space linear discriminant analysis (NLDA) [5]. DLDA utilizes discriminant 

vectors, which are the eigenvectors of wS  associated with the smallest eigenvalues after discarding those 

eigenvectors of wS , which are in the null space of bS ; while in NLDA, discriminant information is extracted 

from the null space of wS . It can be observed that in DLDA and NLDA, some discriminant information may 
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be lost, because the null space of bS  and the principle space (spanned by the eigenvectors of wS  associated 

with the largest eigenvalues) of wS , which are removed in DLDA and NLDA, may contain some 

discriminant information. Aiming at utilizing all the discriminant information provided by bS  and wS , 

Wang and Tang [42] developed the dual-space method, but they require a threshold which is difficult to 

determine in applications. In face recognition, PCA+LDA [1][35] (i.e., PCA serves as a pre-processing step 

for LDA) is used to reduce USP, and the method also achieves good performance in human gait recognition. 

However, some important discriminant information is lost in the PCA stage. 

V. GENERAL TENSOR DISCRIMINANT ANALYSIS 

Human gait images are naturally represented by second–order tensors (matrices), or third–order tensors in 

the case of image sequences. Traditionally, such high order tensors are scanned into vectors (vectorization) 

to meet the input requirements of data processing techniques such as PCA and LDA. However, during 

vectorization, a great deal of useful structure information is lost. The dimensionality of the resulting vectors 

is much larger than the number of examples in the training set which leads to the USP. To reduce USP and to 

preserve the discriminant information in the original data, we propose the general tensor discriminant 

analysis (GTDA), which is a tensor extension of the differential scatter discriminant criterion (DSDC). 

A. Differential Scatter Discriminant Criterion (DSDC) 

The Differential Scatter Discriminant Criterion (DSDC) [15] is defined by, 

( ) ( )( )* arg max tr tr
T

T T
b w

U U I
U U S U U S Uζ

=
= − , (13)

where ζ  is a tuning parameter; *N NU R ×∈   ( *N N� ) , constrained by TU U I= , is the projection matrix; 

and bS , wS  are defined in (11). 

According to [15] (pp.446-447), the solution to (13) is equivalent to the solution to (12), if ζ  is the 

Lagrange multiplier in (13). If we extract only one feature, i.e. U  degenerates to a vector, then 
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( )1
max w bS Sζ λ −= , which is the maximum eigenvalue of 1

w bS S− . If we want to extract N* features 

simultaneously, we estimate ζ  as *

1

N
ii
λ

=∑ , where 1|ti iλ =
 are the largest N* eigenvalues of 1

w bS S− . From [15] 

(pp. 446-447), it is not difficult to show that the optimal ζ  in (13) is ( ) ( )tr trT T
opt b opt opt w optU S U U S U 2. An 

accurate solution of (13) can be obtained by the alternating projection method. Here, we use the 

approximation (on setting ζ  as the maximum eigenvalue of 1
w bS S− )  in (13) to avoid the alternating 

projection method for optimization. 

In real-world applications, because the distribution of the test set diverges from the distribution of the 

training set, a manually chosen value of ζ  always achieves better prediction results than the calculated 

value. However, manually setting ζ  is not practical for real applications, because we do not know which ζ  

is suitable for classification. In this paper, we automatically select ζ  during the training procedure. 

B. General Tensor Discriminant Analysis 

On defining bS  and wS  by (11), it follows from (13) that 

( ) ( )( )arg max tr tr
T

T T
b w

U U I
U U S U U S Uζ∗

=
= −  

( )( ) ( )( ); ;
1 1 1

   arg max tr tr
i

T

nc c TTT T
i i i i j i i j i

U U I i i j
U n m m m m U U x m x m Uζ

= = = =

⎛ ⎞⎛ ⎞⎡ ⎤⎛ ⎞⎡ ⎤= − − − − −⎜ ⎟⎜ ⎟⎜ ⎟ ⎢ ⎥⎢ ⎥ ⎜ ⎟⎜ ⎟⎣ ⎦⎝ ⎠ ⎣ ⎦⎝ ⎠⎝ ⎠
∑ ∑∑  

( ) ( ) ( )( ); ;
1 1 1

   arg max tr tr
i

T

nc c TTT T
i i i i j i i j i

U U I i i j

nU m m m m U U x m x m Uζ
= = = =

⎛ ⎞⎛ ⎞⎛ ⎞ ⎡ ⎤⎡ ⎤= − − − − −⎜ ⎟⎜ ⎟⎜ ⎟ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠⎝ ⎠
∑ ∑∑  

( ) ( )( ) ( )( )( ); ;
1 1 1

   arg max tr tr
i

T

nc c TTT T
i i i i j i i j i

U U I i i j
n U m m m m U U x m x m Uζ

= = = =

⎛ ⎞⎡ ⎤⎡ ⎤= − − − − −⎜ ⎟⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠
∑ ∑∑  

(14) 

 
2 The derivative of ( ) ( )tr trT T

b wU S U U S Uζ−  with U  is given by b wS U S Uζ− . To obtain the optimal solution of (13), we need 

to set b wS U S Uζ−  equal to 0 (as we have a strict condition here, i.e., ( ) 0b w kS S uζ− = , ku U∀ ∈ , ku  is a column vector in U ). 

Consequently, we have ( ) ( )Tr TrT T
opt b opt opt w optU S U U S Uζ= , where optU  is the optimal solution of (13). 
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( ) ( )( ) ( ) ( )( ); ;
1 1 1

   arg max tr tr
i

T

nc c TTT T T T
i i i i j i i j i

U U I i i j
n U m m U m m U x m U x mζ

= = = =

⎛ ⎞
⎡ ⎤⎡ ⎤= − − − − −⎜ ⎟⎣ ⎦ ⎣ ⎦⎝ ⎠

∑ ∑∑

( )( ) ( )( ) ( ) ( )

( )( ) ( )( ) ( ) ( )

1 1
1

; 1 ; 1
1 1

; 1 1
   arg max

; 1 1
iT

c
T T

i i i
i

nc
U U I T T

i j i i j i
i j

n m m U m m U

x m U x m Uζ

=

=

= =

⎛ ⎞− × ⊗ − ×⎜ ⎟
⎜ ⎟=
⎜ ⎟
− − × ⊗ − ×⎜ ⎟
⎝ ⎠

∑

∑∑

c fd ge h

c fd ge h

, 

where 
Fro

⋅  is the Frobenius norm and the projection matrix *N NU R ×∈  ( *N N< ) is constrained by TU U I= . 

Let ;i jX  denote the jth training sample (tensor) in the ith individual class iC , ( ) ;1
1 in

i i i jj
n

=
= ∑M X  is the 

class mean tensor of the ith class, ( ) 1
1 c

i ii
n n

=
= ∑M M  is the total mean tensor of all training tensors, and lU  

denotes the lth projection matrix obtained during the training procedure. Moreover, 1
; 1| ij n

i j i c
≤ ≤
≤ ≤X , 1|ci i=M , and 

M  are all Mth–order tensors that lie in 1 2 ... MN N NR × × . Based on an analogy with (14), we define GTDA by 

replacing ;i jx , im , and m  with ;i jX , iM , and M , respectively, as: 

( ) ( ) ( )( )

( ) ( ) ( )( )

1 1 1
1

; ;
1 1 1 1

; 1: 1:
| arg max

; 1: 1:

k k

T i
l l

k k

M Mc
T T

i i k i k
i k kM

l l n M McU U I T T
i j i k i j i k

i j k k

n U U M M
U

U U M Mζ

× ×
= = =∗

=
=

× ×
= = = =

⎛ ⎞⎛ ⎞ ⎛ ⎞
− ⊗ −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎜ ⎟= ⎜ ⎟⎛ ⎞ ⎛ ⎞⎜ ⎟− − ⊗ −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∏ ∏

∑∑ ∏ ∏

M M M M

X M X M

c fd gd gd ge h
c fd gd gd ge h

. (15)

The problem defined in (15) does not have a closed form solution, so we choose to use the alternating 

projection method, which is an iterative procedure, to obtain a numerical solution. Therefore, (15) is 

decomposed into M different optimization sub-problems, as follows, 

( ) ( ) ( )( )

( ) ( ) ( )( )1

1 1 1
1

|

; ;
1 1 1 1

; 1: 1:
| arg max

; 1: 1:

k k

M i
l l

k k

M Mc
T T

i i k i k
i k kM

l l n M McU T T
i j i k i j i k

i j k k

n U U M M
U

U U M Mζ=

× ×
= = =∗

=

× ×
= = = =

⎛ ⎞⎛ ⎞ ⎛ ⎞
− ⊗ −⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎜ ⎟= ⎜ ⎟⎛ ⎞ ⎛ ⎞⎜ ⎟− − ⊗ −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∏ ∏

∑∑ ∏ ∏

M M M M

X M X M

c fd gd gd ge h
c fd gd gd ge h

 

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( ) ( )1

1

|
; ;

1 1

; 1: 1:
        arg max

; 1: 1:
iM

l l

c
T T T T

i i l l l l i l l l l
i

nc
U T T T T

i j i l l l l i j i l l l l
i j

n U U U U M M

U U U U M Mζ=

=

= =

⎛ ⎞− × × ⊗ − × ×⎜ ⎟
⎜ ⎟=
⎜ ⎟
− − × × ⊗ − × ×⎜ ⎟
⎝ ⎠

∑

∑∑

M M M M

X M X M

c fd ge h

c fd ge h

 

(16)
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( )( ) ( )( ) ( )( )( )
( )( ) ( )( ) ( )( )( )1

1

|
; ;

1 1

tr ;
        arg max

tr ;
iM

l l

c
T T T

i l i l l i l l l
i

nc
U T T T

l i j i l l i j i l l l
i j

n U U U l l U

U U U l l Uζ=

=

= =

⎛ ⎞− × ⊗ − ×⎜ ⎟
⎜ ⎟=
⎜ ⎟
− − × ⊗ − ×⎜ ⎟
⎝ ⎠

∑

∑∑

M M M M

X M X M

c fd ge h

c fd ge h

 

( )( ) ( )( )

( )( ) ( )( )1

1

|
; ;

1 1

mat mat
       arg max tr

mat mat
iM

l l

c
T T T

i l i l l l i l l
iT

l lnc
U T T T

l i j i l l l i j i l l
i j

n U U
U U

U Uζ=

=

= =

⎛ ⎞⎛ ⎞⎡ ⎤− × − ×⎜ ⎟⎜ ⎟⎣ ⎦
⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎡ ⎤− − × − ×⎜ ⎟⎜ ⎟⎜ ⎟⎣ ⎦⎝ ⎠⎝ ⎠

∑

∑∑

M M M M

X M X M
. 

To simplify (16), we define 

( )( ) ( )( )
1

mat mat ,
c

T T T
l i l i l l l i l l

i
B n U U

=

⎡ ⎤= − × − ×⎣ ⎦∑ M M M M  (17)

( )( ) ( )( ); ;
1 1

mat mat .
inc

T T T
l l i j i l l l i j i l l

i j
W U U

= =

⎡ ⎤= − × − ×⎣ ⎦∑∑ X M X M  (18)

Therefore, (16) is simplified as, 

( )( )
1

1
|

* | arg max tr
M

l l

M T
l l l l l l

U
U U B W Uζ

=

= = − . (19)

As in Part A of this Section, ζ  is a tuning parameter. 

Table 1 lists the alternating projection optimization procedure for GTDA with the pre-defined tuning 

parameter ζ . At the end of this sub-Section, we describe how to determine ζ  and the dimensionality of the 

output tensors 1* 2* *MN N N× ×"  automatically. The key steps in the alternating projection procedure are 

Steps 3-5, which involve finding the lth projection matrix ( )t
lU  in the tth iteration using ( )1

1|
t k l

k k MU − ≠
≤ ≤

 found in 

the ( 1t − )th iteration. In Steps 3 and 4, we obtain the between-class scatter matrix ( )1t
lB −  and the within-class 

scatter matrix ( )1t
lW −  with the given ( )1

1|
t k l

k k MU − ≠
≤ ≤

 in the ( 1t − )th iteration. The singular value decomposition 

(SVD) of ( ) ( )1 1t t
l lB Wζ− −−  is obtained and ( )1t

lU −  updated using the eigenvectors of ( ) ( )1 1t t
l lB Wζ− −− , which 

correspond to the largest eigenvalues of ( ) ( )1 1t t
l lB Wζ− −− . By iteratively conducting the steps 3-5 in Table 1, 

we obtain a solution *
1| l lN NM

l lU R ×
= ∈  *l lN N≤  constrained by T

l lU U I= . 
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Table 1. Alternating projection optimization procedure for GTDA. 

Input: Training tensors 1 21 ...
; 1| i Mj n N N N

i j i c R≤ ≤ × ×
≤ ≤ ∈X , the dimensionality of the output tensors 1* 2* *...

;
MN N N

i j R × ×∈Y , the 
tuning parameters ζ , and the maximum number of training iterations T . 

Output: The projection matrix *
1| l lN NM

l lU R ×
= ∈  constrained by T

l lU U I=  and the output tensors 
1* 2* *...

;
MN N N

i j R × ×∈Y . 

Initialization: Set ( )
*

0
1| 1

l l

M
l l N NU = ×= . (All entries of ( )0

lU  are 1.) 

Step 1. For 1t =  to T { 

Step 2. For 1l =  to M  { 

Step 3. Calculate ( ) ( ) ( )( )( ) ( ) ( )( )( )1 1 1

1
mat mat

c T Tt t tT
l i l i l l l i l l

i
B n U U− − −

=

⎡ ⎤= − × − ×⎢ ⎥⎣ ⎦∑ M M M M ; 

Step 4. Calculate ( ) ( ) ( )( )( ) ( ) ( )( )( )1 1 1
; ;

1 1
mat mat

inc T Tt t tT
l l i j i l l l i j i l l

i j
W U U− − −

= =

⎡ ⎤= − × − ×⎢ ⎥⎣ ⎦∑∑ X M X M ; 

Step 5. Optimize ( ) ( ) ( )( )( )1 1* arg max trt t tT
l l l

U
U U B W Uζ− −= −  by SVD on ( ) ( )1 1t t

l lB Wζ− −− . 

 }//For loop in Step 2. 

Step 6. 

Check convergence: the training stage of GTDA converges if  

( ) ( ) ( )( )1
1

Err
TM t t

l ll
t U U I ε−

=
= − ≤∑ . 

 }// For loop in Step 1. 

Step 7. ; ;
1

l

M

i j i j l
l

U×
=

= ∏Y X . 

  

In GTDA, we use the projected tensor 
1

l

M

l
l

U×
=

= ∏Y X  to replace the original general tensor X  for 

recognition. Unlike 2DLDA [43], the alternating projection optimization procedure for GTDA converges, as 

proved in Theorem 1. Intuitively, this is because: 1) the alternating projection optimization procedure never 

decreases the function value ( )1|Ml lf U =  (defined in Theorem 1 in (20)) of GTDA between two successive 
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iterations (that is the alternating projection optimization procedure for GTDA is a monotonic increasing 

procedure) and 2) the function value is lower and upper bounded by two limiting values. 

Theorem 1: The alternating projection optimization procedure for GTDA converges. 

Proof. 

Let lS  be the set, which includes all possible lU , i.e., l lU S∈ , constrained by T
l lU U I= . We define a 

continuous function 1 2
1

:
M

M l
l

f S S S S R+

=

× × × = →∏" , 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1
1 1 1

; ;
1 1 1 1

| ; 1: 1:

                   ; 1: 1: .

k k

i

k k

M Mc
M T T

l l i i k i k
i k k

n M Mc
T T

i j i k i j i k
i j k k

f U n U U M M

U U M Mζ

= × ×
= = =

× ×
= = = =

⎛ ⎞ ⎛ ⎞
− ⊗ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
− − ⊗ −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

∑ ∏ ∏

∑∑ ∏ ∏

M M M M

X M X M

c fd g� d gd ge h
c fd gd gd ge h

 (20)

The function ( )1|Ml lf U =  is invariant to orthogonal transformation of lU , i.e., if T
l lQ Q I= , we have 

( ) ( )1 1| |M M
l l l l l lf U f U Q= == . According to (16), we can construct M  different mappings based on f : 

( ) ( )1
1 1; | , |l M

l l l d d d d lf U f U U U−
= = += , { }1,2,l M∈ " , where ( )1

1 1; | , |l M
l d d d d lf U U U−

= = +  means the function f  

varies with lU  with fixed 1
1|ld dU −
=  and 1|Md d lU = + . Based on these mappings, we define: 

( ) ( )

( )( ) ( )( )

( )( ) ( )( )

,

1

,
; ;

1 1

arg max

mat mat
          arg max tr .

mat mat

T
l l l l

iT
l l l l

l l l l
U U I U S

c
T T T

i l i l l l i l l
iT

l lnc
U U I U S T T T

l i j i l l l i j i l l
i j

g U f U

n U U
U U

U Uζ

= ∈

=

= ∈

= =

⎛ ⎞⎛ ⎞⎡ ⎤− × − ×⎜ ⎟⎜ ⎟⎣ ⎦
⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎡ ⎤− − × − ×⎜ ⎟⎜ ⎟⎜ ⎟⎣ ⎦⎝ ⎠⎝ ⎠

∑

∑∑

M M M M

X M X M

�

 (21)

The mapping ( )l lg U  is calculated by arg-maximizing ( )( )t
l lf U  with the given 1

1|ld dU −
=  in the tth iteration 

(i.e., ( ) 1
1|t l

d dU −
= ) and 1|Md d lU = +  in the ( 1t − )th iteration (i.e., ( )1

1|t M
d d lU −

= + ) of the for-loop in Steps 3–5 in Table 1, 

and ( )l l lg U S∈  is for all { }1, 2,l M∈ " . 
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Given randomly initialized ( )0
1|Ml l lU S= ∈ , the alternating projection generates a sequence of items 

( ){ }1|t M
l lU =  via ( )l lg U  defined in (21). The corresponding function value ( )( )t

l lf U  has the following 

relationship: 

( )( ) ( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( ) ( )( )
( )( )

1 1 1 2 2
1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2              

              .

M M

t t T T

T
M M

a f U f U f U f U f U

f U f U f U f U

f U b

= ≤ ≤ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤

≤ =

"

" "

"

 (22)

where a  and b  are limiting values in the R+ space and T →+∞ . We have the relationship in (22), because 

( ) ( )( )
( )( ) ( ) ( )

( )( )
,

arg max
Tt t t

ll l l

t t t
l l l l l

U U I U S

U g U f U
= ∈

= � , i.e., the calculated ( )t
lU  maximizes ( ) ( ) ( )( )11

1 1; | , |t t tl M
l d d d d lf U U U −−

= = +  and 

the inequality ( ) ( ) ( )( ) ( ) ( ) ( )( )1 11 2
1 1 1 1; | , | ; | , |t t t t t tl M l M

l d d d d l l d d d d lf U U U f U U U− −− −
= = + − = =≥  holds, i.e., ( )( ) ( )( )1 1

t t
l l l lf U f U− −≥ . 

Based on (21), the alternating projection optimization procedure can be illustrated by a composition of 

M  sub-algorithms defined as 

( ) ( )
1

1
1 1

: |
d d

l M
M

l l l d l l d
d d l

U U g U U
−

= × ×
= = +

Ω × ×∏ ∏6 . (23)

It follows that 1 2 MΩ Ω Ω Ω� D D"D  is a closed algorithm for compact sets 1|Ml lS = . Based on (22), every 

sub-algorithm lΩ  increases the value of f , so Ω  is monotonic with respect to f . Consequently, we can 

stop the alternating projection optimization procedure when the change of f  between two successive 

iterations is small, i.e., the procedure halts when f  achieves its extremum. Or equivalently, 

( ) ( )( )1
1

TM T T
l ll

U U I ε−

=
− ≤∑  (the convergence check criterion in Step 6 in Table 1).                     ■ 

 

For practical applications, it is important to determine the tuning parameter ζ  and the dimensions 

1* 2* *MN N N× ×"  of  the output tensors automatically. In the tth training iteration and the lth order, we adjust 
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ζ  between Step 4 and Step 5 by setting ( )tζ  equal to the maximum eigenvalue of ( )( ) ( )11 1t t
l lW B

−− − . In the tth 

training iteration, the lth dimension of the output tensors *lN  is determined by the lth projection matrix ( )t
lU , 

so we set a threshold value δ  to automatically determine *lN  according to the following inequality: 

( )

( )

( ) ( )

( )

( )

( )

( )

( )

( )

( )

* * 1

; ; ;;1 ;1 ;2 1 1 1

; ; ; ; ;1 1 1 1 1

1
l l l

l l l l l

N N Nt t tt t t
l i l i l il l l i i i

N N N N Nt t t t t
l j l j l j l j l jj j j j j

λ λ λλ λ λ
δ

λ λ λ λ λ

+

= = =

= = = = =

+
< < < ≤ < < < =∑ ∑ ∑

∑ ∑ ∑ ∑ ∑
" " , (24)

where ( )
;
t

l iλ  is the ith eigenvalue of ( ) ( ) ( )1 1t t t
l lB Wζ− −−  and ( ) ( )

; ;
t t

l i l jλ λ≥  if i j< . That is, *lN   is the maximal index, 

which guarantees ( ) ( )*

; ;1 1
l lN Nt t

l i l ji j
λ δ λ

= =
≤∑ ∑ . Or equivalently, * 1lN +

 is the minimal index, which guarantees 

( ) ( )* 1

; ;1 1
l lN Nt t

l i l ji j
λ δ λ+

= =
>∑ ∑ . Therefore, there is only one parameter, the threshold value δ , which affects the 

recognition performance. This is the only parameter which needs tuning for recognition tasks. Without this 

method, we would have to tune a total of 1M +  parameters, comprising one parameter for each order of the 

Mth order tensors and one parameter for ζ  in (19). In our experiments, the averaged gait images are 2nd order 

tensors (one order for height and the other one for width); the averaged gait images with the Gabor based 

representation are 4th order tensors (the first two orders for height and width, the third order for direction; and 

the fourth order for scale) the averaged gait images with the GaborS/GaborD based representation are 3rd 

order tensors; and the averaged gait images with the GaborSD based representation are 2nd order tensors. 

C. The Working Principle of GTDA 

If a tensor is scanned into a vector then it is hard to keep track of the information in spatial constraints. For 

example, two 4-neighbor connected pixels in an image may be separated hugely from each other after the 

vectorization. 

To better characterize or classify natural data, the selected features should preserve as many as possible of 

the original constraints. When the training samples are limited, these constraints help to give reasonable 

solutions to classification problems, by reducing the number of unknown parameters. Take the strategies in 
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the Gaussian distribution estimation as an example3: when the training samples are few in number and 

located in a high dimensional space, then some constraints are imposed on the covariance matrix. A widely 

used constraint is to require that the covariance matrix be diagonal. Without such constraints, it is impossible 

to estimate a reasonable model with only a few training samples. 

The tensor representation helps to reduce the number of parameters needed to model the data. For 

example, when a matrix X  has the size 1 2N N× , we need to estimate the projection matrix U  with the size 

1 2 *N N N×  for LDA ( *N  is the number of selected features), but we only need to estimate the projection 

matrices 1U  with the size 1 1*N N×  and 2U  with the size 2 2*N N×  in GTDA. Furthermore, the estimation 

procedures for the first projection matrix 1U  and the second projection matrix 2U  are independent. The 

advantage of the independent estimation procedure is the number of the parameters in GTDA is much less 

than that of LDA. 

When choosing between LDA and GTDA, we have the following two results: 

1) when the number of the training samples is limited, the vectorization operation always leads to the 

under sample problem. That is, for a small training set, we need to use GTDA, because LDA will 

over–fit the data. The vectorization of a tensor into a vector makes it hard to keep track of the 

information in spatial constraints; and 

2) when the number of the training samples is large, GTDA will under–fit the data. In this case, the 

vectorization operation for the data is helpful because it increases the number of parameters to model 

the data, i.e., LDA will be a suitable choice. 

In summary, the testing error decreases with respect to the increasing number of the training samples. 

When the number of the training samples is limited, GTDA performs better than LDA. For specific 

applications, the K-fold cross validation [13] can be applied to determine which method is more suitable. 

 
3 Constraints in GTDA are justified by the form of the data. However, constraints in the example are ad hoc. 
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D. Complexity Analysis 

The time complexity of LDA is ( )3

1

M
ii

O N
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∏  in the training stage, when the samples X  belong to 

1 2 MN N NR × × ×" . The time complexity of the alternating projection method based optimization procedure of 

GTDA is ( )3
1

M
ii

O T N
=∑ , where T  is the number of iterations to make the optimization procedure of GTDA 

converge. The space complexity of LDA is ( )2

1

M
ii

O N
=

⎛ ⎞
⎜ ⎟
⎝ ⎠
∏  in the training stage. The space complexity of 

the alternating projection optimization procedure of GTDA is ( )2
1

M
ii

O N
=∑ . 

The computational complexities of the alternating projection optimization procedure for GTDA with 

Gabor/GaborD/GaborS/GaborSD representation are listed in Table 2. In Table 2, 1T  ( 2T , 3T , and 4T ) is the 

number of iterations to make the optimization procedures of GTDA with Gabor (GaborD, GaborS, and 

GaborSD) based representations converge. In our experiments, we found that 1T , 2T , 3T , and 4T  are usually 

similar in value. Based on Table 2, the computational complexities of the alternating projection optimization 

procedure of GTDA for GaborS/GaborD/GaborSD based representations are reduced compared with that of 

the Gabor based representation. 

Table 2. Computational complexities of the alternating projection method based optimization procedure 

of GTDA with Gabor/GaborD/GaborS/GaborSD representations. 

 Time Complexity Space Complexity 

Gabor gaits in 1 2 5 8N NR × × ×  ( )( )3 3
1 1 2637O T N N+ +  ( )2 2

1 289O N N+ +  

GaborD gaits in 1 2 5N NR × ×  ( )( )3 3
2 1 2125O T N N+ +  ( )2 2

1 225O N N+ +  

GaborS gaits in 1 2 8N NR × ×  ( )( )3 3
3 1 2512O T N N+ +  ( )2 2

1 264O N N+ +  

GaborSD gaits in 1 2N NR ×  ( )( )3 3
4 1 2O T N N+  ( )2 2

1 2O N N+  
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VI. EXPERIMENTAL RESULTS 

This Section first briefly describes the USF HumanID gait database [34]. We then compare the 

performance of our algorithms with several other established algorithms for human gait recognition. 

A. HumanID Gait Database: Gallery and Probe Data Sets 

We carried out all of our experiments upon the USF HumanID outdoor gait (people–walking–sequence) 

database of version 2.1. The database was built for vision–based gait recognition, and it is widely used. It 

consists of 1,870 sequences from 122 subjects (people). For each of the subjects, there are the following 

covariates: change in viewpoint (Left or Right), change in shoe type (A or B), change in walking surface 

(Grass or Concrete), change in carrying condition (Briefcase or No Briefcase), and elapsed time (May or 

November) between sequences being compared. There is a set of 12 pre-designed experiments for algorithm 

comparisons. For algorithm training, the database provides a gallery collected in May with the following 

covariates: grass, shoe type A, right camera, and no briefcase. The gallery also includes a number of new 

subjects collected in November. This gallery dataset has 122 individuals. For algorithm testing, 12 probe sets 

are constructed according to the 12 experiments. Detailed information about the probe sets is given in Table 

3. More detailed information about USF HumanID is described in [34]. 

Table 3. Twelve probe sets for challenge experiments. 

Experiment (Probe) # of Probe Sets Difference between Gallery and Probe 
Set 

A (G, A, L, NB, M/N) 122 View 
B (G, B, R, NB, M/N) 54 Shoe 
C (G, B, L, NB, M/N) 54 View and Shoe 
D (C, A, R, NB, M/N) 121 Surface 
E (C, B, R, NB, M/N) 60 Surface and Shoe 
F (C, A, L, NB, M/N) 121 Surface and View 
G (C, B, L, NB, M/N) 60 Surface, Shoe, and View 
H (G, A, R, BF, M/N) 120 Briefcase 
I (G, B, R, BF, M/N) 60 Briefcase and Shoe 
J (G, A, L, BF, M/N) 120 Briefcase and View 
K (G, A/B, R, NB, N) 33 Time, Shoe, and Clothing 
L (C, A/B, R, NB, N) 33 Time, Shoe, Clothing, and Surface 
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Fig. 6 shows examples of the average gait images. The averaged gait image is the mean image (pixel by 

pixel) of silhouettes over a gait cycle within a sequence. A gait cycle is a series of stances: from 

full-stride-stance and heels-together-stance, to full-stride-stance. As suggested in [30], the whole sequence is 

partitioned into a series of sub–sequences according to the gait period length GaitN . Then the binary images 

within one cycle (a sub–sequence) are averaged to acquire a set of average silhouette images iAS , i.e. 

( )
( )1 1

/
1|

Gait
Gait

Gait

k i N
T N

i i Gait
k iN

AS S k N
= + −

⎢ ⎥⎣ ⎦
=

=

⎛ ⎞
= ⎜ ⎟⎜ ⎟
⎝ ⎠

∑ . The averaged gait image is robust against any errors in individual 

frames, so we choose the averaged gait image to represent a gait cycle, thus one sequence yields several 

averaged gait images and the number of averaged gait images depends on the number of gait cycles in this 

sequence. In the following experiments, averaged gait images are utilized as the original data for the gait 

recognition problem. Some further averaged gait images from the gallery set are also shown in Fig. 1, which 

demonstrates that the averaged gait images can be used for gait recognition, because different people have 

different averaged gait images. 

Similarity Measure

 

Fig. 6. The averaged gait extraction and the similarity measure. 

The dissimilarity measure in gait recognition is the same as in [30]. The distance between the gallery 

sequence and the probe sequence is 
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( ) ( ) ( )( )1 1Dist , Median minp GN NMethod Method Method Method
P G i j P GAS AS AS i AS j= == − , (22)

where ( ) 1| PNMethod
P iAS i =  is the ith projected AS in the probe data and ( ) 1| GNMethod

G jAS j =  is the jth projected AS in the 

gallery. The right hand side of (22) is the median of the Euclidean distances between the averaged silhouettes 

from the probe and the gallery. It is suggested as a suitable measure for gait recognition by Liu and Sarkar in 

[30]. 

There are only two parameters in all proposed methods, one for GTDA and one for LDA. In detail, one 

parameter is the threshold value σ  for GTDA as described in (24). In all experiments, we vary σ  from 0.85 

to 0.995 with step 0.005. In 2DLDA, a similar strategy is used, i.e., σ  is used to determine the dimensions of 

the projected subspace in each order. The other parameter is the number of the selected dimensions in LDA. 

In all experiments relevant to LDA, we vary the number of dimensions from 1 to 121 with step 1. To speed 

up all experiments, we down sample the original averaged gait images from 128 88×  to 64 44×  in all 

proposed methods. These are indicated by the note “H” in Tables 4 and 5. We also show some experimental 

results based on the original averaged gait images with the size 128 88× . 

To examination the effectiveness of the automatic selection of ζ  in GTDA based recognition, we also 

manually tune the parameters to achieve further improvements by changing the selected dimensions for each 

mode and the tuning multiplier ζ  defined in (15). This is indicated by the note “M” in Tables 4 and 5. 

Although manually tuning parameters improves the performance, it is time consuming. 

B. Performance Evaluation 

Sarkar et al. [34] evaluated the performance of the baseline algorithm on the HumanID challenge database 

using the rank one/five recognition rates: 1) the rank one recognition rate is the percentage of the number of 

the correct subjects in the first place of all retrieved subjects and 2) the rank five recognition rate is the 

percentage of the number of the correct subjects in any of the first five places of all retrieved subjects. 

Twelve experiments have been designed, namely experiment A to experiment L as shown in Table 3. The 

baseline algorithm reports the rank one recognition rates of the twelve experiments of increasing difficulty 



> TPAMI-0571-1005< 28

from 78% as the easiest to 3% as the hardest by examining the effects of the introduced five covariates 

(under different combinations). 

Table 4. Rank one recognition rate for human gait recognition. 

Rank One A B C D E F G H I J K L Avg 
Probe Size 122 54 54 121 60 121 60 120 60 120 33 33 –– 
Baseline 73 78 48 32 22 17 17 61 57 36 3 3 40.9572
HMM 89 88 68 35 28 15 21 85 80 58 17 15 53.5365
IMED 75 83 65 25 28 19 16 58 60 42 2 9 42.8695
IMED+LDA 88 86 72 29 33 23 32 54 62 52 8 13 48.6357
LDA 87 85 76 31 30 18 21 63 59 54 3 6 48.1983
LDA+Sync 83 94 61 50 48 22 33 48 52 34 18 12 48.0355
LDA+Fusion 91 94 81 51 57 25 29 62 60 57 9 12 55.8257
2DLDA 89 93 80 28 33 17 19 74 71 49 16 16 50.9823
2DLDA+LDA 89 91 82 33 33 23 25 67 78 50 19 19 52.6409
GTDA (H) 85 88 73 24 25 15 14 53 49 45 4 7 42.9916
GTDA (M & H) 86 88 73 24 25 17 16 53 49 45 10 7 43.7035
GTDA 85 88 71 19 23 15 14 49 47 45 7 7 41.5992
Gabor+GTDA (H) 84 86 73 31 30 16 18 85 85 57 13 10 52.5052
GaborD+GTDA (H) 88 88 71 28 28 12 19 87 75 59 7 10 51.7359
GaborD+GTDA 81 88 65 21 23 8 13 92 83 55 13 10 49.2610
GaborS+GTDA (H) 89 89 69 31 33 13 16 79 76 56 13 13 51.4322
GaborS+GTDA 82 86 67 22 30 8 14 92 88 62 10 7 50.9990
GaborSD+GTDA (H) 87 89 71 23 28 8 14 82 69 51 4 13 48.2109
GaborSD+GTDA 81 82 69 17 26 7 14 91 78 60 101 10 48.8518
GTDA+LDA (H) 94 95 88 35 42 23 30 65 61 58 16 19 54.5543
GTDA+LDA 95 95 86 39 44 25 30 61 68 67 16 19 56.5167
Gabor+GTDA+LDA (H) 89 93 80 45 49 23 30 81 85 53 10 19 57.7296
GaborD+GTDA+LDA (H) 93 93 84 34 40 23 32 90 80 63 16 19 58.9102
GaborD+GTDA+LDA 89 93 84 27 35 17 26 93 88 67 16 22 57.5511
GaborS+GTDA+LDA (H) 93 95 88 39 47 28 33 82 82 63 19 19 60.2390
GaborS+GTDA+LDA 91 93 86 32 47 21 32 95 90 68 16 19 60.5804
GaborSD+GTDA+LDA (H) 92 93 78 30 38 21 26 82 75 55 16 19 54.8685
 

Tables 4 and 5 report all the experiments, which compare the proposed algorithms with the existing 

algorithms. The item “Avg” in Tables 4 and 5 means the averaged recognition rates of all probes (A-L), i.e., 

the ratio of correctly recognized subjects to the total number of subjects in all probes. The columns labeled A 

to L are exactly the same tasks as in the baseline algorithm. In both tables, the first rows give the performance 

of Baseline [34], HMM[19], IMED [41], IMED+LDA, LDA[16], LDA+Sync [16], LDA+Fusion [16], 

2DLDA [43], and 2DLDA+LDA[43], respectively; while the performance of the new algorithms upon the 

same gallery set and probe set are fully reported on all the comparison experiments, which are namely, 

GTDA (H), GTDA (M & H), GTDA, Gabor+GTDA (H), GaborD+GTDA (H), GaborD+GTDA, 
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GaborS+GTDA (H), GaborS+GTDA, GaborSD+GTDA (H), GaborSD+GTDA, GTDA+LDA (H), 

GTDA+LDA, Gabor+GTDA+LDA (H), GaborD+GTDA+LDA (H), GaborD+GTDA+LDA, 

GaborS+GTDA+LDA (H), GaborS+GTDA+LDA, and GaborSD+GTDA+LDA (H), respectively. Finally, 

the last columns of both tables report the average performance of the corresponding algorithm on all the 

probe sets. 

Table 5. Rank five recognition rate for human gait recognition. 

Rank Five A B C D E F G H I J K L Avg 
Probe Size 122 54 54 121 60 121 60 120 60 120 33 33 –– 
Baseline 88 93 78 66 55 42 38 85 78 62 12 15 64.5397
HMM –– –– –– –– –– –– –– –– –– –– –– –– –– 
IMED 91 93 83 52 59 41 38 86 76 76 12 15 65.3132
IMED+LDA 95 95 90 52 63 42 47 86 86 78 21 19 68.5950
LDA 92 93 89 58 60 36 43 90 81 79 12 12 67.3674
LDA+Sync 92 96 91 68 69 50 55 80 78 69 39 30 70.8528
LDA+Fusion 94 96 93 85 79 52 57 89 86 77 24 21 76.1754
2DLDA 97 93 93 57 59 39 47 91 94 75 37 34 70.9530
2DLDA+LDA 97 100 95 58 57 50 50 86 94 77 43 40 72.8507
GTDA (H) 98 95 95 57 54 34 42 75 80 69 22 16 65.0532
GTDA (M & H) 100 97 95 57 54 34 45 75 80 70 25 25 66.1472
GTDA 100 97 95 52 52 34 45 47 71 70 25 25 64.7015
Gabor+GTDA (H) 96 95 89 59 63 33 49 94 92 76 19 40 70.3205
GaborD+GTDA (H) 96 95 88 59 49 27 35 95 97 84 28 28 69.0898
GaborD+GTDA 96 91 82 45 45 23 32 96 94 78 31 37 65.4134
GaborS+GTDA (H) 98 97 93 60 52 34 37 93 95 79 31 25 70.0605
GaborS+GTDA 96 91 84 45 54 23 37 96 95 79 22 31 66.0741
GaborSD+GTDA (H) 95 93 88 54 47 27 30 89 88 71 28 28 64.8361
GaborSD+GTDA 96 91 82 43 54 23 33 98 94 82 28 34 66.3319
GTDA+LDA (H) 100 99 97 66 68 50 57 89 85 81 40 31 75.3267
GTDA+LDA 100 99 97 67 69 50 57 90 90 84 40 37 76.5365
Gabor+GTDA+LDA (H) 95 97 93 70 71 44 56 94 95 80 31 34 75.1451
GaborD+GTDA+LDA (H) 98 99 95 62 68 44 50 96 99 87 37 43 76.0731
GaborD+GTDA+LDA 98 99 93 52 59 37 49 99 99 88 34 43 73.5846
GaborS+GTDA+LDA (H) 98 99 97 68 68 50 56 95 99 84 40 40 77.5762
GaborS+GTDA+LDA 98 99 95 58 64 41 52 98 99 87 31 37 74.9008
GaborSD+GTDA+LDA (H) 99 99 93 57 61 40 47 89 90 78 40 37 71.6534

 

From the comparison results in Tables 4 and 5, it is clear that the averaged recognition rate of the twelve 

probes, our new methods (GTDA+LDA, Gabor+GTDA+LDA, GaborD+GTDA+LDA, and GaborS+GTDA 

+LDA) outperform the previous state-of-the-art algorithms (top part in both tables), e.g., the HMM 

algorithm, which is stable in modeling the gait cycles, and the IMED algorithm, which is demonstrated to 

improve the conventional LDA.  
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Fig. 7. Recognition performance comparison for rank one evaluation. From top-left to bottom-right, in each 
of the six subfigures (Probes A, B, E, H, and I and the average performance), there are eleven bars, which 
correspond to the performance of HMM, IMED+LDA, LDA, LDA+Fusion, 2DLDA+LDA, GTDA+LDA 
(H), GTDA+LDA, Gabor+GTDA+LDA(H), GaborD+GTDA+LDA(H), GaborS+GTDA+LDA(H), and 
GaborSD+GTDA+LDA(H), respectively. 
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Fig. 8. Recognition performance comparison for rank five evaluation. From top-left to bottom-right, in each 
of the six subfigures (Probes A, B, E, H, and I and the average performance), there are ten bars, which 
correspond to the performance of IMED+LDA, LDA, LDA+Fusion, 2DLDA+LDA, GTDA+LDA(H), 
GTDA+LDA, Gabor+GTDA+LDA(H), GaborD+GTDA+LDA(H), GaborS+GTDA+LDA(H), and 
GaborSD+GTDA+LDA(H), respectively. 
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From Tables 4 and 5, we find our proposed methods are not very sensitive to the change of the size of the 

averaged gait images, because the recognition rates are slightly decreased when the averaged gait images are 

down sampled from 128 88×  to 64 44× . Manually tuning the parameter ζ  in GTDA in (15) will slightly 

improve the averaged recognition rate. Furthermore, the performances for probes D-G and K-L are not 

satisfactory. Therefore, further studies are required to make them applicable. Finally, the performances of 

different methods have the following relationship: Baseline < IMED < LDA < IMED+ LDA < 

2DLDA+LDA < LDA+Fusion < GTDA+LDA < GaborD+GTDA+LDA < Gabor+GTDA+LDA < 

GaborS+GTDA+LDA. 

In addition, it is worth emphasizing that the effects of the covariates are also reflected in the experimental 

results. In general, in Tables 4 and 5, for the proposed GaborS/GaborD+GTDA+LDA, it shows that: 

 Viewpoint and shoe changes have little impact on the recognition rate, this point is demonstrated by 

column A-C, in which the rank one recognition rates are around 92%; 

 Apart from the viewpoint and the shoe covariates, if briefcase is also considered, the recognition 

tasks become more difficult and as a result, in columns H-J the performance is around 87%. The 

Gabor based representations are helpful to improve the recognition rates for these probes, because the 

difference around the briefcase region between a gallery sample and a probe (H-J) sample is 

significantly reduced, as shown in Fig. 5; 

 Instead of the briefcase covariate, if the viewpoint and the shoe issues are studied together with the 

surface covariate, the recognition tasks become hard. This effect leads to the worse performance 

around 35% in columns D-G; 

 The most difficult task is the elapsed time covariate. Much work should be done to improve the 

performance on the tasks K and L although our proposed algorithms also report better performance 

around 17% compared with previous efforts in most cases. 

To further illustrate the advantage of the new algorithms, in Figs. 7 and 8, we compare the new algorithms 

with the state-of-the-art work. The bottom-right sub-figure reports average performance of HMM, 
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IMED+LDA, LDA, LDA+Fusion, 2DLDA+LDA, GTDA+LDA (H), GTDA+LDA, Gabor+GTDA+LDA 

(H), GaborD+GTDA+LDA (H), GaborS+GTDA+LDA (H), and GaborSD+GTDA+LDA (H). More 

detailed performance comparisons are in the other five sub-figures, for which the experiments were carried 

out on probes A, B, E, H, and I. 

The state-of-the-art schemes for human gait recognition, such as HMM, IMED+LDA, and LDA+Fusion 

can also be utilized to enhance Gabor/GaborS/GaborD/GaborSD+GTDA+LDA based approaches: 1) HMM 

can be used to obtain more accurate cycles from a sequence. With accurate cycles, the recognition rate can be 

further improved; 2) IMED can be regarded as a kind of transformation to further improve GTDA data, 

especially as IMED has already been demonstrated to benefit LDA. Therefore, it is expected to improve 

GTDA; and 3) LDA+Fusion scheme benefits the gait recognition task from the data set point of view in 

terms of sample number and stability. 

C. Convergence Examination 
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Fig. 9. Experimental based convergence justification for the alternating projection method for GTDA. The 
x-coordinate is the number of the training iterations and the y-coordinate is the Err value defined in Step 6 in 
Table 1. From left to right, these four sub-figures show how Err changes with the increasing number of 
training iterations in different threshold values (88%, 90% 92% and 94%) defined in (24) with predefined 
ζ . 

From Fig. 9, it can be seen that only 3 to 5 iterations are usually required for the convergence of the 

alternating projection method based optimization procedure of GTDA with predefined ζ , because the Err 

values approach zero rapidly. In contrast, the traditional 2DLDA does not converge during the training 

procedure, which can be seen from the first figure in [43]. 
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VII. CONCLUSION 

A human being’s walking manner or gait can reflect the walker’s physical characteristics and 

psychological state, and therefore the features of gait can be employed for individual recognition. This paper 

focuses on the representation and pre-processing of appearance-based models for human gait sequences. 

Two major novel representation models are presented, namely, Gabor gait and tensor gait, and some 

extensions of them are made to further enhance their abilities for recognition tasks. Gabor gait is based on the 

well-known Gabor functions, which have been demonstrated to benefit visual information processing and 

recognition in general. In this paper, three different approaches using Gabor functions are developed to 

reduce the computational complexities in calculating the representation, in training classifiers, and in testing. 

They are the sum of Gabor functions over directions for gait representation (GaborD), the sum of Gabor 

functions over scales for gait representation (GaborS), and the sum of Gabor functions over both directions 

and scales for gait representation (GaborSD). Tensor gait is also introduced to represent these Gabor gaits. 

To further take the feature selection into account, the size of the tensor gait is reduced by the general tensor 

discriminant analysis (GTDA), which is based on a low rank approximation of the original data. Apart from 

preserving discriminative information, GTDA has another advantage - it significantly reduces the effects of 

under sampling on classification. In contrast with previous work on tensor discriminative analysis, the 

alternating projection optimization procedure of GTDA converges. The developed Gabor gait methods and 

GTDA methods are combined with LDA for gait recognition. Experiments show that the new algorithms 

achieve better recognition rates than previous algorithms reported in the literature. 
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