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Abstract 

Action recognition involves automatically labelling videos that contain human motion with 

action classes. It has applications in diverse areas such as smart surveillance, human computer 

interaction and content retrieval. The recent advent of depth sensing technology that produces 

depth image sequences has offered opportunities to solve the challenging action recognition 

problem. ¢ƘŜ ŘŜǇǘƘ ƛƳŀƎŜǎ ŦŀŎƛƭƛǘŀǘŜ Ǌƻōǳǎǘ ŜǎǘƛƳŀǘƛƻƴ ƻŦ ŀ ƘǳƳŀƴ ǎƪŜƭŜǘƻƴΩǎ о5 Ƨƻƛƴǘ Ǉƻǎƛǘƛƻƴǎ 

and a high level action can be inferred from a sequence of these joint positions. 

A natural way to model a sequence of joint positions is to use a graphical model that describes 

probabilistic dependencies between the observed joint positions and some hidden state 

variables. A problem with these models is that the number of hidden states must be fixed a priori 

even though for many applications this number is not known in advance. This thesis proposes 

nonparametric variants of graphical models with the number of hidden states automatically 

inferred from data. The inference is performed in a full Bayesian setting by using the Dirichlet 

Process as a prior over the modelΩǎ ƛƴŦƛƴƛǘŜ ŘƛƳŜƴǎƛƻƴŀƭ ǇŀǊŀƳŜǘŜǊ ǎǇŀŎŜΦ 

This thesis describes three original constructions of nonparametric graphical models that are 

applied in the classification of actions in depth videos. Firstly, the action classes are represented 

by a Hidden Markov Model (HMM) with an unbounded number of hidden states. The 

formulation enables information sharing and discriminative learning of parameters. Secondly, a 

hierarchical HMM with an unbounded number of actions and poses is used to represent 

activities. The construction produces a simplified model for activity classification by using logistic 

regression to capture the relationship between action states and activity labels. Finally, the 

action classes are modelled by a Hidden Conditional Random Field (HCRF) with the number of 

intermediate hidden states learned from data. Tractable inference procedures based on Markov 

Chain Monte Carlo (MCMC) techniques are derived for all these constructions. Experiments with 

multiple benchmark datasets confirm the efficacy of the proposed approaches for action 

recognition.
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ὼ Observation at time instant ὸ 
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HDP-HMM 
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‎ Dirichlet Process hyper parameter for  ‍ 

‌ Dirichlet Process hyper parameter for  “ 

‘ȟɫ Mean and covariance of Gaussian distribution corresponding to component Ὧ 

‘ȟɫ Gaussian distribution hyper parameters for  ‘ 

’ȟɝ Inverse Wishart distribution hyper parameters for  ɫ 

Chapter 4 

•  Probability of transitioning to state Ὧ given state Ὦ for class ὧ 

‗ Dirichlet Process hyper parameter for  • 

” Parameter for shifting mean ‘ for class ὧ 

ɤ  Parameter for scaling  covariance ɫ for class ὧ 

‫  Parameter used for scaling •  for class c 

ɱ  Hyper parameter for ” 

ɤ rof sretemarap repyH „ȟ‮ 

‐ Hyper parameter for ‫ 

— Set of model parameters for class ὧ 

—͵ Set of model parameters excluding class ὧ 

— Set of model parameters shared for all the classes 

ὒ Upper bound on the number of HMM states 
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‒ Prior controlling the distance between distributions  

Chapter 5 

ὥ Action state at time instant ὸ 

ὥ Empirical frequencies of the action states  

╪ Action state sequence from a sampling iteration 

”  Probability of transitioning to pose state Ὧ given action ὥ 
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′ Dirichlet Process hyper parameter for ” 

† Dirichlet Process hyper parameter for • 

‖ὥȟ‖ὦ Hyper parameters for ‪ 

– Regression coefficients 

‗ Hyper parameter for the regression coefficients 

ὑ  Upper bound on the number of action states  

ὑ  Upper bound on the number of skeleton states 
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1. Introduction 

The topic of this thesis is introduced in this chapter. It begins with the motivation for action 

recognition in Section 1.1. This is followed with a discussion on the use of depth images and 

graphical models in Section 1.2. The specific problems that this thesis investigates are described 

in Section 1.3.  The main contributions of this thesis are listed in Section 1.4 and finally the thesis 

structure is outlined in Section 1.5. 

1.1 Motivation 

Videos provide visualization of complex and dynamic situations in an intuitive manner. They are 

a popular medium to convey information.  The rate at which video data are generated has 

increased very rapidly of late due to the ubiquitous availability of devices that record videos. 

There are an estimated 50 million hours of footage generated every day by the surveillance 

cameras in the U.K. [57] and about 400 hours of video is uploaded every minute into the popular 

YouTube website [56]. With the advent of future developments in wearable devices, the amount 

of video content will increase even further.  It is difficult to interact with such enormous amounts 

of video data without efficient tools that automatically describe, organize and manage them. 

In order to effectively describe the content in a video, the objects and events occurring in the 

image sequences that comprise the video must be detected and recognized. State-of-the-art 

tools in computer vision provide the ability to detect and recognize the objects and their 

properties in images [59, 60]. However, robust and accurate recognition of events that occur in 

image sequences is still a problem. This is unsurprising since the cognitive underpinnings for 

understanding events are much more complicated. It requires application of complex 

spatiotemporal concepts. The research here addresses this challenging computer vision problem 

and provides mechanisms to recognize events involving humans in videos. 

Automatic human event recognition has many applications across various domains (Figure 1.1). 

For example, in the security domain, there is an ever increasing need to monitor video feeds for 

interesting events. These video feeds may originate from CCTV cameras or from other 

sophisticated platforms used by the military such as unmanned aerial and ground vehicles.  The 

current monitoring solution involves dedicated human operators actively watching live video 

streams. This is often undesirable since the human operators are expensive resources and it is 

difficult for them to remain focused at all times.  Instead, an automated system that can detect 



CHAPTER 1 - INTRODUCTION  15 

 
 

and recognize interesting events and then alert the human operators is required. Such a system 

is cost-effective and eliminates potential security risks.  

 

Figure 1.1: Applications of automatic event recognition. (a) A smart surveillance system that 

detects interesting events in live video feeds [60]. (b) Monitoring the daily living activities in a 

care centre [61]. (c) Analysing an American football sports video for offensive team formation 

[3]. (d) Natural user interaction with a games console for a better gaming experience [62]. (e) 

Touchless interaction for browsing and manipulating medical images during surgery in an 

operating theatre [2]. 

Smart surveillance systems that discard routine events and highlight only interesting events 

have applications in other domains such as healthcare. For example, in a care centre for the 

elderlyΣ ǘƘŜ ŀǳǘƻƳŀǘƛŎ ǊŜŎƻƎƴƛǘƛƻƴ ƻŦ ŀƴ ƛƴƳŀǘŜΩǎ ƛǊǊŜƎǳƭŀǊ ǎƭŜŜǇ ǇŀǘǘŜǊƴǎΣ ŎƘŀƴƎŜǎ ƛƴ ǘƘŜ 

(d) (e) 

#ALERT: DROPPED-ITEM 

(a) 

(b) 
(c) 
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frequency of toilet use and difficulties in performing regular activities helps in assessing the 

cognitive and physical well-being of the person [63]. Health monitoring surveillance systems can 

reduce expenses and improve the quality of life for the elderly. 

Multimedia information retrieval is another important area where automatic event recognition 

is essential. A content based search and retrieval system would enable the efficient explorations 

of large volumes of archived video data.  As example use-cases, a user may wish to view all 

archived videos that contain a wedding event or a security professional may wish to review 

frames that contain an explosion event in surveillance footages. The current technique for 

searching the videos is limited to metadata queries and text search based on manual 

annotations. Instead, searching directly for user-defined events provides a comprehensive 

mechanism to interact with the video content. With automatic event recognition, the videos can 

be indexed analogously to text document indexing and abstracts such as key frames or highlights 

can be extracted to form condensed summaries of the videos. In effect, the videos can be 

managed as structured artefacts and analysis can be performed on their contents [1]. Content 

based search, retrieval and analysis of videos have applications in innumerable areas including 

sports, education and arts. 

The pervasive use of computing has encouraged researchers to explore more natural and 

intuitive mechanisms to interact with computers. In addition to voice and hand gestures, the 

use of the entire human body to communicate with computers has gained traction of late. For 

example, the Microsoft Xbox game consoles allow players to interact through their full body 

without the need for a games controller [62]. The player can perform actions such as kick or 

jump to naturally convey their intended motion to the console. This provides an immersive 

gaming experience for the player. In order to respond to player movements the console must 

detect and recognize the various events that occur during the interaction. The applications for 

such natural ways of interacting are not restricted to entertainment platforms. They can also be 

used in many other scenarios such as medical surgery. A surgeon can control and manipulate 

equipment without explicit contact, thus maintaining the boundaries between sterile and non-

sterile parts of the surgical environment [2].  

The above wide range of applications in diverse areas such as smart surveillance, content 

retrieval and human computer interaction provides a motivation for addressing the human 

event recognition problem.  

1.2 Research Focus 

¢ƘŜ ǘŜǊƳ άŜǾŜƴǘέ can refer to a variety of concepts at different levels of abstraction and at 

different time scales, ranging from elementary movements of a body part by an individual to 
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complex interactions between persons that can last for hours. In order to distinguish between 

the different types of events, a standard terminology [4] is followed. An elementary motion such 

as raising a leg is referred to as a άgestureέ. The composition of multiple elementary motions, 

carried out by a single person and organized temporally is referred to as an άactionέ. Walking 

and sitting down are examples of actions. ¢ƘŜ ǘŜǊƳ άǇƻǎŜέ ǊŜŦŜǊǎ ǘƻ ŀ ǇŀǊǘƛŎǳƭŀǊ configuration 

of the human body that is encountered while performing an action. Hence gestures and actions 

can alternatively be described by sequences of poses.  An άactivityέ is composed of a set of 

actions that occur over time. For example the activity rinsing the mouth may contain drink and 

spit actions. This thesis focuses exclusively on action recognition for videos that involve a single 

individual and last less than a minute.  

1.2.1 Recognition from Joint Positions 

The famous Johansson experiments [12], illustrated in Figure 1.2, demonstrate that motion can 

be perceived from sparse visual input. It was shown that moving light displays attached to a 

small number of landmark joints on the human body provide sufficient motion cues to infer 

actions such as walking, running etc. The visual system can detect motion patterns by integrating 

the movements of individual joints over space and time. The absence of shape, colour and 

texture information does not inhibit the recognition of the motion. The use of a handful of body 

joints to model articulated human motion produces a compact representation for the human 

actions. Hence determining the locations of the joints corresponding to the various body parts 

and modelling the spatiotemporal transitions of these joint positions provides the necessary 

information to characterize motion and infer actions and activities. 

 

Figure 1.2: Biological motion perception. Point lights are placed on joint locations.  When a 

sequence of these point lights is viewed, the actions walk and run are apparent even though the 

figure outline is omitted  [12, 13].  

Recovering the body joints from images is a very difficult problem because there is a 

fundamental loss of information when a 3D scene is projected into a 2D image. It is often not 

possible to robustly identify the body parts in an image. The pixels in an image typically encode 
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intensity variations as RGB colour values. Different lighting conditions induce variations in the 

recorded pixel values. Human body parts in an image might be partially occluded by other 

objects or by the parts themselves from time to time. The image may contain shadows. Further, 

background clutter may make it difficult to locate the objects of interest and perspective 

deformations can make it difficult to recognize the objects. Even though the RGB videos contain 

rich visual information, their sensitivity to lighting conditions and the difficulty in performing 

robust background subtraction in these videos pose significant challenges for estimating 

articulated human body motion [6, 142].  

A depth image, which contains information relating the distance of an object in a scene to a 

camera, is less affected by the above image representation issues. The depth images are robust 

to colour and texture variability induced by clothing, hair and skin of a human body. It is much 

easier to detect the human body silhouette using depth information rather than RGB values. The 

3D data that includes depth information simplifies background subtraction, resolves silhouette 

ambiguities and is largely invariant to lighting, colour and texture [7, 9]. 

The traditional way to obtain 3D data is stereo vision [8] in which the depth information is 

reconstructed by capturing 2D images from multiple viewpoints. Unfortunately, the inference 

of depth information involves complex stereo geometry calculations and is affected by 

reflections, depth discontinuities and sparse textures in the images. Stereo vision suffers from 

the same lighting and segmentation problems associated with colour images.  The need for 

multiple synchronized cameras and the unreliable depth information produced by an expensive 

reconstruction process limits the applications of stereo vision [5].  An alternative is to use motion 

capture systems [86] in which special markers are attached to the body and the 3D joint 

positions are obtained by triangulation using multiple cameras. Even though this procedure 

provides accurate body motion, its intrusive nature is infeasible in real world scenarios and the 

high cost of the hardware restricts its application to niche areas.  

Recent advances in depth sensing technology have provided cameras that produce synchronized 

colour and depth images. The Microsoft Kinect sensor [10] contains an infrared projector, an 

infrared camera and a colour camera. It produces reasonably accurate depth images in addition 

to the RGB images at high frame rates. The distance of the 3D points in the world from the image 

plane is recorded as pixel values in the depth image as shown in Figure 1.3. Note that the sensor 

can provide depth information only up to a limited distance and the depth estimates are 

sometimes inaccurate. Further, the captured structure is pseudo 3D because the points that are 

not in front of the sensor cannot be recorded. In spite of these limitations, the low-cost and 

relatively small footprint of these sensors make them a popular choice for recording depth 

images.  
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Figure 1.3: The Kinect sensor. The RGB image is produced by a RGB camera and the depth 

image is produced by an infrared projector and an infrared camera. The points close to the camera 

have darker pixel values. The black pixels indicate that depth values are not available for those 

pixels [10, 11].  

The detection of joint positions is greatly simplified by the use of depth images. The pioneering 

work in [14] introduced a mechanism to robustly classify the depth image pixels associated with 

a human body, by assigning to them an appropriate body part label. The locations of the joints 

can then be estimated from these pixel labels. An overview of this approach is provided in Figure 

1.4. The algorithm is computationally efficient and is built into the Kinect sensor so that the joint 

positions are provided in real-time.   

 

Figure 1.4: Joint positions estimation. An intermediate labelled image in which each pixel is 

classified into a body part is inferred from the depth image. The 3D joint positions are estimated 

from the labelled image [14, 9].  

RGB Camera RGB Image 

Depth Image Infrared Projector Infrared Camera 

Depth image Body part labels Joint positions 
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Inspired by the Johansson experiments and the recent breakthrough in depth sensing 

technology, the research in this thesis uses the locations of joints estimated from depth images 

to characterize the motion patterns. The action classes are modelled using sequences of these 

joint positions. 

1.2.2 Challenges 

Even with the availability of body joint positions, recognizing actions is not that simple. There 

exists similarities in different action classes and there are often differences within the same class 

of actions. For example, walk and run actions involve similar sets of joints. The movements for 

a walk action can differ in speed and style between individuals. As the number of action classes 

increase, the overlap between them will be higher, making it much harder to distinguish 

between actions of different classes.  The actions are also of varying duration with sequences of 

different lengths. This makes them difficult to compare. 

The joints information may be corrupted by noise due to inaccurate depth estimates. It may also 

be necessary to change the coordinate system of the positions to account for differences in 

recording environment and variations in size and shape between humans. In many cases, the 

joints space is of high dimension containing redundant information and it is important to find 

compressed representations to facilitate computationally inexpensive comparisons between 

the actions.  

The need to generalize over large intra-class variations and maximize small inter-class 

distinctions, along with the need to handle temporal variations and noisy sequences make action 

recognition intrinsically challenging. Application of advanced statistical machine learning 

techniques is required to address this problem.  

1.2.3 Graphical Models 

Action recognition is usually regarded as a supervised classification problem [35]. Prototypical 

examples of videos and their corresponding action class labels are made available for training. 

The prediction of action class labels for new unseen videos is based on the information learned 

during training.  What distinguishes action classification from traditional supervised 

classification is that an input observation is a sequence of data points that are strongly 

correlated over time. In effect, action classification is a sequence labelling problem in which each 

sequence of data is assigned a sequence of class labels. 

A natural way to model the sequential data is to introduce a discrete valued state variable that 

compactly represents the observed data at a time instant. These state variables can then be 

reasoned about, as they evolve over time. The discrete valued state at a particular time is a 

snapshot of the relevant attributes of the observed data at that time [15]. As an example, in a 
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clap action, the various intermediate body poses such as hands together, hands apart etc. may 

correspond to different state variables and by examining the transitions between these state 

variables (i.e. body poses), an action is inferred. Since these states are not explicitly observed in 

the input data, they are often referred as hidden states or latent states. 

 

Figure 1.5: Sequential data in a graphical model. The state variables S describe the observations 

/ at various time instants 1, 2, ȣ , T, T+1 etc.  The dependency relations between the variables 

are expressed in a graph structure. The states are conditioned only on the previous state and not 

on the entire history.  

It is essential to perform a probabilistic reasoning over these state variables to account for 

uncertainties in the outcomes.  For a probabilistic formulation, a joint distribution over the space 

of possible states must be constructed. It is daunting to represent these distributions over many 

variables naively. A diagrammatic representation provides mechanisms to visualize the structure 

in these complex distributions and exploit them. Probabilistic graphical models use a graph 

based representation to simplify dependencies over many variables to a smaller subset of 

variables. The nodes in the graph correspond to the variables and the graph edges express the 

dependency relationship between these variables. 

It is impractical to assume that the future states depend on all previous states. Such an 

assumption leads to an intractable model that grows with the number of observations. A 

reasonable approximation would be to consider that the past is independent of the future given 

the present. This Markov assumption shown in Figure 1.5, together with the assumption that all 

the data are generated from the same distribution, allows the modelling of sequential data in a 

compact form [16]. 

The Hidden Markov Model (HMM) [32] is a well-known graphical model that is used to represent 

sequential data. An HMM uses a set of discrete states and a state is conditioned only on the 

state at a previous time instant. The Conditional Random Field (CRF) [33] is another probabilistic 
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model that uses a graph based representation to encode relations between states at different 

time instants. While the HMMs use directed graphs, the CRFs use undirected graphs.  

The research in this thesis uses discrete state-space graphical models such as HMM and CRF to 

deal with the dynamics regulating the temporal evolution of the body joints. The graph based 

declarative structure provides a flexible framework for encoding complex interactions between 

many variables. Further, it also enables the development of a generic solution with the 

representation and inference procedures applicable to problems in many other domains. 

1.3 Problem Definition 

A general problem with the graphical models that use discrete state variables is that the number 

of hidden states must be fixed a priori. This number is not known in advance for most 

applications. Let us the take the example of the action class models described above in which 

the state variables represent the various body poses. A prior knowledge of the exact number of 

intermediate poses that are involved when performing an action is not available. The motion 

patterns and body positions may vary subtly between two subjects who perform the same action 

and consequently the number of poses may depend on the number of subjects. Further, these 

numbers must be specified separately for every action since almost certainly the number of 

poses will differ between actions depending on their complexity. If a large number of states is 

specified, it may result in a complex model that over fits the data and fails to fit  new 

observations. A small number of states may not be adequate to capture the variations in the 

data. 

The classical solution for this problem is to perform model selection ς several models are fit to 

the data and then one of the models is selected using a model comparison metric. In the above 

problem, typically several models are trained with different numbers of states and a procedure 

such as cross-validation or regularization is used to choose a model with the correct number of 

states. In cross-validation, the model is evaluated on small subsets of the training data to see 

how well it generalizes and in regularization a penalty term that favours a simpler model is 

incorporated during training [17].  

Unfortunately such procedures do not adapt well to changes in data complexity. Instead of these 

ad-hoc procedures that compare multiple models which vary in complexity, it is preferable to fit 

a single model that estimates the number of states automatically from data. Such a mechanism 

avoids any misfit between the number of states and the amount of training data. The model 

complexity, as measured by the number of states, increases as the amount of data increases. 

However, the formulation of a model with an unbounded complexity is nontrivial. The set of all 

possible solutions must be considered and the parameter space is now infinite dimensional. 



CHAPTER 1 - INTRODUCTION  23 

 
 

A model over an infinite dimensional parameter space can be defined using Bayesian 

nonparametric methods [18, 73]. These methods employ an unbounded number of parameters 

but only a small subset of these parameters are actually used. Appropriate prior distributions 

control the number of parameters required to model the data.  Small datasets produce simple 

models while complex datasets induce rich models, thereby adapting the effective model 

complexity to the data. The lack of an upper bound on the number of parameters mitigates 

under-fitting while the computation of a posterior distribution of the parameters in a Bayesian 

approach reduces the chance of over-fitting. 

 

Figure 1.6: Clustering and Dirichlet processes. The data points are generated from a mixture of 

2D Gaussians with 50 data points in the left, 150 data points in the middle and 500 data points in 

the right. The clusters learned through Dirichlet Process are shown as ellipses. The number of 

clusters increase with the number of data points. 

The Dirichlet process [19] is one of the most popular priors employed in Bayesian nonparametric 

methods. It is a distribution over distributions i.e. a sample drawn randomly from a Dirichlet 

process is itself a probability distribution. A common application of Dirichlet process is as a prior 

distribution in mixture models used for clustering data. In mixture models, each data point is 

assumed to belong to a cluster, with the data points inside a cluster distributed randomly within 

that cluster. The number of clusters must be specified a priori in classical clustering techniques. 

The use of a Dirichlet process prior instead provides a mechanism that estimates both the 

number of clusters and the parameters of the distributions characterizing the clusters 

simultaneously from data. An unbounded number of clusters is available, but only a small 

number of them are used to model a given set of data points. Large clusters grow larger, faster. 

When the number of data points increases, new clusters may emerge as illustrated in Figure 1.6. 

This nonparametric solution is evidently better at dealing with the combinatorial challenge 

associated with model selection procedures.  

Although the use of Dirichlet Process as a nonparametric prior for graphical models was explored 

before [40, 41, 44] these techniques by themselves are unsuitable for a supervised classification 
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problem. A straight forward application of these techniques would use a separate model to 

represent each action class and define a joint distribution over the input observations and the 

class label. Such generative models describe the input while in a classification problem the 

objective is to discriminate between the inputs.  Formulating models such that they provide the 

best decision boundaries to distinguish the classes is necessary. Furthermore, the use of 

separate models prohibits the sharing of valuable information across the different action 

classes. Information exchange between classes is essential to facilitate effective learning with a 

small number of training examples. It is important to consider a nonparametric prior that is 

suitable for classification tasks. 

The central computation problem in Bayesian nonparametric methods is posterior inference ς 

i.e. estimating the posterior distribution of the model parameters given the observed data. The 

posterior distribution often has a highly complex form. Except in the simplest cases, there are 

no closed form expressions readily available to evaluate the posteriors analytically. The use of 

sequential data compounds the problem. When deriving inference algorithms, it is important to 

consider multiple variables together and make large moves in the probability space for 

computational efficiency.  

The research presented in this thesis deals with the important problem of choosing models at 

an appropriate level of complexity and ensuring that these models are suitable for supervised 

classification. It investigates the following research questions in the context of action 

recognition: 

Question 1. How to represent actions and activities using graphical models? 

Question 2. How to learn the number of states in the graphical models from data rather than 

using model selection procedures? 

Question 3. How to share information between the action classes? 

Question 4. How to ensure that the models are discriminative in nature so that the best decision 

boundaries to distinguish the actions can be found? 

Question 5. How to perform efficient posterior inference over the model parameters? 

1.4 Thesis Contributions 

Motivated by the lack of existing methods to address the above questions, this thesis proposes 

three different and original constructions of nonparametric graphical models that are suitable 

for action classification.  
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The actions are represented using the Hidden Markov Model (HMM) [32] and Hidden 

Conditional Random Field (HCRF) [95], two well-studied discrete state-space graphical models 

used widely in sequential pattern recognition. The activities contain an inherent hierarchical 

structure and they are represented using a Hierarchical Hidden Markov Model (H-HMM) [81]. 

All the three models use 3D joint positions obtained from depth video to define the features. In 

the attempt to answer Question 2, nonparametric variants of the canonical HMM, H-HMM and 

HCRF are developed. This avoids ad-hoc model selection procedures and flexibly adapts the state 

cardinality to changes in data. Further, the model parameters are formulated in terms of 

distributions that are common across the classes to facilitate information sharing. To address 

the fourth question, the models are constructed in such a way that they are suitable for 

supervised classification problems. Finally, posterior inference procedures that are efficient for 

sequential data are derived for all the models based on simulation [36] techniques. The main 

contributions are summarized as follows: 

A discriminative nonparametric HMM for action classification 

The classical HMM is extended with a nonparametric prior and augmented with a discriminative 

term. The resulting model infers the number of hidden states automatically, with the model 

parameters learnt in a manner that is suitable for classification tasks. The model formulation 

promotes effective transfer of information between action classes. The model is evaluated for 

action classification on benchmark depth video datasets containing locations of joints.  

A supervised nonparametric H-HMM for activity classification 

A hierarchical extension to the HMM with an unbounded number of action and pose states is 

developed. The formulation uses multinomial logistic regression to distinguish between the 

activity classes based on action states, thereby simplifying the model structure.  The model 

efficacy is demonstrated for activity classification with joint positions and depth information 

used to characterize activities. 

A nonparametric HCRF for action classification 

A nonparametric extension to the HCRF that precludes the need to specify the number of 

intermediate hidden states is proposed.  The discriminative HCRF models the classification rules 

directly. The Bayesian treatment of the training procedure provides realistic characterization of 

uncertainty in the parameters. Good classification results are achieved in two different depth 

video datasets containing human actions. 

The proposed models are applicable to a wide variety of sequence labelling problems, besides 

action sequences. The investigations in this thesis have been published in [192, 193, 194, 195].  
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1.5 Thesis Structure 

These contributions are discussed in greater detail in the subsequent chapters of this thesis. A 

brief description of the remaining chapters is as follows: 

Chapter 2 reviews a broad range of works that are related to this thesis.  The approaches used 

for vision based human action recognition in the literature are surveyed. The various features 

extracted from the depth images are discussed in detail. The different classification techniques 

are outlined.  A review of the nonparametric solutions used in the literature and how they 

compare with the work in this thesis is also included.  

Chapter 3 provides the technical background necessary to describe the models used in this 

thesis.  The HMM and CRF models are introduced. The Dirichlet process, which is extensively 

used as a nonparametric prior in subsequent chapters, is described. Further background 

information including the techniques used to construct depth images and the statistical 

framework upon which the action class models are built is provided in the Appendix.  

Chapter 4 presents an action classification technique using a discriminative nonparametric 

HMM.  The action classes are represented by a multi-level Hierarchical Dirichlet Process (HDP) 

HMM. The model parameters are formulated as transformations from a base distribution and 

are learnt in a discriminative manner. The chapter begins with the motivation for this approach, 

presents the model and derives the posterior inference mechanism. Finally the experiments 

section discusses the results obtained on two different datasets. 

Chapter 5 develops a two level hierarchical HMM to perform activity classification. The bottom 

level states characterize granular poses while the top level states characterize the coarser 

actions associated with activities. In order to perform classification, the relationship between 

the actions and activities are captured using multinomial logistic regression. The chapter begins 

with an overview of the approach, provides the activity model structure and explains the 

inference mechanism. The evaluations conducted on two different datasets are also discussed.  

Chapter 6 proposes the use of a HCRF for classifying actions. The classical HCRF is extended with 

a nonparametric structure and the number of hidden states is automatically inferred.  The 

training and inference procedures are fully Bayesian. The construction is based on scale mixtures 

of Gaussians as priors over the HCRF parameters and uses the slice sampling technique during 

inference. The model representation and the mechanism to perform Bayesian inference are 

presented along with the experiments. 

Chapter 7 concludes the thesis by summarizing the main contributions. Several future directions 

and perspectives of the proposed techniques are presented. 
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2. Related Work 

The aim in vision based action recognition is to determine the action type of a previously unseen 

video. It is an active research area and the vast amount of papers published in the literature 

every year related to this topic is a testimony to both its importance and the challenges involved. 

This chapter reviews the existing literature on action recognition. Over the years many 

techniques have been proposed. The focus in the review here is mainly on the approaches to 

recognition based on depth images and a graphical model based representation.  

The approaches differ mainly in the features and the classification algorithms that are used. The 

various feature descriptors extracted from the image sequences are discussed in Section 2.2.  

The different classification techniques, ranging from those that explicitly model the temporal 

dynamics of the motion to those that do not, are covered in Section 2.3. The Bayesian 

nonparametric framework is used in the recognition procedure presented in this thesis. Section 

2.4 surveys the various nonparametric approaches. A final summary is provided in Section 2.5. 

This chapter provides insight into how the thesis differs from the other related work.  

2.1 Overview 

The research efforts in vision based action recognition date back as far as the early 1990s when 

Yamato et al. [104] used Hidden Markov Models to classify tennis strokes. Some of the early 

methods used for motion analysis are reviewed in [105]. A variety of approaches have been 

proposed since then and there are several surveys in the literature that provide an overview of 

these methods. Some of the surveys are discussed below. 

The techniques used for tracking, pose estimation and recognition are surveyed in [106]. The 

review presented in [107] expands the recognition scope to include methods used for 

interpreting cognitively higher level activities.  The survey in [55] covers the various features 

that are extracted from the image sequences for action classification. In [4], a comprehensive 

summary of the approaches used for activity analysis is presented using a tree structured 

taxonomy. Yet another survey [108] lists the methods used for representing, segmenting and 

learning actions. The recent survey in [110] discusses the state-of-the-art research using the 

taxonomy defined in [4]. A survey of the datasets available for human action recognition is 

presented in [109]. 
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The above surveys deal mainly with action recognition using visible light colour images. With the 

widespread availability of low-cost depth sensors, there has been lot of research interest of late 

in using the depth image sequences for human motion analysis. There are a few survey papers 

that review approaches based on 3D data in the context of action recognition. The surveys in [6] 

and [111] discuss depth data acquisition and the pre-processing steps involved. In addition, they 

review the algorithms used for action analysis. The other surveys that focus on human action 

recognition with 3D data include [5, 112, 113] and the very recent [114].  

Most action recognition methods assume that some examples of videos and their corresponding 

action class labels are available. A typical system first defines an abstract and compact 

representation of the patterns in a video, commonly referred as features. A model is then 

learned for the action classes during a training process using the features extracted from the 

example videos. Given a video whose action label is not known, this video is matched against 

the learned model in order to classify it. The variations in recognition methods are mainly based 

on the features and the classification algorithms used for matching the features.  

2.2 Features 

This section discusses the methods used to determine an image sequence representation that 

is suitable for robust classification of the actions.  It is important to choose informative and 

discriminative features. This process, known as feature extraction, is treated as the core problem 

in many action recognition works. Off-the-shelf classifiers are often used for matching the 

features once they are obtained.  

It is crucial to capture the temporal correlations between the images in the video for successful 

recognition. Some methods extract the features frame by frame and convert the video into a 

sequence of feature vectors. The matching algorithm used during classification analyses this 

sequence to deduce the action. In other methods, the features explicitly include temporal 

information.  

While the range of features used for action recognition can seem overwhelming, the majority of 

them can be divided broadly into two categories: image based and skeleton based. In the latter, 

an explicit model of the human body is defined and pose estimation is performed on the images 

to determine the configuration of the body. This provides the skeleton ς a schematic 

representation of the locations of the body parts. The features are then chosen from the 

positions of the joints that are part of the skeleton. In contrast, image based methods avoid 

reconstructing the human form and rely on extracting features directly from the images in a 

video. It is not usual to define an intermediate body model or explicitly identify the body parts. 
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The two categories are discussed in detail below with an emphasis on the features used for 

action recognition in depth images. Figure 2.1 lists the feature types discussed in this review. 

2.2.1 Image Based Features 

A diverse palette of low-level visual features has been proposed for action recognition. The 

image based features fall under two types ς those in which the features are encoded from the 

human as a whole and those that use a collection of local descriptors obtained from several 

image patches. Some methods use both types of feature. A pose estimation procedure is 

typically not performed when computing image based features. These features can be extracted 

even from images in which the resolution is low. 

 

Figure 2.1: Features types. The various features used for action recognition are shown in a 

schematic representation. See text for more details. 

Holistic Representations  

The holistic representations consider the image region of interest in full. They often follow a top 

down approach, first detecting and extracting the human being before computing the features. 

The actions are characterized using the appearance and motion information obtained from the 

localized human. These methods are generally sensitive to noise and are affected by variations 

in viewpoint and occlusion [55]. However, they have been used successfully in many action 

recognition works both for colour and depth videos. 
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The human silhouette, in effect the foreground of a person in an image, provides a simple 

representation that carries useful shape information about the body pose. The evolution of the 

silhouettes over time can be used to recognize the actions. Instead of taking into account all the 

pixels within a silhouette, sometimes only the boundary pixels are used. These boundary points, 

which contain no information about the internal structure of the image, have also been used to 

approximate the body poses. 

 An early work using silhouettes is [115], where the differences between binary silhouettes are 

accumulated to construct a Motion Energy Image (MEI) and a Motion History Image (MHI). The 

former indicates where motion has occurred while the latter indicates how the motion evolves 

in the temporal domain. The MEI and MHI together define an action template and recognition 

is performed by matching these templates based on a statistical model of the moments. The 

work in [116] employed an extended Radon transform on the binary silhouette to define 

features that are invariant to geometrical transformations such as scaling and translation. The 

actions are regarded as 3D shapes induced by stacking the 2D silhouettes in the space-time 

volume in [117]. The space-time shapes (Figure 2.2 (a)) encode both the spatial information of 

the body and the global body motion. The extremities of a human body such as head, hands and 

feet are used in a representation of the body posture in [118]. These extremities are detected 

from a body contour. In [119], the contours of the MEI are used to obtain a contour coded MEI 

that is invariant to scale changes and translations.  

It is not always easy to obtain stable shape information from colour images. The robustness of 

the extracted silhouettes and contours relies heavily on how accurate the background 

subtraction is. When compared with the colour images, it is much easier to perform background 

subtraction in depth images. Hence the silhouettes extracted from depth images are usually 

noise free. The above silhouette based features have been extended successfully from the 2D 

colour images to the 3D depth images for action recognition. 

In [120], the MHI is extended to include the depth information. The resulting three dimensional 

motion history image (3D-MHI) augments the conventional MHI with additional channels that 

encode the motion history in the depth changing directions. The pixel values in the 3D-MHI 

include a history of the increase and decrease in depth values. An activity recognition system for 

smart homes is developed in [121] using depth silhouettes. The extended Radon transform 

employed for the binary silhouette in [116] is extended here to the depth silhouettes. The 

ambiguity for different poses is more pronounced among the binary silhouettes, while the depth 

silhouettes, with a richer set of intensity values, provide a better mechanism to differentiate 

between the poses. 
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In [74], a small set of representative 3D points (Figure 2.2 (b)) sampled from the depth silhouette 

is used to characterize the shape of salient postures. The idea here is that the points inside the 

silhouette carry redundant information and the body shape can be described sufficiently by a 

small number of extreme points of the contour. The depth map is projected on to the three 

orthogonal Cartesian planes XY, YZ and XZ and points are sampled at equal distance along the 

contours of the projection. The temporal dynamics of these sampled points are used to infer the 

actions. A similar planar projection method is used in [122]. The depth maps are projected on to 

the three orthogonal Cartesian planes and the motion energy obtained from the projected maps 

are stacked together to form Depth Motion Maps (DMM). The DMM representation encodes 

information about the body shape and motion in three projected planes and provides strong 

discriminative clues about the actions.  

 

Figure 2.2: Holistic representations. (a) Space time shapes used in [117], containing both the 

spatial information as well as the motion information of the silhouette. (b) Representative 3D 

points sampled from the depth silhouette to characterize the shape of a posture in [74].  (c) Depth 

sequence are represented in a 4D space-time grid with the occupancy value of the grid cells used 

as features [123]. 

The approach in [117], where the 2D silhouettes are stacked to create a 3D space-time volume, 

has been extended to depth sequences as well. In [123], the space and time axes are divided 

into multiple cells to define a 4D space-time grid for a depth image sequence as shown in Figure 

2.2 (c). A saturation scheme is used to enhance the role of the cells and make them suitable for 

recognition. The obtained feature vectors, called Space-Time Occupancy Pattern (STOP), uses 

the spatial and temporal contextual information while allowing intra-action variations. In [124], 

the depth sequence is described using a histogram of oriented 4D surface normal (HON4D). The 

features capture the distribution of the surface normal direction in the 4D space of spatial, depth 

and time axes. The 4D space is divided using a 4D extension to a 2D polygon when constructing 

(a) (b) (c) 
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the features. It is argued that the distribution of the normal vectors for each cell in the 4D space 

contains more information than the occupancy patterns.  

In addition to the shape based features, optical flow based features have also been used. The 

pixel wise oriented differences between frames are captured and used to estimate the optical 

flow in the image regions undergoing change. Optical flow based features are particularly 

applicable in the cases where background subtraction is difficult and the image resolution is 

poor. However they may fail when there are sudden changes in motion. 

In [125], actions are recognized based on optical flow measurements obtained from sports 

footage in a setting where the image of a whole person may only be 30 pixels are so tall. The 

pixel-wise optical flow captures motion independent of appearance.  Since the optical flow 

computation is inaccurate in noisy data, the optical flow vectors are treated as a spatial pattern 

of noisy measurements. The optical flow is used to extract person-centric motion features in 

[126] for recognizing actions such as biking, diving etc. in colour videos. In order to allow for the 

noise in the optical flow, a windowing scheme is used here.  

The application of optical flow to depth images for action recognition was explored in [127]. The 

optical flow is computed as an extension to the third dimension of the traditional 2D optical 

flow. However, the computation is restricted to some portions of the 3D scene. A grid based 

descriptor is used for representing the flow information extracted from the point cloud within a 

temporal sequence. The extraction of optical flow from depth data has been limited. The main 

challenge is that the computation of optical flow on all the 3D points in a scene is prohibitively 

expensive.  

Local Representations 

A collection of features extracted from independent image patches are used in the local 

representations. These local features effectively capture the shape and motion information in 

the video.   These methods follow a bottom-up approach. First a set of interest points are 

identified and then the features are extracted from local patches around these interest points. 

The features from multiple patches are combined together to obtain a final representation.  

Unlike the holistic representations, detecting the humans and performing background 

subtraction may not be necessary with this approach. Hence these methods are suitable even 

in the situations where action recognition must be performed in unconstrained poor quality 

videos. The methods are generally less sensitive to noise than holistic representations and may 

be invariant to rotation and scale. However, it is often computationally expensive to construct 

the features based on local representations.  
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The interest points such as corners and edges contain significant local variations of the image 

intensities and carry information that is stable under small perturbations. They are well studied 

in the spatial domain and have been applied to many object recognition tasks in static images. 

The notion of spatial interest point is extended to the temporal domain in [128] by requiring the 

image values in the spatiotemporal volumes to have significant variations along both the spatial 

and temporal directions. These spatiotemporal interest points (STIPs), shown in Figure 2.3 (a), 

correspond to image points that have large image intensity variations and non-constant motion. 

The features obtained by generalizing the Harris corner detector to the spatiotemporal domain 

are used in [128] to identify interesting events in image sequences.  

 

Figure 2.3: Local representations. (a) Spatiotemporal interest points detected in [128] during a 

walking action. (b) Interest points detected from a depth image sequence for the drink action in 

[137].  (c) The numbers of points that fall into the cells of a localized spatial grid are used in [88]. 

There are other extensions of the 2D spatial interest point detection mechanisms to the 3D 

space-time axes for action recognition. In [129], the image sequences are represented using a 

collection of points that are salient both in space and time. The 2D saliency metric is based on 

measuring the changes in the information content of a circular image region over a set of 

different scales. This is extended to the temporal domain by considering cylindrical 

neighbourhoods at different scales and temporal depths. The obtained points using the 3D 

saliency detector correspond to activity variation peaks.   A 3D Discrete Wavelet Transform 

(DWT) is used in [130] to detect spatiotemporal salient regions. The image sequences are 

represented in a 3D Euclidean space with time as the third dimension.  A multiscale 3D DWT is 

applied to decompose the 3D volume and the resulting coefficients are used to compute 

saliency. The actions are represented using simple features of the salient regions. The interest 

point detector in [135] uses a Gabor filter on the temporal domain. At each interest point, a 

cuboid that contains the spatiotemporally windowed pixel values is extracted to determine the 

feature vectors.  The detector errs on the side of detecting too many interest points rather than 

(a) (b) (c) 
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too few. This is motivated by the observation that irrelevant features generated by scene clutter 

are handled well in object recognition tasks.   

While the interest point detector selects locations and scales, the feature descriptors capture 

shape and motion information in the neighbourhoods of selected points using image gradients. 

They encode statistics of the pixel distributions. Similar to the extension of interest point 

detectors from the spatial domain to the spatiotemporal domain, the feature descriptors have 

also been extended to the spatiotemporal domain and have been applied to action recognition. 

The well-known Histogram of Oriented Gradients (HOG) descriptor [77] used for detecting 

humans in static images is generalized in [131] to the 3D spatiotemporal domain. The orientation 

of the spatiotemporal gradients is quantized using a polyhedron and the gradient histograms of 

all the 3D cells are concatenated and normalized. The resulting HOG3D descriptor is used to 

recognize actions. A similar extension is proposed in [132] to compute histogram descriptors of 

space-time volumes in the neighbourhood of interest points. The resulting descriptor is used to 

recognize human actions that occur in movie videos.  

The local representations based on the spatiotemporal interest points and feature descriptors 

originally developed for colour images have been extended to depth videos. In [136], a 4-

dimensional local spatiotemporal feature that combines both colour and depth information is 

used for activity recognition. This work is inspired by the local features developed for colour 

videos in [135]. It uses separate response functions along the spatial and temporal dimensions 

to detect the interest points. The features are obtained by computing the colour and depth 

gradients from a 4D hyper cuboid centred at the interest point. The work in [137] detects 

interest points in the depth image (Figure 2.3 (b)) using the same technique proposed in [135] 

for visible light images. An additional function is employed for correcting the noise encountered 

in the depth maps, for example holes and value jumps.  A 3D cuboid which contains the 

spatiotemporally windowed pixel values around the interest points is used to define a 

descriptor. The various interest point detectors and feature descriptors used for depth images 

are evaluated in [134]. They include the Harris3D [128] and Cuboid [135] interest point detectors 

extended for the depth images. The feature descriptors include HOG3D [131], HOG/HOF [132] 

and HOG [77]. 

New types of feature descriptors that are motivated directly by action recognition in depth 

images have also been explored. In [138], a descriptor called Histogram of Oriented Principal 

Components (HOPC) is proposed to capture the local geometric characteristics around each 

point within a sequence of 3D point clouds. In order to obtain the descriptor at a point, first 

Principal Component Analysis (PCA) is performed on a spatiotemporal volume around the point. 

The resulting Eigenvectors are projected onto a number of directions corresponding to the 
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vertices of a polyhedron and are scaled by the Eigenvalues. The descriptor formed by 

concatenating these projected Eigenvectors is used when performing action recognition. The 

HOPC descriptor is claimed to be invariant to changes in viewpoints. In [139], a descriptor called 

Local Depth Pattern (LDP) is obtained by computing the average depth values in a spatial cell 

that is constructed from the interest points identified in a colour image. The Comparative Coding 

Descriptor (CCD) used for action representation in [140] encodes the structural relations of 

points in space and time. The video is treated as a spatiotemporal volume of depth values and 

a set of small atomic cuboids extracted from this volume is used to construct a sequence of 

codes that define the descriptor. The CCD has some invariance to perspective variations and 

sufficiently depicts the depth information necessary for action recognition.  

The occupancy patterns of the 3D spatial point cloud used in the holistic representations are 

also applicable as local representations. The numbers of points that fall into the cells of a 

localized spatial grid (Figure 2.3 (c)) are used as features in [88].  These Local Occupancy Pattern 

(LOP) features describe the appearance in a sub region of the depth image and are useful in 

characterizing the interactions with objects when an action is performed. A set of features called 

Random Occupancy Pattern (ROP) is proposed in [141] for recognizing actions. The depth 

sequence is considered as a 4D spatiotemporal volume in which the pixel values are binary. The 

ROP features are defined by the sum of the pixel values in a sub-volume. There are a number of 

sub-volumes with different sizes and at different locations. Since the possible set of sub-volumes 

is prohibitively large, a random sampling approach is used to efficiently explore the sub-

volumes.  

The methods that rely exclusively on image based features for action recognition in depth videos 

are becoming less popular. The estimation of human body poses in real time has become 

possible with the use of depth images as demonstrated in [14].  The low-level visual features are 

less important when pose information is available. The locations of the various body joints 

provide essential information to discriminate between the actions. However, using image based 

features in conjunction with the pose information may be effective in some recognition 

scenarios.   

The action recognition methods in this thesis are based on the pose information. Hence the 

above techniques where the features are extracted directly from the depth images are not 

applicable on this work. A notable exception is in Chapter 5 where a hybrid of the pose 

information and depth channel is used. The information in the depth image patches is used to 

characterize the objects a person performing an activity interacts with and some of the feature 

descriptors discussed above are employed in that chapter.  
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2.2.2 Skeleton Based Features 

A number of approaches for action recognition, including those in this thesis, are motivated by 

the seminal study [12] of motion perception by Johansson, in which it was demonstrated that 

actions can be understood just from a small number of landmark joints. A hierarchy of joints 

connected by bones forms a skeleton and different joint configurations yield different poses. 

The actions can now be described using a sequence of positions of these joints in the skeleton 

rather than by the pixel values in an image.  

The human body is capable of a wide range of motions and estimating the configuration of the 

human body from a sequence of monocular images is non-trivial. It is difficult to compensate 

the loss of depth information that results from the formation of a 2D image. As alluded to in 

Chapter 1, the variations in appearance, colour, texture and lighting further compound the 

problem. Despite several years of research [55, 58], pose estimation from visible light images 

remains largely unsolved [142].  

The introduction of depth sensors provided a realistic opportunity to infer the body poses. In 

particular, it was demonstrated in [14] that pose estimation can be performed in real time if 

depth images are used. The algorithm proposed in [14] powered the commercially available 

Kinect sensor, which produces estimates of a skeleton structure that is composed of 20 joints. 

This algorithm is discussed in Appendix B, but in a nutshell, first a depth image is segmented 

probabilistically into body parts and then proposals of 3D body joint positions are generated 

from this intermediate segmented image.  

The availability of 3D joint positions aroused considerable interest in the action recognition 

community and several works were published using the skeleton information. However, 

recognition is still a challenge even when using body joint positions. The variations within the 

same action class, similarities in motion patterns between the action classes and noisy skeletons 

due to sensor errors, occlusions etc. make it difficult to distinguish between the actions robustly. 

This necessitates further processing of the joint positions to derive alternative feature 

representations [114]. 

A simple feature for representing human motion is the pairwise relative position where the 

difference between the 3D positions of any two joints is used. The intuition behind this feature 

is that an action can be described in terms of the relations between any two body parts. For 

ŜȄŀƳǇƭŜΣ ŀ άǿŀǾŜέ ŀŎǘƛƻƴ Ŏŀƴ ōŜ ŘŜǎŎǊƛōŜŘ ŀǎ άƘŀƴŘǎέ ŀōƻǾŜ άǎƘƻǳƭŘŜǊέ ŀƴŘ άǿǊƛǎǘǎέ ǘƻ ǘƘŜ ƭŜŦǘ 

ƻǊ ǊƛƎƘǘ ƻŦ άŜƭōƻǿέΦ Lƴ [88] the feature for a joint is determined by taking the difference between 

the position of a joint and all the other joints. The overall feature is determined by enumerating 
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all the pairwise joints. A similar mechanism is employed in [89] to determine a dynamic skeleton 

(DS) feature using relative joint positions.  

 

Figure 2.4: Skeleton data features. (a) Spherical coordinate system in [11] that uses the hip centre 

joints for aligning the coordinates with a personôs direction. The angles are divided into equal 

sized bins to derive a histogram based representation. (b) Joint angles representation used in [149]. 

(c) A local skeleton descriptor that encodes the relative positions of joint quadruples is used in 

[156].  

In [147], the relative joint positions computed from several video frames are used as features. 

Apart from the differences between the joints in the current frame, the pairwise differences are 

computed between the current frame and a preceding frame to capture the motion properties. 

The pairwise differences are also computed between the current frame and an initial frame that 

approximates the neutral posture. The combination of all these differences forms a feature 

representation. Instead of using the difference between two joints, the distance between two 

joints is used in [148]. The Euclidean distances between every pair of points in the current frame 

and previous frames are used in the feature representation. The Euclidean distances between 

all pairs of joints in the current and adjacent frames are also used in [159] to determine the 

features. This work additionally includes as features the velocity of a joint along the direction 

defined by two other joints and the velocity of a joint in the direction of the normal vector of 

the plane spanned by three other joints. 

(a) (b) 

(c) 
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Instead of using the 3D joint positions, some action recognition methods use the joint angles as 

features. In a kinematic tree representation of the human body [142], a particular joint is 

selected as the root and the remaining joints are connected to the root in a hierarchical manner. 

A set of relative joint angles that represent the orientation of the body parts with respect to the 

parent in the hierarchy provides an alternative representation of the 3D locations of the joints. 

The 3D Cartesian coordinates representing the joint positions are transformed into 2D spherical 

angles representing the directions of the body parts. The radial distance is omitted in the 

representation thus excluding the length of the body parts. This angular skeleton representation 

provides some invariance to the size of the human and the orientation of the depth sensor.  

In [80], the relative azimuth and elevation angles of each joint with respect to its parent in the 

skeleton hierarchy are used to compute the features. For example, in order to calculate the 

feature at the left elbow joint, first the sensor coordinate system at this joint is translated such 

that the origin is at the left shoulder. Then a local spherical coordinate system is constructed in 

terms of an elevation angle from the XY plane and an azimuth angle from the positive X axis.  A 

spherical coordinate system is also used in [11] to derive view invariant features. The hip centre 

joint is defined as the centre of the spherical coordinates and the spherical coordinates are 

aligned with the direction of a person (Figure 2.4 (a)). The angles between the limbs and the 

angles between limbs and planes spanned by the body parts are used in [151]. The works in 

[152, 153, 154] also employ joint angles as features for action recognition with [154] using 

quaternions for representing rotations. 

A similar joint angle representation is used in [149] with each joint position represented using a 

pair of azimuth and elevation angles that specify the joints in a locally defined spherical 

coordinate system. However, the angles are computed a little differently. The positions 

corresponding to the joints at neck, shoulder, spine and hips are considered as points of a torso 

that is a vertically elongated rigid body as shown in Figure 2.4 (b). An orthonormal basis is first 

obtained from these points and the other joints are represented relative to this basis. The joints 

adjacent to the torso such as elbows, knees and head are called first-degree joints and are 

represented relative to the adjacent joint in the torso in a spherical coordinate system derived 

from the torso frame. The same torso frame is used as a reference to convert the second-degree 

joints such as the hands and feet at the extremities. A problem with this method is that it may 

produce inconsistent angles and non-local descriptions for the second-degree joints.  This 

method is improved in [150] by considering rotations of the torso orthonormal basis when 

constructing the angles for the second-degree joints.  

Instead of using the joint positions or the joint angles, some methods propose representations 

that explicitly model the geometric relationships among the body parts. In the recent work [155], 
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the 3D geometric relationships between various body parts are described using rigid body 

transformations. A family of relative 3D geometry-based skeletal representations, referred as 

R3DG features, is introduced. In [156], a skeleton descriptor that encodes the relative positions 

of a set of four joints (Figure 2.4 (c)) is proposed. Given a quadruple of nearby joints, a coordinate 

system such that one of the joint position is the origin and one of them is mapped to ρȟρȟρ is 

considered. A similarity transformation is applied on the remaining two joints with the 

quadruple encoded by six parameters that are well distributed in a 6D space.  

Instead of directly using the joint positions or the joint angles as features, some methods apply 

further processing on these to derive sophisticated feature descriptors. For example, in [11] the 

azimuth and elevation angles of the hip centre joint are divided into equal sized bins as shown 

in Figure 2.4 (a) and the angles corresponding to the other joints are probabilistically assigned 

to the bins. The final descriptor called Histogram of Oriented Joints 3D (HOJ3D) is computed 

from the histogram bins. In [157], a histogram of the directions between joints in the current 

frame and adjacent frames is used. The resulting descriptor called Histogram of Oriented 

Displacements (HOD) represents the motion of an object based on the distance it moves. In 

[160], the spherical coordinates of the joint positions are quantized into a histogram with an 

action modelled as a set of histograms. The number of bins is different for the azimuth and 

elevation angles. The covariance matrix of the joint positions is used to derive a Covariance of 

3D Joints (Cov3DJ) descriptor in [158]. 

Some methods hypothesize that not all the joints contain useful information for action 

recognition and a feature selection step is introduced to identify a subset of joints that are more 

helpful in discriminating the actions. This may be done manually using some a-priori knowledge 

on the data. For example in [152], a specific set of 8 joints are identified to recognize activities 

related to falling event. The joints on the limbs are excluded since they are perceived to 

introduce more noise than useful information required to decide whether a person has fallen. 

Similarly in [11], 12 joints are pre-selected manually before constructing the features. The 

excluded joints either contain redundant information or do not contribute to distinguishing the 

motions. 

Instead of manual selection, in some methods the joints are selected automatically when 

constructing the features. For example, in [153] the most informative joints in a time window 

are identified based on the relative informativeness of all the joints in that time window. The 

joints that have high variance of their angular changes are defined as the most informative 

joints. In [160], a pose feature is defined as a weighted sum of all the joint features with the 

weights learned using a Partial Least Squares (PLS) method. A Support Vector Machine (SVM) 

model is trained in [88] to determine how discriminative the features extracted from a joint are. 
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This information is used to find the features for a subset of the joints. Even evolutionary 

computation methods such as Genetic Algorithm (GA) have been used to identify a subset of 

joints in the skeleton hierarchy that provides a good representation of the motion patterns 

[161].  

Skeleton based features are used in the action recognition methods in this thesis. The simple 

pairwise relative positions of the joints are mainly used as features. More sophisticated 

descriptors are avoided. The temporal dynamics of the joints, as modelled by the classification 

algorithm, are relied upon to distinguish the actions. The classification algorithms proposed in 

this thesis are generally agnostic to the features and are designed to benefit from other types 

of sequential data. 

2.3 Classification 

While the previous section discussed the methods used to extract features from the video, this 

section describes the methods used to match the features. Once the features are available, the 

action recognition problem becomes a supervised classification problem. A variety of algorithms 

in statistical machine learning literature can be used to match the features. The classification 

algorithms used for action recognition can be divided broadly into two types ς static and 

dynamic. In the static classifiers, the temporal domain is not considered while in the dynamic 

classifiers the variations of the features in time are explicitly modelled. Figure 2.5 lists the 

classification algorithm types discussed in this review. 

2.3.1 Dimension Reduction 

Before using the classification algorithms, many action recognition methods apply a dimension 

reduction technique. The features extracted from the video frequently contain redundant 

information, may be sparse vectors and are sometimes noisy. They are often in a very high 

dimensional space, for which a large number of training examples is required. Using a 

compressed form of the features hugely benefits the classification algorithm. Hence the features 

are subjected to a dimension reduction technique to obtain a robust and compact 

representation. 

The Principal Component Analysis (PCA) [16] is a commonly used linear dimension reduction 

method which projects high dimensional features to a lower dimensional feature space. It is 

employed in various works such as [123, 136, 147] to reduce the number of features. Linear 

Discriminant Analysis (LDA) [35], which preserves the class discriminatory information while 

reducing the dimensions, is used in [11] and [121].  In [88], a short Fourier transform is applied 

to the feature vector at a time instant and the low frequency Fourier coefficients are used as 
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features. By discarding the high frequency Fourier coefficients the features are made robust to 

noise. 

 

Figure 2.5: Classification algorithm types. The classification algorithms used for action 

recognition are shown in a schematic representation. Some methods optionally include a 

dimension reduction step and use code words. See text for more details. 

Non-linear dimension reduction methods have also been explored for action recognition. These 

techniques, known as manifold learning, identify the underlying low dimensional manifold in 

which the high dimensional features are embedded in such a way that the properties of the 

original feature space are preserved. The assumption here is that by the nature of the human 

movements, the actions do not span the entire feature space and hence they must lie on a low 

dimensional manifold. The features obtained as a result of manifold learning are used by the 

classifier. 

In [162], a low dimensional embedding of the actions is learnt from the high dimensional 

trajectories of the joints using a manifold functional variant of PCA. In [79], the trajectories 

described by the 3D joint positions are embedded in a Riemannian manifold. This formulation 

takes advantage of the Riemannian geometry in the resulting shape space when comparing the 

similarities between the shapes of different trajectories. The intuition behind this approach is 

that the feature descriptors used in vision applications typically lie on a curved space due to the 
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geometric nature of their definitions. Another recent work [163] uses an autoregressive moving 

average (ARMA) model, which is parameterized using an observability matrix, to represent the 

trajectory of the joint positions. The subspace spanned by the columns of the observability 

matrix corresponds to a point on a Grassmann manifold.  

2.3.2 Static Classifiers 

When static classifiers are used for action recognition, it is assumed that the feature 

representation already captures the information in the temporal dimension. Typically, the entire 

video is summarized by a single feature vector. This may result in feature vectors of different 

sizes because the number of frames in a video may vary between the actions.  

Many methods such as [131, 134, 152] etc. use a bag-of-features or bag-of-words model in which 

the features are represented using a fixed size histogram. Typically a clustering algorithm such 

as K-means is applied to the feature vectors to learn a set of centroid vectors called the code 

words. Each feature vector is mapped to a code word by the index of its closest centroid. A set 

of feature vectors can now be represented by the histogram of the code words. This method of 

quantizing the feature vector is often employed to produce a global feature representation of 

the entire action sequence when static classifiers are used.  The loss of temporal structure with 

this quantization does not matter since the static classifiers do not model the time dimension 

anyway. 

The Ὧ-Nearest Neighbour (Ὧ-NN) classifier compares the distance between the feature vector of 

a test video and the feature vectors of the videos in the training examples to determine the class 

label. The label most common among the Ὧ closest training examples in the feature space is 

chosen. The Ὧ-NN classifier has been used for classifying actions in many methods such as [79, 

115, 117, 119, 125, 127, 129, 147].   Different distance measures have been used. For example, 

the Euclidean distance is used in [117], Mahalanobis distance is used in [115], the Chamfer 

distance is used in [129], the geodesic distance is used in [79] and a video to class distance based 

on naïve Bayes is used in [147]. It is also possible to use a distance measure in Ὧ-NN that 

compares two feature sequences, possibly of different lengths. For example, in [154], the 

Dynamic Time Warping (DTW) algorithm is used as a distance measure.  

The Ὧ-NN classifier scales well with the number of classes and also avoids the over fitting 

problem. It also does not generally need a training procedure. However, a stored database of 

previously seen actions is necessary with this classifier. If there are a number of training 

examples, comparisons become computationally expensive. Hence an adequately 

representative set of training examples must be identified with this classification method. 
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One of the most popular static classifiers for action recognition is the Support Vector Machine 

(SVM) [65]. This discriminative classifier, which learns a hyperplane in the feature space that 

separates the classes, has been used by several methods such as [122, 124, 131, 132,  134, 137, 

139, 140, 141, 152 157]. Both linear SVMs (e.g. [157]) and non-linear SVMs, (e.g. [134]) in which 

the inputs are mapped to a high dimensional feature space using kernel functions such as chi-

squared kernel, have been used. The probabilistic variant of the SVM, the Relevant Vector 

Machine (RVM) has also been used for action recognition in [129]. 

The use of SVM as off-the-shelf classifier by many methods is unsurprising since it has produced 

stellar results for many other computer vision problems such as object recognition and human 

detection [77]. However, since SVMs cannot model temporal data the classifier performance 

depends on how well the features capture the time dimension. 

2.3.3 Dynamic Classifiers 

Unlike static classifiers that consider a single data point, the dynamic classifiers analyse a 

sequence of data points. The temporal dynamics are explicitly modelled in the dynamic classifier 

and the order of the features are considered when matching them. Sequential patterns of data 

are observed in many other fields such as speech recognition (e.g. phoneme sequences), 

genomics (e.g. DNA sequences) and natural language processing (e.g. sentences).  There is a rich 

body of literature on sequential pattern recognition. This survey focuses on those methods that 

use a state-space graphical model for action recognition. See [4, 107, 114] for other approaches. 

In most state-space graphical models, discrete valued state variables are encoded as graph 

nodes. The edges between the states and the observed features characterize the model. The 

most well-known model in this family is the Hidden Markov Model (HMM) [32].  The sequence 

of states in an HMM follow a Markov assumption i.e. each state is conditioned only on the 

previous state and not on the entire previous history. Together with the additional assumption 

that the observations are independent when conditioned on the current state, the HMM 

becomes a tractable model.  

The HMMs are very popular in the speech recognition [51] literature and their use in action 

recognition can be dated as far back as 1992 when Yamato et al. [104] used them to classify 

actions in tennis suŎƘ ŀǎ ΨǎƳŀǎƘΩΣ ΨǎŜǊǾŜΩΣ ΨōŀŎƪƘŀƴŘ ǎǘǊƻƪŜΩ ŜǘŎΦ 9ŀŎƘ ŀŎǘƛƻƴ ƛǎ ǊŜǇǊŜǎŜƴǘŜŘ ōȅ ŀ 

separate HMM and the transition and observation parameters are learned during training. The 

classification of an unseen action is performed by comparing the observation likelihood of all 

the trained HMMs. The HMMs have been used in several action recognition works such as [11] 

and [121] since their introduction in [104].  
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The features in an HMM are considered frame by frame and hence sequences can be of any 

length. Unlike the static classifiers, a vector quantization step that produces fixed size features 

is not necessary. The HMMs also allow the observed features to be discrete or continuous. Using 

a Gaussian mixture for the continuous densities is common while a quantized set of symbols 

using a discrete distribution is also possible. 

The HMMs are generative models in which a joint distribution over the features and class labels 

is modelled. The HMM parameters learned during training are intended to explain the examples 

corresponding to the appropriate class label. Such a training procedure does not necessarily 

guarantee good results in classification problems. Many works [164, 165, 166] pursue alternative 

training criteria to ensure that the learned HMM parameters produce good classification results. 

For example, instead of the traditional Maximum Likelihood Estimation (MLE) method where 

the training criterion is based on the likelihood of observing the examples, a Minimum 

Classification Error (MCE) method that minimizes the empirical classification error rate on the 

training examples or the Maximum Mutual Information Estimate (MMIE) has been used [172]. 

In a recent work in [175], Fisher kernels are employed to discriminatively learn the generative 

HMM parameters. The class similarity distances between the likelihood gradients for same 

classes are minimized while those for other classes are maximized. 

The HMMs are part of a larger class of models called Dynamic Bayesian Networks (DBNs). There 

are other models that generalize the HMM at increased costs for inference and learning. For 

example, the Hierarchical HMM (H-HMM) [81] extends the canonical HMM by introducing a 

hierarchy of states. Each state in the H-HMM can emit another sub-HMM. In [167] the H-HMM 

is applied to recognize activities that are four levels deep in the hierarchy. When modelling 

interactions between two persons, it may be necessary to express the temporal evolution of the 

states corresponding to these persons individually and yet also tie the states together. The 

coupled HMMs provide such a construct. They are used in [168] for activity recognition. The 

method in [168] relaxes the Markov assumption and introduces explicit state duration models 

producing a coupled semi-Markov model. An event driven multi-level DBN is proposed in [169] 

in order to model the interactions between groups of people. The scenario is a group level 

ƳŜŜǘƛƴƎ ƛƴ ǿƘƛŎƘ ǘƘŜǊŜ ŀǊŜ ǘƻǇ ƭŜǾŜƭ ŜǾŜƴǘǎ ǎǳŎƘ ŀǎ ΨǇǊŜǎŜƴǘŀǘƛƻƴΩΣ ΨŘƛǎŎǳǎǎƛƻƴΩ ŀƴŘ ΨōǊŜŀƪΩ ŀƴŘ 

sub-ŜǾŜƴǘǎ ǎǳŎƘ ŀǎ ΨƭŜŎǘǳǊƛƴƎΩ ŀƴŘ Ψvϧ!Ω ŎƻǊǊŜǎǇƻƴŘƛƴƎ ǘƻ ǘƘŜ ΨǇǊŜǎŜƴǘŀǘƛƻƴΩ ŜǾŜƴǘΦ  

Probabilistic topic models such as Latent Dirichlet Allocation (LDA) can be used to automatically 

discover the dominant themes in data. By including temporal information, the sequential nature 

of the activity patterns can be discovered in a better manner, as in [146]. The HMMs have been 

used together with LDA. In [145], the HMM is combined with LDA to produce a hierarchical 
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model called Markov Clustering Topic Model that allows simple actions to be combined into 

complex global behaviours.  

Conditional Random Field (CRF) [33] based models have also been explored for action 

recognition. While the HMMs, H-HMMs and the DBNs are directed graphical models, the CRF is 

an undirected graphical model that is discriminative by nature. It models the classification rules 

directly and is a popular method for classifying sequential data.  

In [53], the spatiotemporal relations between human poses and objects are modelled using a 

CRF in order to detect past activities and predict future activities. Since there is an inherent 

ambiguity in the temporal segmentation of the sub-activities that constitute an activity, a range 

of possible graph structures are investigated using dynamic programming techniques.  In [170], 

the Hidden CRF (HCRF) [95] is applied to recognize gestures. It is not necessary to segment the 

gesture substructures because of the use of hidden states.  In [171], a modified HCRF is used to 

categorize actions. The initial parameters for an HCRF must often be carefully selected. To 

overcome this problem, the hidden states are learnt using an HMM. 

The classification algorithms proposed in this thesis consider sequences of features and 

represent actions by graphical models composed of a set of states. Hence they are closely 

related to the dynamic classifiers discussed in this section. However, there is a key difference 

from the state-space models used in the above works for action classification. The HMM, H-

HMM and the HCRF models above assume that the number of states is fixed in advance. This 

constraint is relaxed in the models proposed in this thesis, by using a nonparametric extension 

that allows the number of states to be learned automatically from the data. 

2.4 Bayesian Nonparametric methods 

Many methods in machine learning build a model with a fixed number of parameters where the 

parameters can be thought of as a convenient summary of the training data. Consider as an 

example a solution to the clustering problem which uses a mixture of Gaussians to define a 

density function over the data. The parameters are the mean and covariance of a Gaussian for 

each of the mixture component. In this parametric model, the number of mixture components 

(i.e. the clusters) is assumed to be known in advance and hence there is a fixed finite set of 

parameters. 

The nonparametric models allow the number of parameters to grow with the data. In the above 

clustering scenario, a nonparametric solution does not need the number of clusters to be 

specified a-priori. It is assumed that there is an unbounded number of mixture components 

(clusters), with only a finite number of them actually used to model the data.  
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Bayesian methods represent uncertainty in the model parameters in terms of probability 

distributions. The applicability of Bayesian data analysis increased widely with the availability of 

posterior inference procedures based on simulations [36, 38].  The Bayesian nonparametric 

methods extend the methodology of prior and posterior distributions to a model with an 

unbounded number of parameters. In order to produce a tractable model, these methods use 

appropriate priors to limit the number of parameters required to model the data.  

The probability distributions on an infinite dimensional space are called stochastic processes. 

Gaussian Process, Dirichlet Process, Beta Process and Pitman-Yor process are some examples of 

such stochastic processes. The most popular one by far in the machine learning literature is the 

Dirichlet Process [19]. It has been used for a wide variety of problems including clustering, 

regression, density estimation, latent feature modelling, sequential pattern recognition and 

modelling random effects distributions [45], to name a few. Of particular interest is the 

Hierarchical Dirichlet Process (HDP) [44] model which couples multiple Dirichlet Processes 

within a hierarchical framework. It models data which comes in multiple groups and captures 

both the similarities and differences across the data points within these groups.  The 

classification algorithms discussed in this thesis uses the HDP as priors to construct 

nonparametric models and hence the review here focuses on HDP.  The survey in [173] reviews 

nonparametric Bayesian inference and the fairly recent survey in [174] discusses other priors 

used to induce dependency between random measures. 

In [68], the HDP was applied to an object recognition problem. A family of hierarchical models 

is defined based on the HDP for a visual scene, with a scene being made up of objects and the 

objects comprised of parts. The parts are shared between the different object categories. The 

number of parts underlying the object categories and the number of objects in a scene are both 

learnt automatically from the data. The HDP is augmented with transformation variables that 

describe the locations of the objects in an image.  In the recent work in [177], the HDP is used 

to learn admixture models of image patches similar to the topic models used for text documents. 

It explores the co-occurrence of image features at different hierarchical levels.  The HDP model 

captures the similarities within image patches using image specific mixture component 

distributions. This adapts the topic proportions to each image with smooth patches favoured for 

some images and textured patches for others. The use of HDP prior allows learning the number 

of topics from data. The learning algorithm in [177] uses variational inference [16] rather than 

the traditional simulation based inference. In [133], the Dirichlet Process is used to automatically 

discover recurrent temporal patterns in time series. Activity patterns such as car passing, 

pedestrian crossing are identified in an unsupervised manner.  
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The HDP can be used as a prior over the HMM discussed in the previous section to derive the 

HDP-HMM, which is applicable for modelling sequential data. The number of states in an HDP-

HMM is unbounded with new states being instantiated when the data is not adequately 

explained by the current set of states. Thus the cardinality of the states adapts to the data.  In 

[76] the HDP-HMM was used to segment an audio recording of a meeting into different temporal 

segments corresponding to individual speakers. Prior assumptions on the number of speakers 

in the meeting are avoided by using a nonparametric model.  The HDP-HMM in this work 

introduces a new variable to encourage slower transition dynamics between the states. The bias 

towards smoothly varying state dynamics provides better segmentation for speech data. In 

[178], the HDP-HMM is used to detect activities that occur rarely and have not been anticipated. 

An ensemble approach is used here in which first a set of HDP-HMM based classifiers is used to 

learn a decision boundary around the normal data in the feature space. This boundary is used 

to classify activities as normal or abnormal via one-class SVM.  A learning approach for jointly 

segmenting and recognizing sequential data is proposed in [179]. Unlike many methods in which 

the entire data set is available during training, the model handles streaming data by receiving 

them in mini batches and segmenting and recognizing them on the fly. The sticky HDP-HMM 

proposed in [76] is used in this method as well. The nonparametric nature of the model allows 

an unbounded number of classes. The spatiotemporal dependencies in complex dynamic scenes 

is automatically learnt using a HDP-HMM in [143]. The model captures the state of the scene as 

a whole and explains how the state changes over time and how likely the changes are. 

The HDP has been used as a prior over other HMM variants as well. The Switching Linear 

Dynamical Systems (SLDS) can be viewed as an extension of HMMs in which each HMM state is 

associated with a linear dynamical process. They capture complex temporal dependencies that 

exhibit structural changes over time. The HDP prior to the SLDS in [41] produces a model in 

which the number of dynamical modes is not fixed in advance while allowing for returns to 

previously exhibited dynamical behaviours. A mixture of SLDS is used in [180] to discover actions 

that describe low-level motion dynamics and behaviours that are composed from actions to 

capture high-level temporal dynamics. By using the HDP prior over SLDS, the number of actions 

and the number of behaviours are learnt from data. This unsupervised method segments tracks 

into sequences of common actions and clusters the actions into behaviour patterns of people.  

The advantages of semi-Markovian models and nonparametric models are combined in [92]. 

The generatiǾŜ ǇǊƻŎŜǎǎ ƻŦ ǘƘŜ Iaa ƛǎ ŀǳƎƳŜƴǘŜŘ ǿƛǘƘ ǊŀƴŘƻƳ ŘǳǊŀǘƛƻƴ ǘƛƳŜǎ ŀƴŘ ŜŀŎƘ ǎǘŀǘŜΩǎ 

duration is given an explicit distribution.  The HDP prior is applied to this Hidden Semi Markov 

Model (HSMM) to produce a model in which the strict Markovian constraints of the HMM is 

relaxed and the number of hidden states is inferred from data. The HDP-HSMM structure is 
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applied to an unsupervised power signal disaggregation problem. The idea of explicitly 

parameterizing and controlling the dwell-time for the HMM states is also explored in [176] in a 

nonparametric setting. In some applications, HMMs may have restricted topologies such as 

precluding all states that are already visited. The infinite structured hidden semi-Markov model 

(ISHSMM) in this work allows building nonparametric models for the HMMs in which the states 

are never re-visited and where each state is imbued with an explicit duration distribution. 

The infinite factorial HMM (IFHMM) in [181] introduces a probability distribution over a 

potentially infinite number of binary Markov chains. The hidden states are represented in a 

factored form that allows information from the past to be propagated in a distributed manner 

through a set of parallel Markov chains. The distribution over the Markov chains is defined using 

the nonparametric Bayesian factor model called Indian Buffet Process (IBP). In [182] this IFHMM 

is extended to allow for an unbounded number of states in addition to the unbounded number 

of non-binary Markov chains. This model is applied to the Multiple-Input Multiple-Output 

(MIMO) communication systems to infer both the number of transmitters and the number of 

transmitted symbols based on the data. A nonparametric generalization of the hierarchical 

HMM [81] is presented in [84]. It allows an unbounded number of hierarchical levels instead of 

requiring the specification of the fixed hierarchy depth. The dependency structure between the 

state variables is much simplified when compared with the canonical hierarchical HMM for 

tractability. Additionally, cardinality of the state variables is fixed in this model. 

Unlike the above works which use nonparametric HMMs in an unsupervised setting, the HDP 

based solutions proposed in this thesis are intended for supervised classification. When using 

HDP-HMM for classification, the traditional approach is to train a classifier for each class and use 

the class conditional distributions to determine the classification decision boundaries. As 

mentioned in Section 2.3.3, this training procedure does not provide the best decision 

boundaries in terms of minimizing the classification error rates. The HDP-HMM proposed in 

Chapter 4 learns the model parameters in a discriminative manner. Further, it allows sharing 

information across the action classes and considers both positive and negative examples during 

training. It thereby combines the advantages of a generative model and discriminative 

classification. 

The nonparametric model proposed in Chapter 5 enables supervised classification by using 

logistic regression on the states learnt using a hierarchical HMM with HDP priors. This idea of 

using a linear model with a generative process to capture the relationship between groups of 

observations and their associated labels has been explored in the natural language processing 

literature. Relevant examples are the supervised Latent Dirichlet Allocation [183] and its 

nonparametric extension the supervised HDP [184]. These techniques were mainly used in topic 
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models for labelling text documents. The work in this thesis is different, in that it includes an H-

HMM, which considers a factored hierarchical nature of observations, and an application to a 

vision problem involving sequence classification. In particular, the inference procedure in action 

recognition considers the correlation between the observations in time while in document 

labelling tasks this is not usually needed. 

A nonparametric HCRF with HDP prior is used in Chapter 6. While there have been many works 

in the literature using HDP priors for directed graphical models, the nonparametric extensions 

for undirected graphical models is a new research area. The works in [185] and [186] propose 

HCRFs with an unbounded number of states. The simulation based inference method in [185] is 

not applicable for continuous observation features and the variational inference method in [186] 

has non-negative constraints on the observation features. In contrast, the model in Chapter 6 is 

well suited for continuous observations and does not enforce any constraints on the features or 

HRCF parameter weights.  Perhaps the most important difference is that a fully Bayesian 

treatment of the model is made. The posterior distribution for the HCRF parameters is 

estimated. 

2.5 Summary 

The action recognition pipeline contains the following stages ς image acquisition, feature 

extraction and classification. The various image based features such as silhouettes, contours,   

interest points and feature descriptors were discussed. With the availability of skeleton joints 

obtained from depth images, recent works use joint information rather than low-level image 

features. The skeleton joints offer a convenient and a fairly reliable mechanism to characterize 

actions. The methods in this thesis mainly use simple pairwise relative joint positions as features 

unlike the sophisticated descriptors used in many works.  

The static classifiers rely on the feature descriptors to capture temporal correlations of the 

features, in addition to the frame specific features for classification. While static classifiers such 

as SVM have produced good results with image classification, the dynamic methods that model 

temporal evolution are intuitive and compelling for sequential data. When dealing with higher 

order event structures such as complex activities, the use of dynamic classifiers is inevitable. The 

state-space graphical models are a natural choice when using dynamic classifiers, with the well-

studied HMM and its variants having been used in many action recognition problems. 

The Bayesian nonparametric extensions to HMM and its variants preclude the need to fix the 

number of states. Most of these models use the HDP as a nonparametric prior. While this HDP 

prior is used in the nonparametric models defined in in this thesis, the key difference from other 

works is the applicability of these models for supervised classification problems. The 
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discriminative manner in which the HDP-HMM parameters are learnt and the integration of a 

linear model with hierarchical HMM makes the models in this thesis suitable for classification. 

The fully Bayesian treatment of the nonparametric HCRF also distinguishes the work in this 

thesis from others. 

The survey in this chapter is by no means exhaustive. In addition to the popular methods 

discussed here, there are Deep Learning approaches based on Convolutional Neural Networks 

(CNNs) [187] that avoid explicitly engineering the features and learn complex features 

automatically from data.  There are also methods that focus on the recognition speed rather 

than the recognition accuracy in order to scale up to large size problems. However, the survey 

does cover important methods that are related to this thesis and highlights key differences. 
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3. Background 

This chapter provides the technical background essential to describe the thesis contributions. 

The two discrete state Markov models used in this thesis, namely the Hidden Markov Model and 

the Conditional Random Field, are introduced in Section 3.1 and Section 3.2 respectively. 

Background material necessary to develop nonparametric models is provided in Section 3.3. This 

includes the stochastic Dirichlet process and its hierarchical extension. 

Further technical background can be found in the Appendix. The techniques used to construct 

depth images using active 3D sensing is discussed in Appendix A. A brief overview of the 

mechanism to estimate 3D joint positions from a depth image is provided in Appendix B.  

Appendix C provides an introduction to Bayesian analysis and Appendix D provides an overview 

of the graphical models. The approximate inference techniques that are necessary to compute 

posterior distributions are reviewed in Appendix E.  

3.1 Hidden Markov Model 

The Hidden Markov Model (HMM) [32] is a popular model for representing sequential data. It is 

a directed graphical model and a special case of a Bayesian network. HMMs are widely used in 

many fields such as speech recognition [51], biological sequence analysis [48], econometrics [50] 

and natural language processing [49].  

In order to abstract the input characteristics and produce a rich set of models, the HMM includes 

a discrete variable ὤ corresponding to each input value ὼ. This variable concisely summarizes 

the attributes of an input observation at time ὸ. The variable is usually latent and is referred as 

a hidden state variable.  Let ᾀ denote the value assigned to ὤ and ◑ ᾀ . There is a finite 

number ὑ of hidden states and  ᾀᶰρȟςȟȣὑ . The Markov assumption is now applied to 

hidden states instead of the input observations. 

ᾀ  Ṷ ᾀȡ  ȿ ᾀ (3.1) 

 

Further, the model assumes that conditioned on the hidden states the observations, which may 

be discrete or continuous, are independent. Let ὸ͵ denote all variables except the variable at 

time instant ὸ. Then, 

ὼ Ṷ ὼ͵ ȟᾀ͵ ȿ ᾀ (3.2) 
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Figure 3.1: HMM representation. The hidden states ◑ have the Markov property. The 

observations ● are independent, conditioned on the hidden states. 

In order to express the relationship between the latent variables ╩ and the input variables ╧, 

distributions over the combined set of variables ╧᷾╩ must now be built. Following the HMM 

representation shown in Figure 3.1, the joint density function of the combined set of variables 

factorizes as1: 

ὴὼȡȟᾀȡ ὴᾀȿᾀ ὴὼȿᾀ  (3.3) 

 

An HMM is defined by the state transition distribution ὴᾀȿᾀ  and the observation 

distribution ὴὼȿᾀ . The state transition distribution is specified by the ὑ ρ ὑ matrix “ 

defined by: 

 ὴᾀ Ὧ ȿ ᾀ Ὦ  “ȟ 
Ὦ πȣȢὑ 

(3.4) 
Ὧ ρȣȢὑ 

 

The “ row contains the initial probability of being in a state Ὧ with ὴᾀ Ὧ  “ȟ. The 

matrix “ is called the transition matrix. It follows from the definition of (3.4) of “ that  π

 “ȟ ρ and В “ȟ for Ὦ πȣὑ. The conditional distribution of the input value ὼ is 

defined by: 

Here — are the parameters of the family Ὂ of distributions. The model is tractable for a wide 

range of distribution families. It is common to use a member of the exponential family for Ὂ. Let 

— —ȣ— . The set of parameters that govern the HMM model is given by:  

‗ “ȟ— (3.6) 

                                                           
1 When  ὸ ρ, ὴᾀ  is simply ὴᾀ  

ὴὼȿᾀ Ὧ  ͯὊ—  (3.5) 

... ᾀρ  ᾀς  ᾀὸ  ᾀὸρ

  

... ᾀὝ  

ὼρ  ὼς  ὼὸ  ὼὸρ

  

ὼὝ  
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3.1.1 Inference 

The marginal distributions ὴᾀȿὼȡ  and ὴᾀȿὼȡ ȟὝ ὸ are of particular interest when 

performing inference in an HMM. The former, referred as filtering, is used to estimate the state 

ᾀ given all observations at times up to and including ὸ. The latter, referred as smoothing, is used 

to estimate the present state conditioned on the past and future observations. 

 The message passing technique outlined in Appendix D.3 can be used to compute the marginal 

distribution ᾀ in both cases. Note that in the case of an HMM, there are additional observation 

nodes that are conditioned upon during inference. The messages in equations (D.17) and (D.18) 

are updated to include the conditional distribution of the observations and are now written as: 

ά ȟᾀ ὴὼ ȿᾀ ὴᾀȿᾀ ά ȟ ᾀ  (3.7) 

ά ȟᾀ ὴὼ ȿᾀ ὴᾀ ȿᾀά ȟ ᾀ  (3.8) 

 

The marginals can then be computed from the messages as follows: 

ὴᾀȿὼȡ ᶿὴὼȿᾀά ȟᾀ  (3.9) 

ὴᾀȿὼȡ ᶿὴὼȿᾀά ȟᾀά ȟᾀ  (3.10) 

 

The above message based representation of the marginals can also be derived using the 

forward-backward algorithm [32]. This classical algorithm defines two terms ‌ ᾀ  and ‍ ᾀ . 

The former term is a forward message that represents the joint probability of a state ᾀ and the 

observations up to time ὸ. The latter term is a backward message that represents the conditional 

probability of all future observations from time ὸ ρ to Ὕ given the state as ᾀ. These terms 

relate to the messages in (3.7) and (3.8) as follows: 

‌ ᾀ ὴὼȟȣȟὼȟᾀ ὴὼȿᾀά ȟᾀ  (3.11) 

‍ ᾀ ὴὼ ȟȣȟὼȿᾀ  ά ȟᾀ  (3.12) 
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Figure 3.2: Viterbi decoding. Each circle represents one of the possible states at a time instant 

and the lines denote a possible path for the state sequence. The Viterbi algorithm determines the 

most probable sequence of states (1, 2, 2, 3 here). 

In some inference situations, it is useful to find the most probable sequence of hidden states for 

a given observation sequence (see Figure 3.2). Maximizing the marginals ὴᾀȿὼȡ  individually 

at each node may not yield the most likely state sequence and may even produce an infeasible 

sequence. In detail, we wish to find: 

ᾀǶ ÁÒÇÍÁØ
ȢȢ

ὴᾀȿᾀ ὴὼȿᾀ  (3.13) 

 

The same technique used to distribute the summations efficiently for computing the marginals 

can be applied here, with the summations now replaced by maximization. Let us define a new 

term  ‏ ᾀ  such that  

‏ ᾀ ÍÁØ
ȢȢ
ὴὼȿᾀά ȟᾀ  (3.14) 

ά ȟᾀ  ÍÁØ
ȢȢ
ὴὼ ȿᾀ ὴᾀȿᾀ ά ȟ ᾀ  (3.15) 

 

The maximizing assignment can then be found from the ‏ terms. This yields the Viterbi algorithm 

that efficiently finds the most likely state sequence with a time complexity that grows linearly 

with the number of observations. 

3.2 Conditional Random Fields 

The Conditional Random Field (CRF) [33] is a probabilistic method that combines the advantages 

of discriminative classification techniques with graphical modelling. It is widely used for labelling 

sequential data. It is an undirected graphical model belonging to the family of Markov networks. 

        

        

        

States 

... 

... 

... 

Time 

ὸ ρ ὸ ς ὸ σ ὸ τ 

Ὧ ρ 

Ὧ ς 

Ὧ σ 
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CRFs have been applied successfully in computational biology [52], computer vision [53] and 

natural language processing [54]. 

In a CRF, there is a discrete random variable ὣ at each time instant ὸ. Let ώ be the value assigned 

to ὣ. Given an input sequence ●, the output sequence ◐ ώ  is predicted. The outputs 

are usually class labels. In a classic example, ● is a sequence of words and ◐ is the sequence of 

part-of-speech labels for each word. There is a finite number ὑ of the labels and  ώᶰ

ρȟςȟȣὑ . The Markov assumption is applied to the outputs in order to simplify the graph 

structure. The resulting model is referred as a Linear Chain CRF.  

In a linear chain CRF, the relationship between the combined set of input and output variables 

╧᷾╨ is given by a conditional distribution. Let ‪ denote a potential function with values in ᴙ. 

The conditional distribution ὴ◐ȿ● factorizes in linear chain CRF as follows: 

ὴ◐ȿ●
ρ

●שׁ
 ‪ ώȟώ ȟὸȟ● (3.16) 

 

Here ׁש● is normalization factor over all output sequences given an input sequence ●. 

●שׁ ‪ ώȟώ ȟὸȟ●

◐

  (3.17) 

 

The conditional dependency of each output on the inputs is defined in CRFs through a set of real 

valued functions called the feature functions. A feature function • is defined as follows: 

•ȡ ◐ȟ●ȟὸO  ᴙ (3.18) 

 

It can be understood as a feature on the input sequence that determines the likelihood of an 

output value at a time instant. It is not required to have a probabilistic interpretation for the 

range of a feature function. It is common to have a number of feature functions at each time 

instant and they may be nonzero only for a particular output. Consider for example that the 

input is a sequence of words and the outputs are the category of each word such as Name, 

Location etc. A feature function may be defined to have a value 1 if and only if the output at ώ 

is a Location and the input at ὼ appear in a list of country names. The exact form of the feature 

functions is problem specific. 
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Figure 3.3: Linear Chain CRF. The outputs follow a Markov assumption. The dashed line edge 

between nodes ώ  and ὼ illustrates an output ώ  depending on the input observations ὼ and 

ὼ . 

The CRF model is parameterized by a set of real-valued weights, one for each feature function.  

Let — be the weight corresponding to a feature function •. The potential function ‪ at time 

instant ὸ is defined as follows in a linear chain CRF: 

‪ ώȟώ ȟὸȟ● ÅØÐ —• ώȟώ ȟὸȟ●   (3.19) 

 

The main advantage of the CRF is that it does not make any conditional independence 

assumptions among the input observations and it can model interdependent features. Hence it 

is better suited to cases in which the features overlap. This is evident in (3.19), where the feature 

function accepts the entire set of input variables ● and has the flexibility to examine all these 

input variables. Figure 3.3 depicts the graphical model of a linear chain CRF.  

The message passing technique derived for the HMM can be used unchanged for the linear chain 

CRF. The only difference is in the interpretation. Instead of the conditional distributions used in 

the HMM, the potential function as defined in (3.19) is used in the linear chain CRF. The 

messages in (3.7) and (3.8) are now written as: 

ά ȟώ ‪ ώȟώ ȟὸȟ●ά ȟ ώ ȟ (3.20) 

ά ȟώ ‪ ώ ȟώȟὸȟ●ά ȟ ώ Ȣ (3.21) 

 

3.3 Nonparametric Models 

The statistical models discussed above use a fixed number of parameters and the parameter 

space has a finite dimension. In contrast to these parametric models, a nonparametric model 

uses an unbounded number of parameters and the parameter space is infinite dimensional. 

... ώρ  ώς  ώὸ  ώὸρ

  

... ώὝ  

ὼρ  ὼς  ὼὸ  ὼὸρ

  

ὼὝ  
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Even though there are an unbounded number of parameters, only a finite subset of these 

parameters are used to explain a given dataset. The number of parameters may grow (or shrink) 

depending on the data.  

Several well-known problems benefit from using a nonparametric method.  Consider the 

traditional finite mixture modelling approach to clustering in which the number of clusters (i.e. 

mixtures) are specified in advance. In a nonparametric model, the number of clusters needed to 

model the data is estimated from the observed data and new clusters are instantiated as new 

data points are observed. If the complexity of the model is measured by the number of clusters 

used, it is evident that in a nonparametric model the effective complexity adapts to the data. 

The nonparametric models have been applied to a wide range of machine learning problems 

including clustering, classification, regression and sequence learning [18]. 

3.3.1 Dirichlet Process 

In a Bayesian approach the parameters are treated as random variables and are assigned prior 

distributions. Bayesian nonparametric methods define a prior over an infinite dimensional 

parameter space in such a way that the number of parameters used vary with the data 

complexity. The Dirichlet Process (DP) [42, 19] is a commonly used nonparametric prior over the 

infinite dimensional space of distributions. It is a distribution over probability distributions. Each 

sample drawn from a DP is a discrete distribution. Tractable posterior inference procedures can 

be developed when employing a DP prior, making it practically useful. 

There are several perspectives on the Dirichlet Process. The DP can be constructed from finite-

dimensional Dirichlet distributions. It can also be defined implicitly by an underlying process that 

generates a sequence of random variables.  Yet another perspective is to describe the random 

draw from a Dirichlet Process explicitly using a so-called stick-breaking construction. Finally, the 

DP can be viewed as the infinite limit of finite mixture models. These perspectives are mentioned 

below. 

Let Ὄ be a distribution over a probability space ɡ and ‎ be a positive real number. Let ὃȟȣὃ  

be a partition over ɡ such that ẕ ὃ ɡ and ὃ  ᷊ὃ ȟɲᶅ Ὧ Ὦ. A random probability 

distribution Ὃ is Dirichlet Process distributed if for every partition of ɡ, the joint distribution of 

random probabilities is Dirichlet distributed as follows: 

Ὃ ὃ ȟȣȟὋ ὃ  ͯὈὭὶ‎Ὄὃ ȟȣȟ‎Ὄὃ  (3.22) 

 

The draw from a Dirichlet process is denoted as Ὃ Ὀͯὖ‎ȟὌ , where the base distribution Ὄ is 

the mean of the DP and the concentration parameter  ‎ can be interpreted as an inverse 
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variance that controls the variability around Ὄ. A larger value for ‎ will result in the DP 

concentrating its mass around the mean. 

It is possible to draw samples from Ὃ because Ὃ is a random distribution. Let  ‰ȟȣȟ‰ȟȣȟ‰  

be a sequence of independent samples drawn from Ὃ with each ‰ taking values in ɡ. The 

posterior distribution of the DP is given as follows:  

Ὃ ὃ ȟȣȟὋ ὃ  ȿ‰ȟȣ‰ ͯ ὈὭὶ‎Ὄὃ  ὔȟȣȟ‎Ὄὃ   ὔ  (3.23) 

 

Here ὔ ΠὭȡ‰  ɴὃ   denotes the number of samples in ὃ . The posterior distribution of 

the DP is also a DP. Thus the DP provides a conjugate prior over distributions, a desirable 

property that simplifies posterior computation.  

The values drawn from Ὃ are repeated because it is a discrete distribution. Let —ȟȣȟ—ȟȣ—  

be the unique values among ‰ȟȣ‰  and ὔ  be the number of times — is observed. 

Marginalizing out Ὃ, a new value ‰  is sampled as follows: 

‰ ȿ ‰ȣ‰ ͯ 
ὔ

‎ ὲ
‏  

‎

‎ ὲ
Ὄ (3.24) 

 

where ‏ is an atom located at —. The probability that — will be repeated depends on the 

number of times it has already been observed.  

The unique — values induce a random partition of the set ρȟȣȟὲ into clusters. Consider the 

set of ‰Ωǎ ǿƛǘƘ ƛŘŜƴǘƛŎŀƭ — values as belonging to a cluster Ὧ. The above sampling scheme 

assigns an observation into an existing cluster Ὧ with a probability that depends on the number 

ὔ  of observations already assigned to the cluster and creates a new cluster with probability 

. The larger ὔ  is, the higher the probability that cluster Ὧ will be assigned more observations. 

Larger clusters grow larger, faster. This implies a rich-gets-richer phenomenon that is desirable 

in clustering.   

The above distribution over the partitions is understood intuitively by the Chinese Restaurant 

Process metaphor shown in Figure 3.4. There is a restaurant with an infinite number of tables 

(clusters). The first customer is seated at the first table. A second customer sits either at the first 

table or in a new table. In general, the   ὲ ρ  customer joins an already occupied table with 

probability proportional to the number ὔ  of customers already seated at table Ὧ. The customer 

can also choose a new table with probability proportional to ‎.  
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Figure 3.4: Chinese Restaurant Process. The circles denote the tables and — is the unique value 

associated with table Ὧ. The diamonds represent the customers with ‰  being the ὲ  customer. 

A new customer selects an existing table with a probability proportional to the number of 

customers already seated at a table. A new table may also be selected. 

The stick-breaking representation [43] shows explicitly the discreteness of the random 

distributions drawn from a DP. The random distribution Ὃ can be determined by drawing an 

unbounded number of samples from a Beta distribution and the base distribution Ὄ. The 

generation process is as follows: 

‍ȿ ‎ ͯ ὄὩὸὥρȟ‎  ‍  ‍ ρ ‍  Ὧ ρȟςȣ (3.25) 

— ȿ Ὄ ͯ Ὄ Ὧ ρȟςȣ (3.26) 

Ὃ ‏‍    (3.27) 

 

The values — are drawn independently from the base distribution Ὄ and ‍ is a probability 

associated with the atom ‏  and В ‍ ρ. The construction of ‍ can be understood 

metaphorically by the division of a stick into an infinite number of segments as depicted in Figure 

3.5. We start with an unit length stick, choose ‍ according to (3.25) and break the stick at ‍. 

For the remaining segment, we choose ‍ and break off the ‍ proportion of the remainder of 

the stick and so on. This provides a distribution on the strictly positive integers. It is common to 

write the weights ‍  ‍  obtained using (3.25) as ‍ ͯ ὋὉὓ‎, named after Griffiths, 

Engen, and McCloskey. 

The above representation is useful in the interpretation of the DP as the infinite dimensional 

generalization of a finite parametric model. Consider a finite mixture with ὑ components. The 

density for this mixture model over observations ὼ is represented as follows: 

 

— 

‰  

 

‰ 

  

‰ 

  

— 

‰ 

  

‰ 

  ‰ 

  

— 

‰ 

  

‰ 

  

‰ 

  

— 



CHAPTER 3 ς BACKGROUND  60 

 
 

 

Figure 3.5: Dirichlet Process. Left: A representation of the Dirichlet Process mixture in a 

graphical format. The variables are represented as nodes in the graph. The latent variable ᾀ 

indicates the mixture component an observation ὼ belongs to. The replicated variables are 

compactly represented using the plate notation [29].  The rectangles denote replication with the 

number of replicates given in the bottom right corner. Right: The stick breaking construction. The 

stick is broken at ‍ and subsequent weights ‍  are obtained as random proportions of this 

segment. 

ὴὼ  ύ ὴὼȿ—  (3.28) 

 

Here ύ  is the weight for the Ὧ  component of the mixture and — is a set of parameters 

associated with the Ὧ  component. This density can also be written as 

ὴὼ  ὴὼȿ—Ὃ —Ὠ— (3.29) 

 

where Ὃ is a mixing discrete distribution and is defined as follows: 

Ὃ  ύ‏  (3.30) 

 

In the nonparametric extension to the finite mixtures, the mixing distribution in equation (3.27) 

is used instead of (3.30). This gives rise to a mixture model with an unbounded number of 

mixture components. The DP is used as a prior over Ὃ and the resulting mixture model is called 

the DP mixture [42]. The ‍ terms in (3.27), which defines a probability distribution on the set 

ᴚ , is interpreted as the mixture weights. This probability distribution is chosen at random via 

the stick breaking process.  
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The process by which observations are generated from a Dirichlet process mixture with 

concentration parameter ‎ and base distribution Ὄ is described as follows: 

(i) Generate the stick breaking weights ‍ as ‍ ȿ ‎ ͯ ὋὉὓ‎ 

(ii) Draw independent samples of the parameters from the base distribution as 

— ȿ Ὄ ͯ ὌȟὯ ρȟςȣȢ 

(iii) Draw a latent variable ᾀ that indicates the mixture component that the ὲ  

observation belongs to. This is done using the stick breaking weights and is denoted 

as ᾀ ȿ ‍ ͯ  ‍ȟὲ ρȣὔ. 

(iv) Draw an observation ὼ given the latent variables and the parameters as 

ὼ ȿ ᾀȟ—  ͯ Ὂ— ȟὯ ρȟςȟȣ    ὲ ρȟȣὔ. Here Ὂ denotes the 

distribution family of the mixture component using — as its parameter. 

Figure 3.5 illustrates this process. In the Dirichlet process mixture, the mixture component Ὧ is 

described by the distribution Ὂ— . Note that the ‰  discussed in the Chinese restaurant 

process is simply — . The probability that an observation is assigned to the Ὧ  component is 

‍Ȣ Note that the number of components ὑᴼ Њ. Thus the DP can be used to model a mixture 

with no upper bound on the number of components.   

3.3.2 Hierarchical Dirichlet Process 

In many situations, we encounter data organized into distinct groups. There is a need to capture 

both the similarities and differences across the individuals within these groups. As an example, 

consider the problem of modelling the topics [183] embedded in a corpus of documents. A 

document consists of a number of words which arise from a set of underlying semantic themes 

referred as topics. We want to describe the way in which the topics are shared across the 

documents and yet capture the document specific properties of a topic ς i.e. we wish to share a 

common set of clusters (topics) among several related groups (documents). The Dirichlet 

Process as such cannot be used to model grouped data. The need to share clusters among groups 

motivates the use of a hierarchical model.   

The Hierarchical Dirichlet Process (HDP) [44] is an extension of the DP. It is used to model groups 

of data. Each group has a separate DP prior but all these DPs are linked through a global DP. This 

provides a mechanism for inferring group specific probability masses while at the same time 

sharing parameters across the groups.  

As before, let Ὃ denote a draw from a Dirichlet Process with concentration parameter ‎ and a 

base distribution Ὄ.  The HDP defines a set of random distributions Ὃ  over  ὐ groups of 
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data. Given the global distribution Ὃ, the set of distributions over the ὐ groups are conditionally 

independent. 

Ὃ ȿ ‎ȟὌ ͯ Ὀὖ‎ȟὌ   (3.31) 

Ὃȿ ‌ȟὋ ͯ Ὀὖ‌ȟὋ  Ὦ ρȟȣὐ (3.32) 

 

The Ὦ  ƎǊƻǳǇΩǎ ŘƛǎǘǊƛōǳǘƛƻƴ Ὃ contains values drawn from Ὃ with ‌  ɴᴙ  controlling the 

variability around Ὃ. The distribution Ὃ can be interpreted as the mean distribution across all 

the groups.  

 

Figure 3.6: Chinese Restaurant Franchise. The diamonds represent the customers with ‰  being 

the ὲ  customer at restaurant Ὦ. The circles denote the tables. The dishes are shared across the 

restaurants with the dish (parameter) — being re-used.  The tables and dishes are selected based 

on the proportion of them being used. A new table or a new dish may also be selected. 

The HDP can also be described using a metaphor, now called the Chinese Restaurant Franchise 

illustrated in Figure 3.6. There are now ὐ restaurants (each corresponding to an HDP group) with 

all the restaurants sharing a single menu of an infinite number of dishes (parameters). Let ‰  

denote the ὲ  customer from the  Ὦ  restaurant. Let —ȟȣȟ—ȟȣ—  be the dishes served 
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across all the restaurants and let —Ӷ denote the dish served at table ὸ in restaurant Ὦ. Note that 

each ‰  is associated with one —Ӷ while each —Ӷ is associated with one  —. Let the number of 

tables in restaurant Ὦ be ὓȢ A new customer ‰  selects an existing table ὸ proportional to 

the number of customers ὔ  already seated at the table. A new table may also be selected. 

‰ ȿ ‰ ȣ‰  ͯ 
ὔ

‌ ὲ
‏

Ȣ

 
‌

‌ ὲ
Ὃ (3.33) 

 

A dish Ὧ  is selected at a table based on the number ὓȢ of tables across the restaurants serving 

the dish. A new dish may also be selected with a probability 
ȢȢ
 where ὓȢȢ is the total number 

of occupied tables. 

—Ӷȿ —Ӷȟ—Ӷȟȣȟ—Ӷȟȣ—Ӷȟ—Ӷ  ͯ 
ὓȢ
‎ ὓȢȢ

‏  
‎

‎ ὓȢȢ
Ὄ (3.34) 

 

 Similar to the stick breaking representation of the global distribution Ὃ in equations (3.25) to 

(3.27), the group specific Ὃ distributions can be explicitly written as follows:  

Ὃ  “ ‏  (3.35) 

 

The ‏  atoms are shared across all the groups but each group Ὦ has a different set of weights 

“ . Let “  “  and В “ ρ. The stick breaking construction for “ is based 

on independent sequences of the “  random variables drawn from a Beta distribution. It 

is written as follows: 

“  ȿ ‌ȟ‍ ͯ ὄὩὸὥ‌‍ȟ‌ρ ‍  Ὧ ρȟςȣ (3.36) 

“  “ ρ “  Ὧ ρȟςȣ (3.37) 

 

The weights “ are independent given ‍ and each “ is independently distributed according to 

Ὀὖ‌ȟ‍. Both the ‍ and “ terms are interpreted as a random probability distribution on the 

set ᴚ . The average weight of the clusters is determined by ‍, while ‌ controls the variability of 

the weights across groups. 
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Figure 3.7: Hierarchical Dirichlet Process. A representation of the HDP used as a nonparametric 

prior for clustering grouped data. The variables are represented as nodes in the graph. The 

concentration parameters ‎ȟ‌  and the prior Ὄ are shown as text. The latent variable ᾀ  indicates 

the mixture component an observation ὼ  belongs to. The parameter  — is shared by all groups 

while the mixture proportion “ may vary among the groups. The plate notation is used. 

While the DP is used as a prior for a mixture model for clustering data, the HDP is used as a 

nonparametric prior distribution for a set of mixture models that are used for clustering grouped 

data. The process by which observations are generated based on the HDP is given as follows: 

‍ ȿ ‎ ͯ ὋὉὓ‎  

(3.38) 

“ ȿ ‌ȟ‍ ͯ Ὀὖ‌ȟ‍ Ὦ ρȟȣὐ 

— ȿ Ὄ ͯ Ὄ Ὧ ρȟςȟȣ 

ᾀ ȿ “ ͯ “ Ὦ ρȟȣὐȟὲ ρȣὔ 

ὼ  ȿ ᾀȟ—  ͯ Ὂ—  Ὦ ρȟȣὐȟὲ ρȣὔ 

 

Here ᾀ  is a latent variable that indicates the mixture component that the Ὦ  ƎǊƻǳǇΩǎ ὲ  

observation ὼ  belongs to. The ‰  discussed in the Chinese restaurant Franchise is — .  For a 

given component Ὧ, all the ὐ groups share the same set of parameters — but the Ὦ  group uses 

“  proportion. This process is shown in Figure 3.7.  

This thesis uses HDP extensively to enable construction of nonparametric models. 
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4. Discriminative 
nonparametric HMM 

In this chapter, a nonparametric HMM based on the Hierarchical Dirichlet Process (HDP) is 

proposed for classifying human actions. The proposed model addresses an important limitation 

of the classical HMM, namely the need to fix the number of hidden states a-priori. The novel 

construction provided here produces a flexible model that is better suited for classification tasks. 

The formulation enables information sharing and allows the use of unlabelled examples. 

The chapter begins with an overview of the proposed approach in Section 4.1 and introduces 

the HDP-HMM in Section 4.2. Instead of using separate models for each action class, a single 

HDP-HMM is used to model all the actions. In order to distinguish between the actions, the HDP 

is extended by an additional level and class specific transformations are introduced for the 

distributions of HDP parameters. Section 4.3 elaborates on this model structure. During training, 

the parameters are learnt in a discriminative manner. This process is discussed in Section 4.4 

and is followed in Section 4.5 by the derivation of the posterior inference procedure. 

Experiments are conducted on two different publicly available datasets that contain depth 

image sequences. The information in the skeletal joint positions is used to classify the actions 

using the proposed model. The results are presented in Section 4.6. The chapter ends with some 

concluding remarks in Section 4.7. Portions of this chapter have been published [192, 193]. 

4.1 Overview 

Depth sensors such as Kinect, with inbuilt human motion capturing techniques, provide 

ŜǎǘƛƳŀǘŜǎ ƻŦ ŀ ƘǳƳŀƴ ǎƪŜƭŜǘƻƴΩǎ о5 Ƨƻƛƴǘ Ǉƻǎƛǘƛƻƴǎ ƻǾŜǊ ǘƛme [14]. High level actions can be 

inferred from these joint positions.  However, robust and accurate inference is still a problem. 

Given a sequence of 3D joint positions, a state space model such as a Hidden Markov Model 

(HMM) is a natural way to represent an action class. The HMMs are proven models for 

sequential pattern recognition [48, 49, 50]. Recall that in an HMM, a sequence of discrete state 

variables are linked in a Markov chain by a state transition matrix. Each observation is drawn 

independently from a distribution conditioned on the appropriate state [32]. If each action class 

is represented using an HMM, the model parameters corresponding to a given class, namely the 

state transition matrix and the state specific observation distributions, can be learnt from 
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ŜȄŀƳǇƭŜǎ ōŜƭƻƴƎƛƴƎ ǘƻ ǘƘŀǘ ŎƭŀǎǎΦ ¢ƘŜ ǇǊŜŘƛŎǘƛƻƴ ƻŦ ŀ ƴŜǿ ƛƴǇǳǘΩǎ Ŏƭŀǎǎ ƛǎ ƻōǘŀƛƴŜŘ ŦǊƻƳ ǘƘŜ Ŏƭŀǎǎ 

conditional posterior densities. 

In classical parametric HMMs, the number of states must be specified a-priori. In many 

applications this number is not known in advance. For instance, there is no a-priori knowledge 

about the number of intermediate poses that comprises an action. This number will vary 

depending on the complexity of the action and the number of subjects in the data set. A typical 

solution to this problem is to carry out training using different choices for the number of states 

and then apply a model selection criterion to find the best result. There is little understanding 

of the strengths and weaknesses of this procedure and often complex application specific tuning 

is involved.  

Instead of this ad hoc model selection, it is preferable to estimate the correct number of states 

automatically from data. This allows the model complexity to adapt to the size of the data set. 

The nonparametric methods [18, 19] provide the necessary statistical framework to model the 

data with an unbounded number of parameters. The number of parameters grows with the 

sample size. In [44], a nonparametric Bayesian method, the Hierarchical Dirichlet Process (HDP), 

is defined. The HDP is used to construct an HMM with an unbounded set of states. The prior 

distribution on the HMM transition matrix is over an infinite state space but for a given set of 

observations, only a finite number of the states is used to explain the data.  

It would be straight forward to use separate HDP-HMMs for each action class and train them 

individually. However, this would prohibit the sharing of training examples across the action 

classes. To see the merit of sharing examples, consider that an action is a sequence of poses. It 

is quite likely that two or more actions share many similar poses with possibly a few poses 

ǳƴƛǉǳŜ ǘƻ ǇŀǊǘƛŎǳƭŀǊ ŀŎǘƛƻƴǎΦ Lƴ ŦŀŎǘΣ ǘǿƻ ŀŎǘƛƻƴǎ ǎǳŎƘ ŀǎ ΨǎǘŀƴŘ-ǳǇΩ ŀƴŘ Ψǎƛǘ-ŘƻǿƴΩΣ Ƴŀȅ ƘŀǾŜ ǘƘŜ 

same set of poses with only the temporal order of pose sequences differing. What necessarily 

differentiates one action from another are the transition probabilities of the poses. If a particular 

pose is absent from an action class then there is a low probability of transition to the state for 

that pose.  In this work, a single HDP-HMM is used to model all the action classes. The canonical 

HDP-HMM is extended with an additional class specific hierarchical level that accounts for 

differences in the state transition probabilities among the action classes.  

In the canonical construction of the HDP-HMM, the mixture components are shared across the 

hierarchical levels. It would be more flexible to allow the mixture components of an action class 

to vary slightly from the other classes; i.e. we seek a class specific transformation of the shared 

mixture component parameters so that the classes can be discriminated in a better manner.  

Note that this is different from using individually trained HDP-HMM models where the 
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component parameters are not shared among the classes. In this work, the mixture components 

are assumed to have Gaussian distributions, and class specific affine transformations of the 

Gaussian distribution parameters (mean and covariance) are used. An overview of the approach 

is provided in Figure 4.1. 

 

 

Figure 4.1: Discriminative HDP-HMM overview. Training examples contain joint position 

sequences from different action classes. The examples from all these action classes are combined 

in order to infer the shared pose transitions and pose definitions. P1, P2, P3 and P4 in the Shared 

Parameters group represent the various poses (states). Each pose is defined by a distribution.  The 

action class specific transitions and distributions are inferred as transformations of this shared 

representation. Pose P3 may be absent in the first action class and hence there is a low probability 

of transition to it (shown with an absence of arrow to this state). The action class labels in the 

training examples and the learned shared parameters are used to infer the class specific 

parameters.  

The HDP-HMM based classification approach described above defines a joint distribution of the 

input data and class labels to train the classifier. This generative model allows the augmentation 

of the labelled training examples with unlabelled examples and thus provides a framework for 

semi-supervised learning.  In contrast, a discriminative model uses the conditional distribution 

of the class labels given the input data to train the classifier. This approach often produces good 
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classification results [64]. For example, Support Vector Machines (SVMs) [65] use a margin based 

likelihood that maximizes the distances of the feature vectors to the classification boundary 

while minimizing the empirical error rate on the training set. Inspired by this, a margin based 

term is incorporated in the likelihood function used in HDP-HMM training. The inclusion of this 

discriminative term in the otherwise generative model, compensates for potential model 

misspecification and leads to better classification results.  

Incorporation of a discriminative term into the HDP-HMM model makes the posterior sampling 

less straight-forward. The HDP model as such has no provision for including an additional term 

for the mixing proportions.  To address this, a normalized gamma process formulation [66] of 

the HDP is used. This allows a scaling of the mixing proportions of a DP through a discriminative 

weighting term. For the mixture components with Gaussian distribution parameters, the prior 

is no longer of the same form as the likelihood and hence is not conjugate. Slice sampling [39] 

based techniques allow sampling from any likelihood function, even if the normalization is 

unknown. A Gaussian prior is placed on the parameters and Elliptical Slice Sampling [67] is used 

to sample the posterior efficiently. 

Contributions 

The main contributions in this chapter are the construction of a discriminative nonparametric 

HMM and the derivation of a tractable inference mechanism. The proposed model has the 

following advantages: 

(a) The nonparametric formulation allows the number of states to be inferred 

automatically. 

(b) The use of a single HDP-HMM promotes information sharing. 

(c) The discriminative terms ensure that the HDP-HMM is suitable for classification tasks. 

(d) The model can be used for semi-supervised learning. 

(e) The model is generic, in that it is applicable to other sequence classification problems. 

4.2 HDP-HMM 

Recall the HMM in Section 3.1. The HMM is parameterized by the transition matrix “ where the 

Ὦ  row of the matrix defines the probabilities of the transitions from the state Ὦ. The hidden 

states ᾀȡ have the Markov property. The probability of transitioning to a state ᾀ at a time 

instant ὸ from a previous state ᾀ  is specified by the transition matrix. Additionally, there are 

state specific observation density parameters —  where ὑ is the number of hidden states.  

For the Bayesian version of the classical HMM, it is necessary to introduce priors. Note that the 

rows of “ cannot have independent priors because the transitions out of the different states 
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must be coupled. Let the priors be ‍ ͯ ὈὭὶ and “ ͯ ὈὭὶ‌‍ȣ‌‍  where ὈὭὶ is the 

Dirichlet distribution and ‎ȟ‌ are some positive real numbers. The observation density 

parameters are assigned a prior Ὄ. With this definition, an observation is generated in the 

Bayesian HMM as follows: 

‍ ȿ ‎ ͯ ὈὭὶ
‎

ὑ
  (4.1) 

“ ȿ ‌ȟ‍ ͯ ὈὭὶ‌‍ȣ‌‍  Ὦ ρȟȣὑ (4.2) 

— ȿ Ὄ ͯ Ὄ Ὧ ρȟȣὑ (4.3) 

ᾀ ȿ “ȟᾀ  ͯ “  ὸ ρȟȣȢὝ (4.4) 

ὼ ȿ ᾀȟ—  ͯ Ὂ—  ὸ ρȟȣὝ (4.5) 

 

 

Figure 4.2: Graphical representation of HDP-HMM. The states ᾀȡ have the Markov property. 

An observation ὼ is conditioned on the state ᾀ. The states are generated from the transition 

matrix “ and the observations are generated from the mixture component parameters. The 

number of states and the number of mixture components are unbounded. 

This generation process is remarkably similar to the process by which the observations are 

generated using HDP shown in Equation (3.38), Section 3.3. A group specific “ distribution in 

the HDP is a state specific distribution in the HMM with the groups in the HDP formulation 

corresponding to the states in the HMM. If an HDP prior is assigned over the state transition 

matrix, the matrix will have an infinite number of rows and columns with the HDP semantics 

ensuring that only a finite subset of these states are actually instantiated. Thus the HMM is now 

nonparametric. The HDP-HMM can also be interpreted as an infinite extension of a dynamic 
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mixture model. The mixture weight of an observation depends on the previous observations and 

there are an unbounded number of mixtures. 

To complete the definition of the HDP-HMM, let Ὂ be the Gaussian density. The density 

parameters for the observation density associated with state Ὧ are now the mean ‘ and 

covariance ɫ. It is convenient to write — ‘ȟɫ . Let the mixture mean have a normal prior 

‘ ͯ ﬞ ‘ȟɫ  and let the covariance have an Inverse-Wishart prior ɫ ͯ Ὅὡ’ȟɝ . An 

observation is generated in the nonparametric HMM as follows.  

‍ ȿ ‎ ͯ ὋὉὓ‎  (4.6) 

“ ȿ ‌ȟ‍ ͯ Ὀὖ‌ȟ‍ Ὦ ρȟςȟȣ (4.7) 

‘ ȿ ‘ȟɫ ͯ ﬞ ‘ȟɫ  Ὧ ρȟςȟȣ (4.8) 

ɫ ȿ ’ȟɝ ͯ Ὅὡ’ȟɝ  Ὧ ρȟςȟȣ (4.9) 

ᾀ ȿ “ȟᾀ  ͯ “  ὸ ρȟȣȢὝ (4.10) 

ὼ ȿ ᾀȟ‘ȟɫ  ͯ ﬞ ‘ȟɫ  ὸ ρȟȣὝ (4.11) 

 

Figure 4.2 provides a graphical representation of this HDP-HMM. 

4.3 Model 

Let a training dataset comprising ὔ observations ὢ  ὼ   together with labels ὣ

 ώ  be given. Here ὼ  ὼȟȣȟὼȟȣȟὼ  is an input sequence and ώ  ɴ  ρȣὧȣὅ is 

the class label corresponding to the sequence ὼ . For example, in action classification, ὼ  is an 

input image sequence and ώ  is an action class label. The observations and their labels are drawn 

independently from the same fixed distribution. Each ὼ  ɴ ᴙ  corresponds to the features 

extracted at time step ὸ from the input. Further discussion of the features is deferred to Section 

4.6.  Let the set of all model parameters be —. The objective is classification, where given a new 

test observation sequence ὼ, the corresponding action class ὧǶ must be predicted. A suitable 

prediction is 

ὧǶ ÁÒÇÍÁØὴὧ ȿ ὼȟὢȟὣ (4.12) 

 

The distribution ὴὧ ȿ ὼȟὢȟὣ can be written in the form 

ὴὧ ȿ ὼȟὢȟὣ  ὴὧ ȿ ὼȟ— ὴ— ȿ ὢȟὣ Ὠ— (4.13) 
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The model proposed in this chapter differs from the canonical HDP-HMM in two key aspects. 

First, an extra level in the HDP is introduced to model class specific mixture proportions as 

discussed in Section 4.3.1.   The second difference is the extension of the HDP parameter space 

with class specific distributions for the mean and covariance parameters. This novel formulation 

is presented in Section 4.3.2.  

4.3.1 Two level HDP 

If each action class is represented by a separate HDP-HMM, then  — ‍ȟ“ȟ‘ȢȢȟɫȢȢ  are 

the parameters for class ὧ, —  —  is the set of all parameters for the different classes and 

‎ȟ‌ȟ‘ȟɫȟ’ȟɝ are the hyper parameters. It would be straight forward to estimate the 

posterior density of parameters ὴ— ȿ ὢȟὣ if each HDP-HMM model were to be trained 

separately i.e. a class conditional density ὴὼ ȿ ὧ  can be defined for each class and the posterior 

can be estimated from 

ὴ— ȿ ὢȟὣ  ὴ— ὴὼ ȿ — ὴὧ

ȡ

 (4.14) 

 

However, in this approach the training examples from other classes are not used when learning 

the parameters of a class. As noted in Section 4.1, many actions contain similar poses and it is 

useful to incorporate pose information from other classes during training. Specifically, the 

inclusion of additional observations for a similar pose benefits estimation of the Gaussian 

mixture parameters. The state transition parameters must continue to be different for each 

action class since it is these parameters that necessarily distinguish the actions. 

Instead of separate HDP-HMMs, a single HDP-HMM is defined for all the action classes albeit 

with an extra level that is class specific i.e. in addition to the global distribution Ὃ and the state 

specific distributions Ὃ in the canonical HDP, there are now class specific distributions Ὃ  for 

every state.  The two-level HDP-HMM is defined as follows. 

Ὃ ȿ ‎ȟὌ ͯ Ὀὖ‎ȟὌ   (4.15) 

Ὃ ȿ ‌ȟὋ ͯ Ὀὖ‌ȟὋ  Ὦ ρȟςȟȣ (4.16) 

Ὃ ȿ ‗ȟὋ ͯ Ὀὖ‗ȟὋ  ὧ ρȟȣὅ (4.17) 

 

Just as the Ὃs are conditionally independent given Ὃ, the Ὃs are conditionally independent 

given Ὃ. All the classes for a given state share the same subset of mixture parameters but the 

proportions of these mixtures will differ for each class as determined by the positive real valued 
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concentration parameter ‗. The varying mixture proportions induce differences in the state 

transition probabilities between the action classes and ensure that classification can be 

performed.  

Recall the stick breaking construction of the canonical HDP presented in Equations (3.35) to 

(3.37). The extension of this construction to the additional class specific measure is straight-

forward. In addition to the stick breaking weights ‍ and “, a new weight term •  is now 

introduced to represent the second level. Independent sequences of the •  random 

variables are drawn from the Beta distribution (Appendix C.3). The formulation is as follows: 

•  ȿ ‗ȟ“ ͯ ὄὩὸὥ‗“ ȟ‗ρ “  Ὧ ρȟςȣ 

(4.18) •  • ρ •  Ὧ ρȟςȣ 

Ὃ  • ‏   

 

Similar to ‍ and “, •  •  can be interpreted as a random probability distribution on 

the set ᴚ . Assuming the variables “, ‘ and ɫ are defined as in equations (4.7) to (4.9), the 

generative story for an observation ὼ  belonging to class ὧ, sampled at time ὸ from the two level 

HDP-HMM is written as 

•ȿ ‗ȟ“ ͯ Ὀὖ‗ȟ“  

(4.19) ᾀ ȿ ᾀ ȟώ ὧȟ•
ȟ

ȟ
 ͯ •  

ὼ ȿ ᾀȟ‘ȟɫ  ͯ ﬞ ‘ ȟɫ  

 

Consequently, for the two level HDP-HMM, the set of all model parameters is —

‍ȟ“ȟ•ȢȢȟ‘ȢȢȟɫȢȢ  with ‎ȟ‌ȟ‘ȟɫȟ’ȟɝȟ‗ as the hyper parameters.  

4.3.2 Transformed HDP Parameters 

In the HDP, the same mixture component parameters are used by the different groups i.e. the 

parameters — remain the same in all Ὃ (and Ὃ  in case of an additional level). This is less flexible 

than allowing the parameters to vary across the groups. As an example, the position and 

orientation of the joints in a squat pose might mostly look the same across action classes such 

as sit-up, sit-down and pick-up while it may slightly differ for pick-up class. In this case, it would 

be useful to capture the deviation from the standard squat pose for the pick-up action class ς 
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i.e. we wish to introduce a transformation of the parameters, one for each action class, from its 

canonical form —.  

The affine transformation of the Gaussian distribution parameters mean ‘ and covariance ɫ is 

considered here [68]. Let ” be a vector and let ɤ be an invertible matrix. The transformation of 

the Gaussian distribution defined by ”, ɤ is as follows 

ﬞ ‘ȟɫ  ﬞ ɤ‘ ”ȟɤɫɤ  (4.20) 

 

It is usual to restrict ɤ in order to ensure computational tractability. A useful simplification is to 

set ɤ equal to the identity matrix. This is equivalent to restricting the transformations to a 

translation of the Gaussian mean by ”. Other restrictions include requiring ɤ to be diagonal, to 

account for scaling.   

 

Figure 4.3: Graphical representation of the two level HDP-HMM. The HDP-HMM is extended 

with the class specific mixture weights •  and class specific transformation parameters ”. The 

observations on the left side are generated by the parameters for class ὧ ρ while those on the 

right side by the parameters for class ὧ ὅ. 

The class specific transformation based on (4.20) is introduced here to the Gaussian mixture 

parameters. Let the variable responsible for shifting the mean have a zero mean normal prior 

“ 

Њ 

 

‌ 

‍ ‎ 

ᾀ ᾀ 

ὼ ὼ 

... 

•  

Њ 

  

‗ •  ... 

Ὄ 

Њ 

 

” ... ”  

‘ȟɫ 

 

ᾀ ᾀ 

ὼ ὼ 

... 



CHAPTER 4 ς NONPARAMETRIC HMM  74 

 
 

i.e.  ” ͯ ﬞ πȟɱ . The focus here is only on scale transformations. Thus ɤ is assumed to be 

diagonal. In effect, the scale transform variable is now a vector and independent log normal 

priors can be assigned for each element i.e. ὰέὫɤ  ͯ ﬞ „ȟ‮ .  An observation ὼ  belonging 

to class ὧ sampled at time ὸ from the two level HDP-HMM that uses Gaussian mixtures with 

transformed parameters is generated now as follows. 

                      ‍ ȿ ‎ ͯ ὋὉὓ‎ “ ȿ ‌ȟ‍ ͯ Ὀὖ‌ȟ‍      •ȿ ‗ȟ“ ͯ Ὀὖ‗ȟ“  

(4.21) 

            ‘ ȿ ‘ȟɫ ͯ ﬞ ‘ȟɫ     ɫ ȿ ’ȟɝ ͯ Ὅὡ’ȟɝ  

                   ”ȿ ɱ ͯ ﬞ πȟɱ                                           ὰέὫΏ ȿ ﬞ ͯ „ȟ‮ „ȟ‮  

ᾀ ȿ ᾀ ȟώ ὧȟ•
ȟ

ȟ
 ͯ •  

ὼ ȿ ᾀȟώ ὧȟ‘ȟɫ ȟ”ȟɤ ȟ
ȟ  ͯ ﬞ ɤ ‘   ”  ȟɤ ɫ ɤ  

 

Inclusion of the class specific transforms can be interpreted as an extension of the parameter 

space. The global distribution is now being drawn from Ὃ Ὀͯὖ‎ȟὌ  Ὄ ȢȢȢȢὌ , where Ὄ 

is a base distribution for parameters that are shared across the classes while ὌȟȣȟὌ  are class 

specific. During inference, the posterior distributions for the shared parameters do not depend 

upon the class labels unlike the class specific parameters.  With the augmentation of transform 

variables, the set of all model parameters is — ‍ȟ“ȟ•ȢȢȟ‘ȢȢȟɫȢȢȟ”ȢȢ
ȢȢȟɤȢȢ

ȢȢ  and 

‎ȟ‌ȟ‘ȟɫȟ’ȟɝȟ‗ȟɱȟlluf eht fo noitatneserper lacihparg A .sretemarap repyh eht era „ȟ‮ 

model is shown in Figure 4.3. 

4.3.3 Chinese Restaurant Process Metaphor 

The mixture components generated by the extended HDP model can be understood using the 

Chinese Restaurant Process metaphor discussed in Section 3.3.1.  Recall that in the HDP 

analogue, multiple restaurants share a single menu of dishes across the tables in the restaurants.  

In the HDP extended to a second level, each restaurant in the franchise has sections namely 

family, kids and adults section. There is still a single menu across the sections and the 

ǊŜǎǘŀǳǊŀƴǘǎΦ DƛǾŜƴ ǘƘŜ ŎǳǎǘƻƳŜǊΩǎ ǇǊŜŦŜǊǊŜŘ ǎŜŎǘƛƻƴΣ ǘƘŜ ŎǳǎǘƻƳŜǊ ŜƴǘŜǊƛƴƎ a given restaurant 

selects a table in proportion to the number of customers already seated in the tables of that 

section of the restaurant. The customer can also select a new table in that section. Each table is 

now assigned a dish in proportion to the number of tables across the sections, across the 

franchise serving that dish.  In this two-level HDP metaphor, the sections correspond to the 

action classes. 
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In the case of two-level HDP-HMM with transformed parameters, each dish now contains a base 

part and a flavouring part. A dish contains flavours for every section viz. spicy flavour for family, 

bland for kids and hot for adults.   A dish served at a table in a given section (of any restaurant 

in the franchise) has its base part seasoned according to that ǎŜŎǘƛƻƴΩǎ ŦƭŀǾƻǳǊΦ Lƴ ǘƘƛǎ ƳŜǘŀǇƘƻǊΣ 

the flavours correspond to the class specific transformation parameters while the base part 

correspond to the parameters shared across the classes. 

4.4 Discriminative Learning 

In the two level HDP-HMM with transformed parameters described above, let the model 

parameters specific to a class ὧ be — •ȟ”ȢȢȟɤȢȢ  and let the shared parameters across 

the classes be — ‍ȟ“ȟ‘ȢȢȟɫȢȢ . Note that — — ᷾ —  . The posterior distribution 

for the class specific parameters is very similar to the form of (4.14), but with an additional 

conditioning on the shared parameters.  

ὴ— ȿ ὢȟὣȟ— ᶿ ὴ— ὴὼ ȿ —ȟ—

ȡ

 (4.22) 

 

The joint distribution over the inputs and labels ὴὼȟὧ ȿ —  is used in this formulation. This type 

of learning is intended to best explain the training examples belonging to a class. In the 

asymptotic limit, as the number of training examples is increased, the distribution specified by 

the model converges to the true distribution of data. This generative model is a very effective 

way of learning. However, in practice, the specified model is often inaccurate because of a 

shortage of training data. In addition it may be necessary to compensate for model 

misspecification [64]. 

In contrast, the large margin based training used in discriminative learning methods often 

produces good classification results. The empirical error rate on the training data is balanced 

against the error rate arising from the generalization of the test data. The tolerance to mismatch 

between training and test data is due to a wide separation between the classifier decision 

boundary and the classes ς i.e. the decision boundary has a large margin between it and the 

training examples. Since the class conditional data likelihood is used during prediction in the 

generative model above, the classifier margin is a function of the model parameters. Adjusting 

the parameters alters the margins.  

There is an implicit assumption in (4.22) that the parameters of a class are (conditionally) 

independent of the parameters of other classes i.e. — Ṷ —͵ ȿ —. Let us relax this assumption 

and consider a slightly different formulation.  
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ὴ— ȿ ὢȟὣȟ—ȟ—͵ ᶿ ὴ—  zὴ—͵ —ȟὢȟὣȟ— ᶻ ὴὼ ȿ —ȟ—

ȡ

 (4.23) 

Here the Bayes theorem product rule for ὴ— ȿ ὢȟ—͵  is used.  The introduction of the second 

term ὴ—͵  —ȟὢ, referred henceforth as the discriminative term, offers more flexibility. For 

example, this term can be used during inference to minimize classification error on the training 

set and introduce margin constraints. This discriminative term compensates for the model 

misspecification and improves classification results.  

4.4.1 Scaled HDP and Normalized Gamma Process 

The HDP with its stick breaking construction does not provide any mechanism for influencing 

the per-group component proportions through additional factors. This makes incorporation of 

the discriminative term during inference for •  tricky. An alternative construction for the last 

level in the two-level HDP in (4.18) is 

  •  ȿ ‗ȟ“ ͯ Ὃὥάάὥ‗“ ȟρ 

(4.24) 

Ὃ  
•

В •
‏  

   

A Dirichlet distributed vector can be generated by independently drawing from a gamma 

distribution and normalizing the values. Its nonparametric extension relates to the above 

normalized gamma process construction of Ὃ . The representation in (4.24) as such does not 

allow using an additional factor. Let each component be associated with a latent location and 

let the group specific distribution of the HDP be formed by scaling the probabilities of an 

intermediate distribution.  More specifically, let us modify the last level in the two-level HDP 

described in (4.17) as 

Ὃ  ȿ ‗ȟὋ ͯ Ὀὖ‗ȟὋ  
(4.25) 

Ὃ ȿ Ὃ ȟ‫  θ Ὃ  zὩ  

 

Here Ὃ  is an intermediate distribution for the existing parameters and ‫  is a scaling factor 

that depends on the latent location.  Based on this scaled HDP structure, the second variable of 

the gamma distribution can be used to draw the class specific component proportions as  

•  ȿ ‗ȟ“ȟ“‗Ὃὥάάὥ ͯ ‫ ȟὩ  (4.26) 
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The derivation of (4.26) follows from the property that if ώ ͯ Ὃὥάάὥὥȟρ and is scaled by ὦ

π to produce ᾀ ὦώ, then ᾀ ͯ Ὃὥάάὥὥȟὦ  [66]. This additional scaling factor allows the 

incorporation of the discriminative term.  During inference, ‫  is drawn in such a way that the 

posterior •  is primed for classification.   

4.4.2 Elliptical Slice Sampling 

Conjugate priors cannot be used for the transform parameters ”ȢȢȟɤȢȢ  because of the 

presence of the discriminative term. Hence there is no closed form solution for posterior 

inference of these parameters.  Slice sampling [39] provides a way to sample from a density 

function without having to find a good proposal distribution. As discussed in Appendix E.3, the 

challenge in slice sampling is to define an appropriate horizontal slice, which encloses the 

current sample value, from which a new value will be drawn. This is especially difficult if the 

target variable takes values in a high dimensional space, as is the case here. 

If the density function is a product of a likelihood function and a zero mean Gaussian prior, then 

Elliptical Slice sampling [67, 103] provides a better sampling mechanism. The idea in this 

algorithm is to define an ellipse that passes through the current sample value and use a 

likelihood threshold similar to slice sampling for determining a slice. It is much easier though to 

define a sampling interval with an elliptical slice unlike slice sampling.  

Let ὒ‰  be a likelihood function and let the prior for the target variable ‰ be a zero mean 

Gaussian distribution ﬞ πȟɫ. Let ό be an auxiliary variable drawn such that όͯ  πȟὒ‰  

where  is the uniform distribution. Let an ellipse at the current value ‰ be defined as  

‰ᶻ‪ ‰ ÃÏÓ‪  ‪ (4.27)ὲὭί ‮ 

 

where ﬞͯ ‮ πȟɫ and ‪ is a parameter denoting the angle with ‪ᶰπȟς“. This ellipse goes 

through both the current value ‰ and an auxiliary ehT .roirp naissuaG eht morf nward ‮ 

algorithm proposes angles from a bracket ‪ ȟ‪  which is shrunk repeatedly in an 

exponential manner until an acceptable value is found. Similar to slice sampling a new value 

‰ᶻ‪  is accepted if ὒ‰ᶻ‪  ό.  

The values considered for an update lie in a two dimensional plane. The elliptical slice captures 

the structural properties of the Gaussian prior in a better manner than the horizontal slice used 

in slice sampling. This algorithm provides an efficient mechanism for sampling even high 

dimensional variables. Elliptical slice sampling is used here for inferring the transform 

parameters ”ȢȢȟɤȢȢ  from the density function defined in (4.23). 
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4.5 Posterior Inference 

The central computation problem is posterior inference for the parameters. It is intractable to 

compute the exact posterior and the Markov Chain Monte Carlo (MCMC) technique is used to 

draw posterior samples from ὴ— ȿ ὢȟὣ. Recall that the shared parameters are —

‍ȟ“ȟ‘ȢȢȟɫȢȢ  and the class specific parameters are — •ȟ”ȢȢȟɤȢȢ  with 

‎ȟ‌ȟ‘ȟɫȟ’ȟɝȟ‗ȟɱȟni dessucsid sa ,gnilpmas sbbiG .sretemarap repyh eht gnieb „ȟ‮ 

Appendix E.2, is applied here. The shared parameters — are sampled first and then given —, 

the samples for each class are drawn one by one. The inference algorithm is outlined in Table 

4.1. 

4.5.1 Truncated Approximation 

For sampling the HDP-HMM parameters, one option is to marginalize over the infinite state 

transition distributions “ and component parameters ‘ȟɫ and sequentially sample the hidden 

states ᾀ. Unfortunately this technique, referred as direct assignment or collapsed sampler, 

exhibits slow mixing rates because the HMM states are temporally coupled.  

A better technique is to block sample the hidden state sequence ᾀ using the standard HMM 

forward-backward algorithm discussed in Section 3.1.1. In this sampler, the state transition 

distributions and component parameters are explicitly instantiated. Slice sampling techniques 

[69, 70] or truncated approximations [71] can be employed to take account of the fact that the 

number of states and parameters is unbounded. In almost sure truncations, for a given number 

ὒ  the stick breaking construction is discarded for ὒ ρȟὒ ςȣЊ by setting ‍ ρ in equation 

(3.25). An alternative technique is to consider a weak limit approximation to DP and set 

ὋὉὓ‎ḯὈὭὶ
‎

ὒ
ȟȣ
‎

ὒ
 (4.28) 

 

Here  ὒ is an upper bound on the number of components and as ὒO  Њ, the marginal 

distribution of this finite model approaches the DP [76, 91]. This weak limit approximation is 

used for its computational efficiency in this work. With this approximation, (4.21) simplifies to 

‍ ȿ ‎ ͯ ὈὭὶ
‎

ὒ
ȟȣ
‎

ὒ
 

(4.29) “ ȿ ‌ȟ‍ ͯ ὈὭὶ‌‍ȟȣ‌‍  

•ȿ ‗ȟ“ ͯ ὈὭὶ‗“ ȟȣ‗“  
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The prior induced by HDP ensures that only a subset of ὒ states are used. The ὒ value is usually 

set to a large number. Given this truncated approximation, the standard forward-backward 

algorithm [32] is employed to sample the hidden state sequences. 

4.5.2 Sampling State Transitions 

The sampler is initialized by drawing the initial values of the parameters from their respective 

priors. For a training example ὼ  whose ώ ὧ, given the state transitions  • ȟ
ȟ  , the 

component means ɤ‘  ”  and the covariances ɤɫɤ  , the hidden state 

sequence is sampled from 

ὴᾀ Ὧ  θ•   ά ȟὯ ﬞ ὼȠ ɤ‘  ”ȟɤɫɤ  (4.30) 

 

Here άȟ Ὧ is the HMM backward message that is passed from ᾀ to ᾀ  and is determined 

recursively as 

άȟ Ὧ •  ά ȟὮ ﬞ ὼȠ ɤ‘  ”ȟɤɫɤ     (4.31) 

 

Let ὲᶰᴚ  be a matrix of counts computed from the sampled hidden state sequences 

with ὲ  being the number of transitions from states Ὦ to Ὧ for class ὧ. The notation ὲȢ Is used 

to denote the number of transitions from Ὦ to Ὧ for all the classes and ὲȢ
Ȣ to denote the number 

of transitions to  Ὧ. The scaling factor ‫  in (4.26) is used as the discriminative term and is set 

as 

‫  ρ‐ϳ
ὲ  ὲȢ Ὀ

В ὲ  ὲȢ Ὀ
   (4.32) 

 

Intuitively, the weight for a state Ὧ will be higher if there are fewer transitions to this state from 

classes other than ὧ. Here ‐ is a prior that controls the importance of the scaling factor and Ὀ 

is a sufficiently large constant to ensure that the scaling factor is positive. The posteriors are 

then sampled as  

‍ ȿ ‎ȟά ͯ ὈὭὶ
‎

ὒ
άȢȟȣ

‎

ὒ
άȢ    

(4.33) “ ȿ ‌ȟ‍ȟὲ ͯ ὈὭὶ‌‍ ὲȟȣ‌‍ ὲ  

•  ȿ ‗ȟ“ȟ“‗‫ȟὲ ͯ Ὃὥάάὥ  ὲ ȟὩ  
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•
•

В •
 

 

Here άȟὲ are auxiliary count matrices that are sampled from the class specific matrices ὲ. In 

the Chinese restaurant metaphor, these matrices correspond to the number of tables across the 

franchise serving a dish and the number of tables across sections in a restaurant serving a dish. 

These auxiliary matrices and the hyper parameters ‎ȟ‌ȟ‗ are sampled in the standard way as 

outlined in [44]. 

4.5.3 Sampling Component Parameters 

The shared parameters are sampled first, followed by the class specific parameters. Further the 

posteriors are sampled one component at a time. Let the set of observations belonging to class 

ὧ and assigned to hidden state Ὧ be ת ὼ  ɴὢḊ ᾀ Ὧ Ẓ ώ ὧ with ת ת  . 

The mean and covariance parameters that are shared across the classes use conjugate priors 

and the posteriors can be computed using the standard closed form updates discussed in 

Appendix C.3 as 

                                              ɫ ȿ ’ȟɝȟ‘ȟת  ͯ Ὅὡ’Ӷȟɝ     

(4.34) 

                                               ‘ ȿ ‘ȟɫɫȟת  ͯ ﬞ ‘Ӷȟɫ  

where 

                                ’Ӷ  ’ ȿתȿ 

                                ɝ  ɝ  ὼ  ‘ ὼ  ‘  
 ɴ ת  

 

                                ɫ ɫ ȿתȿɫ  

                                ‘Ӷ  ɫ ɫ ‘  ɫ ὼ 
 ɴ ת  

  

 

For the transform parameters, the posterior must be sampled from (4.23) after defining the 

form of ὴ—͵  —ȟὢȟ— . There are several choices for the discriminative term. One option is 

to set it based on the distance between the distributions of component parameters. If the 

distribution distances are large, the parameters are well separated and this will result in a larger 

margin for the classifier decision boundary. For the state Ὧ of class ὧ whose transform 

parameters need to be sampled, the density is set as 

ὴ—͵  —ȟ—    (4.35) 
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                        ÅØÐ ‚ÍÁØπȟ   ‒ Ὀ ﬞ  ‘Ӷȟɫ  ȿȿ ﬞ  ‘Ӷȟɫ

 

 ɴ͵

 

where 

        ‘Ӷ  ɤ‘  ” 

       ɫ ɤɫɤ   

 

Here Ὀὖȿȿὗ  measures the similarity between two distributions ὖ and ὗ,  ‒ is a prior that 

specifies the minimum separation distance and  ‚ is a constant that controls the overall 

importance of the discriminative term. Since normal distributions are used, the Hellinger or 

Bhattacharya distance [72] can be used as a similarity measure. Intuitively, the distribution of a 

component Ὧ from class ὧ that we wish to sample is compared with all the competing classes 

and their corresponding components. If the distance is less than a pre-specified minimum 

separation, then the pdf value will be lower and perhaps the sample is inappropriate. The 

discriminative term specified in (4.35) is computationally simple since it does not involve the 

training examples and instead uses the sufficient statistics. 

Another option for the discriminative term is to use the likelihood of observations. The idea here 

is to ensure that the Gaussian pdf value of an observation from class ὧ assigned to a component 

Ὧ is larger than the pdf value of competing classes and their corresponding components. 

ὴ—͵  —ȟ—ȟὢȟὣ    

(4.36) 

       ÅØÐ ‚ÍÁØπȟ   ‒

 ɴ

 ﬞ ὼȠ ‘Ӷ ȟɫ  ÍÁØ
ȡ  

ȡ 

ﬞ ὼȠ ‘Ӷȟɫ   

where 

        ‘Ӷ  ɤ‘  ” 

       ɫ ɤɫɤ   

 

If the model is considered as a single component Gaussian instead of an HMM with Gaussian 

mixtures, then (4.36) tends to make the pdf value for the correct class greater than the pdf value 

of competing classes. The above discriminative term can be treated as an approximation to the 

empirical error rate and ‒ offers the flexibility for a soft margin. 



CHAPTER 4 ς NONPARAMETRIC HMM  82 

 
 

By plugging in (4.35) or (4.36) into (4.23), the posterior distribution for the transform parameters 

is obtained. The term ɤȿ ” ȟ‘ ȟɫ is sampled followed by ” ȿ ɤȟ‘ ȟɫ. Since the priors for 

both these variables are Gaussian distributions, elliptical slice sampling, as specified in Section 

4.4.2, can be used to obtain the posterior updates. Note that for a Gaussian prior with non-zero 

mean, a shift must be performed to produce zero mean but this shift can be done trivially. 

4.5.4 Prediction 

The label for a test sequence ὼ is determined during prediction. Given the parameters 

corresponding to a posterior sample, the class conditional likelihood of the observation is used 

to obtain the class label as shown in (4.37). The likelihood is obtained using the standard HMM 

forward-backward algorithm. This process is repeated for all the posterior samples and the final 

label is selected based on the mode. 

ὧǶ ÁÒÇÍÁØὴὼȿὧȟ—ȟ—  (4.37) 

  

Table 4.1: Posterior Inference Algorithm 

Input:     Training observations with their corresponding class labels.  

Output:  Samples of posterior parameters.  

1. Sample the initial values ‍ȟ“ȟ‘ȢȢȟɫȢȢȟ•
ȢȢȟ”ȢȢ

ȢȢȟɤȢȢ
ȢȢ from their respective hyper 

parameters. 

2. Sample hidden state sequences ᾀ using HMM forward backward algorithm as per (4.30). 

3. For all classes, compute the matrix of counts ὲ from the sampled hidden states. 

4. For all classes and all states, determine the scaling factor ‫  as per (4.32). 

5. Sample the top level stick breaking weights ‍ according to (4.33) using an auxiliary count 

matrix. 

6. Sample the state specific stick breaking weights “ for all states according to (4.33) using 

an auxiliary count matrix. 

7. Sample the class specific stick breaking weight • for all classes and all states according to 

(4.33). 

8. For all components, sample the shared covariance ɫ and then the mean ‘ as per (4.34). 

9.  For all classes and for all components, use (4.35) or (4.36) in (4.23) and sample the 

transform parameters ” ȟɤ  using elliptical slice sampling. 

10. Sample the hyper parameters. 

11. Repeat from step (2) to collect more samples. 
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4.6 Experiments 

The experiments for action recognition are conducted on the publicly available UTKinect-Action 

[11] and MSR Action 3D [74] datasets. The datasets contain various actions performed by 

different human subjects. Each action involves only one individual and there are no objects 

involved when an action is performed. All these datasets use an infrared camera to capture the 

depth image sequences as outlined in Appendix A.1. The datasets also contain annotated 3D 

joint positions of the subjects. These joint positions were estimated from the depth image 

sequence as outlined in Appendix B. The estimated joint positions may contain errors and the 

experiments are conducted with these noisy joint positions.  

4.6.1 UTKinect-Action dataset 

 

Figure 4.4: UTKinect-Action dataset samples. The top row shows the RGB image for the actions 

walk, sit-down and pick-up from the UTKinect-Action [11] dataset. The middle row shows the 

depth image corresponding to these RGB images for the same set of actions. The last row shows 

a sequence of 3D skeletal joint positions for the wave action. The information in the joint positions 

is used for classifying the actions. 
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The videos in the UTKinect-Action [11] dataset were captured using a single stationary Microsoft 

Kinect camera. The RGB, depth and the skeleton joint locations were all recorded in a 

synchronized manner. The final frame rate is about 15 frames per second. The resolution of the 

depth map is 320x240 and the depth range is 4 to 10 feet. Altogether the data set contains 6220 

frames of 200 action sequences with an average frame length of 32 per sequence.   

The dataset contains the actions walk, sit-down, stand-up, pick-up, carry, throw, push, pull, wave 

and clap-hands. Each action was performed by ten different subjects with one of the subject 

being a female. The actions were all performed indoor. The action sequences were taken from 

different views and there are significant variations in the realization of the same action. Further, 

occlusions and body parts out of view add to the difficulty of this dataset. A sample of actions 

from this dataset is shown in Figure 4.4. 

Each depth image frame contains 20 joint positions with coordinates ὼȟώȟᾀ in a world 

coordinate frame. The pairwise relative joint positions within a frame are used as features. The 

relative positions ὖ  ὖ of 19 joint position pairs ὖȟὖ , where  ὖȟὖᶰ ὼȟώȟᾀ, are used. 

The skeleton hierarchy that determines these pairs is pre-defined according to Figure 4.5. Some 

examples of the joint position pairs are (Head, Shoulder Centre) and (Left ankle, Left feet). The 

total number of features is 57 per frame. By using relative joint positions, invariance to uniform 

translation of the body is ensured.  

The experiments are conducted for the challenging setting in which the subject is seen for the 

first time during prediction. 60% of the subjects were used for training while the rest of the 

subjects were used for testing. Following Bayesian hierarchical modelling, the hyper parameters 

have weakly informative hyper priors. The concentration parameters were all given a vague 

gamma prior similar to [44, 76] ensuring that the initial choice of the concentration parameters 

is not important. In the first iteration during posterior inference, all the hyper parameters are 

initialized from their respective priors. All the other parameters are sampled from their 

respective prior distributions. The hyper parameters are re-sampled after each sampling 

iteration. The first 500 samples were discarded and a total of 100 samples were collected. When 

sampling the posterior for the Gaussian distribution parameters and the concentration 

parameters, a further burn-in period of 50 iterations was used. The posterior inference 

procedure uses the forward-backward algorithm which has a time complexity of ὕὝὑ  where 

Ὕ is the length of the sequence and ὑ is the number of states. To verify convergence, the change 

in the number of instantiated states and the difference in the Gaussian distribution parameter 

values between iterations were checked.  
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Figure 4.5: Skeleton Hierarchy. The predefined skeleton structure [75] used for defining the joint 

position pairs is shown. The arrows indicate the parent-child relationship that determine the joint 

position pairs. For example, the Left Ankle and Left Feet structure define the joint position pair 

(AL, FL). 

In order to verify the efficacy of the model, additional experiments are conducted with the 

parametric HMM and a nonparametric HMM. The multi-level nonparametric HMM is then 

evaluated and finally the results are presented for the full model in which the parameters are 

learnt in a discriminative manner. The results are reported using the standard performance 

measures for a classification problem namely precision, recall and accuracy. The precision for a 

class is the ratio of the correct predictions (true positives) to all the positive predictions (true 

positives and false positives), while recall is the ratio of the correct predictions to all the 

members of the class (true positives and false negatives). The accuracy of the classifier is the 

ratio of the correctly classified instances (true positives and true negatives) to the total number 

of instances. 

Parametric HMM 

A classifier is trained, independently for each class, based on the classical HMM. The standard 

Baum-Welch algorithm [32] is used for learning the HMM parameters. Since the number of 

states must be specified a-priori for parametric HMMs, different numbers of states for each class 
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are tried during training. In the absence of priors, an additional clustering step with K-Means is 

performed to estimate the initial values of the transition matrix and the mean and covariance 

parameters.  During testing, a test example is evaluated against all the classes and the class with 

the largest likelihood is selected as the predicted class. The observed best classification accuracy 

was 56.8%. The summary of classification results for HMM is presented in Table 4.2. 

Table 4.2: Classical Parametric HMM classification results 

Nonparametric HMM 

A HDP-HMM based classifier is also trained, independently for each class as before. The upper 

bound on the number of states is set to 20 with the weak limit approximation discussed in 

Section 4.5.1 being used. The number of states is automatically learnt from the data for HDP-

HMM unlike the parametric HMM. Figure 4.6 shows the total number of states for the different 

action classes in a sample collected during training. In an equivalent parametric HMM, a tedious 

and ad hoc model selection step for each class must be run individually because the optimum 

number of states varies between classes.  This advantage of automatic state inference with HDP-

HMM is reflected in an improved classification accuracy of 74.1%. The results are shown in Table 

4.3. 

Table 4.3: HDP-HMM classification results 

Action Precision (%) Recall (%) 

walk 100 87.5 

sit-down 50 50 

stand-up 66.6 100 

pick-up 100 50 

carry 77.7 100 

throw 100 50 

push 71.4 62.5 

Number of States Accuracy (%) 
Precision (%) 

(Average across classes) 

Recall (%) 

(Average across classes) 

3 49.1 52.0 49.8 

5 47.7 60.1 48.4 

7 52.8 64.2 53.3 

10 56.8 65.3 58.4 

15 55.3 70.1 55.8 
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pull 66.7 75 

wave 85.7 75 

clap-hands 50 75 

 

Figure 4.6:  Hidden states plot to show the number of hidden states active for different action 

classes in a sample collected during training. An active state is one to which at least one 

observation is assigned. 

Multi -level HDP-HMM 

The results are evaluated on the two-level HDP-HMM excluding the discriminative criteria. In 

this method, examples from all the classes are used during parameter estimation. Thus it allows 

sharing of parameters across classes and enables semi-supervised learning. In order to exclude 

the discriminative conditions for the state transitions, the scaling factor ‫  is simply set to zero. 

This is equivalent to sampling •  (probability of transitioning to state Ὧ given the current state 

is Ὦ for a class ὧ) as per equation (4.18) instead of (4.34). Similarly for the class specific 

transformation parameters, ὴ—͵  is set to be a constant in equation (4.25) thereby excluding 

the discriminative conditions. The classification results are shown in Table 4.4. The accuracy is 

75.3%. These ǊŜǎǳƭǘǎ ŎƻƴŦƛǊƳ ǘƘŀǘ ǎƘŀǊƛƴƎ ǇŀǊŀƳŜǘŜǊǎ ŀŎǊƻǎǎ ŎƭŀǎǎŜǎ ŘƻŜǎƴΩǘ ƳŀƪŜ ǘƘŜ 

classification any worse. The lack of a big increase in accuracy when compared with HDP-HMM 

is interpreted as an indication that there is a need for an additional discriminative condition. In 

addition, the smaller number of training examples in this dataset could be a factor. Nevertheless, 

this technique provides a way to learn parameters in situations where unlabelled examples can 

be incorporated. 




























































































































































































