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Abstract

Action recognition involvesautomaticallylabelling videos thatontain human motionwith
actionclasseslt has applications in diverse areas such as sswanteillance, human computer
interactionand content retrievalThe recent advent of depth sensing technology that produces

depth imagesequences has offeredpportunities to solve the challenging action recognition
problem.¢ KS RSLIGK AYIF3S&a FFrOAfAGFEGS NRodzad SadAy

andahigh levelaction can be inferred frora sequence of thespint positions.

A natural way to moel a sequencenf joint positionsis to usea graphical modethat describe
probabilistic dependeries between the observedoint positions and some hidden state
variablesA problem with these models is thdi¢ number of hidden states must be fixed aopiri

even though for many applications this number is not known in advarius.thesis proposes
nonparametric variants ofjfraphicalmodelswith the number of hidden states automatically

inferred from data The inference is performed in a full Bayesianisgtby usinghe Dirichlet
Processis a priooverthemodeQa AYFAYAGS RAYSyaAz2ylf LI NI YSi

This thesidescribesthree original constructionsf nonparametricgraphical modelghat are
appliedin the classification adictionsin depth videosFirstly, the action classes are represented
by a Hidden Markov Model (HMMyith an unbounded number of hidden state$he
formulation enablesinformation sharinganddiscriminative learning of paragters.Secondlya
hierarchical HMMwith an unbounded number of actions and poses is used to represent
activities.Theconstructionproduces a simplifiechodelfor activity classificatioby using logistic
regression to capture theelationship between adbn states and activity labelsFinally,the
action classes are modelled byHidden Conditional Random Field (HGR#) the number of
intermediatehidden statedearned from dataTractablemference procedurebased on Markov
Chain Monte Carlo (MCMC) techniques derived for all these constructiorisxperiments with
multiple benchmarkdatasets confirm the efficacy of the proposed approssiior action

recognition.
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Notational Conventions

The set of real numbers

The set of positive integers

An indicator function that evaluates to 1¢f ¢y O otherwise

The¢ training example sequence

The class that thé training example belongs to

Observation at time instart

Hidden state at time instart

Set of all model parameters

Probability of transitioning to stat&

Probability of transitioning to stat@given stateQ

Dirichlet Processhyper parameter foff

Dirichlet Processhyper parameter for*

Meanand covariancef Gaussian distribution corresponding to compon&?|

Gaussian distribution hyper parameters for

InverseWishartdistribution hyper parameters fot

Probability of transitioning to staf@given stateTor classo

Dirichlet Proceshyper parameter fore

Parameter for shifting mean for classo

Parameter for scaling covariante for classo

Parameter used for scaling for class ¢

Hyper parameter fot

Hyper parameters for

Hyper parameter for

Set of model parameters for class

Set of model parameters excluding class

Set of model parameters shared for all the classes

Upper bound on the number of HMM states

Priorcontrolling importance of discriminative term

Prior controlling the distance between distributions

Chapter5

Action state at time instand

Empirical frequencies of the action states

*HH et

Action state sequence from a sampling iteration

Probability of transitioning to pose stal@given actiorto

Probability of transitioning to pose stal@given stateQactionc

o]

Binary variable indicating whether a sequence of actions is complete

Probabilities of completion for action state

Dirichlet Proceshyper parameter fof

Dirichlet Proceshyper parameter fos

Hyper parameters fgr

Regression coefficients

Hyper parameter for the regression coefficients

Upper bound on the number of action states

Upper bound on the number of skeleton states
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Upper bound on the number of object states
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Chapter6

Normalization constant

Potential function

Feature function for dependency between a hidden state and a label

Feature function for dependency between twalden states and a label

Feature function for observations dependency

Parameter group corresponding to

Parameter group corresponding to

Parameter group corresponding to

Global scale

The scale variable with exponential distribution prior

The set of scale variables with the HDP prior

The scale variables corresponding-to
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1. Introduction

The topic of this thesis is introduced in this chaptetbdgins with the motivation for action
recognitionin Section 1.1. This isfollowed with a discussion othe use ofdepth images and
graphical models Section1.2. The specificproblemsthat this thesis investigates adescribed

in Section1.3. The main contributionsf this thesisarelisted inSection1.4and finally the thesis

structure is outlined irSection 1.5.

1.1 Motivation

Videosprovide visualization of complex and dynamiiationsin an intuitive manner. Thegre

a popular mediumo conveyinformation. The rate at which video data are generatdths
increased veryapidly of late due to the ubiquitous availability of devices that record videos
There are an estimated 50 million hours of footage generated every day by the surveillance
cameras in the U.K5T] andabout400hours of video is uploaded every minutedrihe popular
YouTube websitgs6]. With the advent of futurelevelopments invearable deviceghe amount

of video contenwill increag evenfurther. Itis difficult to interact with sucenormousamounts

of videodata without efficient tools thatutomaticallydescribe organizeand managehem.

In order toeffectivelydescribethe contentin a videq the objectsand eventsoccurringin the
image sequencethat comprisethe videomust bedetected and recognizedbtateof-the-art
tools in computer ision provide the ability to detecand recognize theobjects and their
propertiesin images [59, 60] However, robusand accurateecogntion of eventsthat occurin
image sequenceis still a problemThis is unsurprising since the cognitive underpinnings for
understanding eventsare much more complicated It requires application ofcomplex
spatiotemporal conceptsShe researchereaddresses tischallenging computer vision problem

and providesnechansmsto recognize eventsivoling humansin videos.

Automatichuman eventecognitionhas many applicationscross various domair{sigurel.1).
Forexample in the security domain, there is an ever increasing need to monitor video feeds for
interesting events.These videofeeds may originate from CCTV cameraser from other
sophistcatedplatformsusedby the military such asnmanned aerial and ground vehicléBhe
current monitoring solution involvesdedicatedhuman operators activelywatchinglive video
streams. This is often undesirable since the human operators are expensseeinmees andt is

difficult for them to remairfocused at all timesinstead, @ automatedsystemthat can detect

14



CHAPTER-INTRODUCTION 15

andrecognize interesting eventnd then alerthe humanoperatorsisrequired Such asystem

is costeffective and eliminates potential security risks.

- #ALERTDROPPEDTEM

(d) (e)

Figure 1.1: Applications of automatic event recognitida) A smart surveillance system that
detectdnteresting events live videofeeds [60]. (b) Monitoring the daily living activities in a
care centredl]. (c) Analysingan American footbalports video for offensive team formation
[3]. (d) Natural user interaction with a games console foetkergaming experiencg2]. (€)
Touchless interactioffior browsing and manipulating medical images durguggery in an
operatng theatrd2].

Smart surveillance systems that discard routine evemts highlight only interesting events
have applications in other domains such as healthcare. For exammeare centrefor the
elderyz G KS +dzi2YFGAO NBO23IYyAGAZ2Y 2F |y AYyYLl (S
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frequency of toilet use and diffitties in performing regular activities helps in assessing the
cognitive and physical wdtleing of the person [63]. Health monitoring surveillance systems can

reduce expenses and improve the quality of life for the elderly.

Multimedia information retrievals another important area where automatic event recognition
is essentialA content based search and retrieval system would enabletti@ent explorations

of large volumes of archived video data. As exampledases, a user may wish to view all
archived videos that contain aveddingevent or a security professional maysh to review
frames that contain arexplosionevent in surveillance footages. The current technique for
searching the videos is limited to metadata queries and text search based owaima
annotations. Instead, searching directly for uskefined events provides a comprehensive
mechanism to interact with the video content. With automatic event recognition, the videos can
be indexed analogolsto text document indexing and abstracts buas key frames or highlights
can be extractedo form condensed summaes of the videosIn effect, the videos can be
managed as structured artefacand analysis can be performed treir contents [1]. Content
based search, retrieval and analysis of egldase applications in innumerable areas including

sports, education and arts.

The pervasive use of compnd) has encouragedesearchers to explorenore natural and
intuitive mechanisms to interact withomputers In addition to voice and hand gesturgke
use ofthe entire human body to communicate with computelhasgained traction of lateFor
example, the Microsoft Xbox game consoles alfpayersto interact through their full body
without the need for a games controll¢62]. The player camperform actions such akick or
jump to naturally convey theirintended motionto the console This provides an immersive
gaming experience for the playdn order torespondto player movenentsthe console must
detect and recognize the varioeventsthat occurduringthe interaction The applications for
such naturailvays of interactingire not restricted toentertainmentplatforms.Theycan also be
used inmany other scenari®@such agnedicalsurgery.A surgeon can control and manipulate
equipment without explicit contagthus maintainingthe boundaries between sterile and nen

sterile partsof the surgical environmerjg].

The above wide range ofapplications in diverse areas such as smart surveillance, content
retrieval and humancomputer interactimm provides a motivation foraddressingthe human

eventrecognition problem

1.2 Researclrocus

¢ KS S NlXcande@Ba/ viariety of concepts at défent levels of abstractiomnd at

different time scales, rangingrom elementary movemergof a body partby an individuato
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complexinteractionsbetween personghat canlast forhours In order to distinguish between

the different types of events, standard terminology [4if followed.An elementarymotion such

asraisng alegis refared to as adgesture&. The composition of multiplelementarymotions,

carried out by asinglepersonand organized temporally is referreh as andactiore. Walking

and sitting downare examples of actiong. KS (1 SN¥Y & L2 aS¢ NBigudted G2 |
of the humanbody that is encountere@nhile performing an actionHencegestures andactions

can alternatively be describely sequencs of poses. An dactivitye is composed of a set of

actions that occur over timd=or example the activitinsing the mouthmay containdrink and
spitactions.This thesidocuses exclusively arction recognition fovideos that involve a single

individual andastless than a miate.

1.2.1 Recognition from Joint Positions

The famous Johansson experiments [12], illustratdéignuirel.2, demonstrate that motion can

be perceived fromsparse visual input. It was shown that moving light displays attached to a
small number of landmark joints on the human body provide sufficient motion cues to infer
actions such awalking runningetc. The visual system can detect motion patterns by imégmg

the movementsof individualjoints over space and timeThe absence of shape, colour and
texture information does not inhibit the recognition of the motion. Tuse of a handful of body
joints to model articulated human motioproducesa compact representation for the human
actions.Hencedeterminingthe locations of theoints corresponding to the various body parts
and moddling the spatiotemporal transition®f these joint positiongprovides the necessary

informationto characterizanotion and infer actions and activities.

Figure 1.2: Biological motion perceptionPoint lights are placed on joint locations. When a
sequence of these point lighssviewed, the actionsalk andrun areapparent evethoughthe

figure outlineis omitted [12, 13].

Recoveringthe body joints from imagess a very difficult problem because there is a
fundamental loss of information when a 3D scene is projected into a 2D image. It is often not

possible torobustly identify the body parts ianimage The pixels in aimagetypicallyencode
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intensity variations aRGB colour valueBifferent lighting conditions induce variations in the
recorded pixel valuesHuman body parts imn image might be partially ecluded by other
objects or by the parts themselvé®m time to time Theimage may contain shadowsurther,
background cluttermay make it difficultto locate the objects of interestand perspective
deformationscanmake it difficult to recognize the ¢ects Even though the RGB videos contain
rich visualinformation, their sensitivity tolighting conditionsand the difficulty in performing
robust background subtractiomn these videospose significant challenges fastimating

articulated human bodynotion [6, 142]

A depth image, which contaginformation relating the distance of an object in a scene to a
camera;s less affected by the above image representation issties . depth imagearerobust
to colour and texture variability induced by clinlg, hair and skin of a human bodyis much
easier todetectthe human body silhouettasingdepthinformationrather than RGB valuethe
3D data that includes depth informatiagimplifies background subtractiorgsolvessilhouette

ambiguitiesandis largelyinvariant to lighting, colour and textul@, 9].

The traditional way to obtain 3D daia stereo vision[8] in whichthe depth information is
reconstructed by capturingD images from multipleviewpoints Unfortunately, he inference

of depth information involves complexstereo geometry calculationand is affected by
reflections,depth discontinuities andsparse texture$n the imagesStereovisionsuffers from

the samelighting and segmentation problesnassociated witltolour images. The ned for
multiple synchronized cameras and the unreliable depth information produced by an expensive
reconstruction process limits the applicat®wf stereo vision [5]An alternative is to usmotion
capture systemg86] in which special markers are atthed to the body and the 3Djoint
positiors are obtained by triangulation usingultiple camerasEven though this procedure
provides accurate body motioits intrusive natureis infeasible imeal worldscenari® andthe

high cost of thehardware restricts its applicaticio nicheareas

Recent advances in depth sensing technologielpaovidedcameras thaproducesynchronized
colour and depth imagedhe Microsoft Kinecsensor[10] contains an infrared projectoran
infrared cameraand a colour camerdt produces reasonably accurate depithagesin addition
to the RGBmagesat high frame ratesThe distanceof the 3D points in the world from the image
plane is recordeaspixelvaluesin the depth imageas show in Figurel.3. Note that the sensor
can provide depthinformation only up to a limited distance anthe depth estimates are
sometimes inaccurate-urther, the captured structure fseudo3Dbecausehe pantsthat are
not in front of the sensorcannot be recorded. In spite of these limitationlse low-cost and
relatively small footprintof these sensorgnakethem a popular choice forecording depth

images.
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Infrared Projector Infrared Camera Depth Image

RGB Camera RGB Image

Figure 1.3: The Kinect sensor. The RGB image is produced by a RGB camera and the depth
image is produced by an infrared projector and an infrared camera. The points tlesmtoera

have darker pixel values. The black pixels indicate that depth values are not available for those
pixels [10, 11].

Thedetectionof joint positions is greatly simplified by the use of depth images. The pioneering
work in [14]introduceda mechanismto robustly classifyhe depth imagepixelsassociatedvith

a human bodyby assigning to theran appropriatebody partlabel Thelocations of thgoints

can thenbe estimated from these pixel labelsn overviewof this approachs provided irFgure

1.4. The algorithm is computationally efficieand is built into the Kinect sensor so that the joint

positionsare providedin reattime.

$

\ =

Depth image Body part labels Joint positions

Figure 1.4: Joint positions estimatioAn intermediatdabelled image in which each pixel is
classified into a body part is inferrém the depth imagerhe 3D joint positions are estimated
from thelabelled imagg14, 9].
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Inspired bythe Johansson experiments artthe recent breakthrough in depth sensing
technologythe researchin this thesisusesthe locations ofjoints estimatedfrom depth images
to characterize the motion pattern3.he action clsses arenodelledusing gquences otfhese

joint positions.

1.2.2 Challenges

Even with the availability of body joint positions, recognizing actions is not that sifipbee

exists similarities in different action classes and there are often differences whthsame class

of actions. For exampleyalk andrun actions involve similar sebf joints. The movements for
awalkaction can differ in speed and style between individuals. As the number of action classes
increase, the overlap between them will bBegher, making it much harder to distinguish
between actions of different classes. The actions are also of varying dunatiosequences of

different lengths. This makes them difficult to compare.

The joints information may be corrupted by noise due to inaate depth estimatedt may also

be necessary to change the coordinate system of the positions to account for differences in
recording environment andariationsin size and shape between humams.many cases, the
joints space is of high dimensiaontaining redundant information and it is important to find
compressed representations to facilitate computationally inexpensive comparisons between

the actions.

The need to generalize ovdarge intra-class variations andnaximize small inteclass
distinctions, alongvith the need to handléemporal variations andoisy sequences make action
recognition intrinsically challenging. Application of advancgditistical machine learning

techniques is required to address this problem.

1.2.3 Graphical Models

Actionrecognition is usually regarded as a supervised classification problem [35]. Prototypical
examples of videos and their corresponding action class labels are made available for training.
The prediction of action class labels for new unseen videos is lmestiak information learned
during training. What distinguishes action classification from traditional supervised
classification is that an input observation is a sequence of data points that are strongly
correlated over time. In effect, action classificet is a sequence labelling problem in which each

sequence of data is assigned a sequence of class labels.

A natural way tanodelthe sequential datas to introduce a discrete valuedtate variableghat
compactly representshe observeddata at a time in@nt. These state variablescan then be
reasoned aboutasthey evolve over timeThediscretevaluedstate at a particular time i®

snapshotof the relevant attributes of the@bserveddata at that time[15]. As an example, in a
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clapaction, the variousgntermediatebody posessuch asands togetherhands aparietc. may
correspond to different state variables amg examining thdransitionsbetweenthese state
variables (i.e. bodyposes)anactionis inferred Sincethesestatesare not explicitlyobseavedin

the inputdata, they areoften referred as hidden states or latent states.

Figure 1.5: Sequential data a graphicalmodel Thestate variableS describehe observations
/ atvarious time instants, 2, 8 , T, T+1 etc. The dependency relatisibetween the variables
areexpressedh a graphstructure The states are conditioned only on the previous state and not

on theentirehistory.

It is essential to perform a probabilistic reasoning over these state variables to account for
uncertainties in the outcomed-or a probabilistic formulatigra joint distribution over the space

of possible states must be constructétlis daunting to represent these distributions over many
variables naivelyA diagrammatic representation provides mechanisms to visualize the structure
in these complex distributions and exploit thefrobabilistic graphical models use a graph
based repesentation to simplifydependenciesover many variableso a smaller subset of
variables.The nodes itthe graph correspond to the variables and thephedgesexpresshe

dependencyrelationshipbetween thesevariables.

It is impractical to assume thahe future states depend on all previous stateSuch an
assumptionleads to an intractable model that grows with the number of observatioAs.
reasonable approximatiowould be to consider that the past is independent of the future given
the present.ThisMarkovassumptiorshown inFigurel.5, together with the assumption thall

the dataare generated from the samdistribution, allowsghe modellingof sequential data in a

compact form[16].

TheHidden Markov Model (HMM) [32] is a w&hown graphical model that is used to represent
sequential dataAn HMM uses a set of discrete states amstate isconditioned only on the

stateat a previous time istant. TheConditional Random Field (CRF) [33] is angth@babilistic
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model that uses a graph based representation to encode relations between states at different

time instants While the HMMs use directed graphs, the CRFs use undirected graphs.

The researchin this thesisusesdiscretestate-spacegraphical modelsuch as HMM and CR¥-
deal with the dynamics regulating the temporal evolution of the body joifite graph based
declarative structure provides a flexible framework for encoding complexadntions between
many variablesFurther, it also enableshe development ofa generic solution withithe

representation andnferenceproceduresapplicableto problems inmanyother domairs.

1.3 Problem Definition

A general problem with thgraphical models that use discrete state variables is that the number
of hidden states must be fixed a prioffhis number is not known in advance for most
applicationsLet us the take thexample of the actiortlass modelslescribedabovein which
the state variables represent the various body paseprior knowledgef the exact number of
intermediate poses that are involved when performiaig actionis not availableThe motion
patternsand body positiongnay vary subtly between two subjects who perfothe sameaction
and consequentiythe number of posesaydepend on the number of subjectBurther,these
numbers must be specified separately frery action since almostertainly the number of
poseswill differ between actionslepending on th& comgexity. If alargenumber of statess
specified, itmay result ina complex model that over fitthe data and fa# to fit new
observations A small number o$tates may not be adequate to capture the variations in the

data.

The classical solution feiis problem is to perform model selectigseveral models are fit to
the data and the one of the modedis selected using model comparison metridn the above
problem,typicallyseveraimodek are trained with different numbers of states aradprocedire
such as crosgalidation or regularizatiors usedto choosea modelwith the correct number of
states Incrossvalidation the modelis evaluatedon smallsubsetsof the training datao see
how well it generalizesnd inregularizationa penalty term that favours simpler model is

incorporatedduringtraining[17].

Unfortunately such procedures do not adapt weltttanges in data complexitystead of these
ad-hoc procedureshat compare multiple models which vary in complexitys preferable tdit

a single model thag¢stimatesthe number of stategutomaticallyfrom data.Such a mechanism
avoidsany misfit between the number o$tatesand the amount otraining data. The model
complexity as measured by the number of stat@sreases as the amount of data increases
However, the formulation of a model with an unbounded complexity is nontrivial. The set of all

possible solutions must be considered and the parameter space is now infinite dimensional.
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A model overan infinite dimersional parameter space can be defined usiBgyesian
nonparametrionethods[18, 73] These methodemployan unbounded number gfarameters

but only a small subset of these parameters are actually usgpropriate prior distributions
control the number of parameters required to model the data. Small datasets produce simple
models while complex datasets induce rich modethereby adapting the effective model
complexity to the dataThelack of an upper bound on theumber of parametersnitigates
underfitting while the computation of a posterior distribution of the parametérsa Bayesian

approachreducesthe chance obverfitting.

Figure 1.6: Clusteringand DiricHet processeshe data points are generated from a mixture of
2D Gaussianwith 50 data points in the left50 data points in the middle aB80 data points in
the right. The clustertearned through Dirichlet Procease shown as ellipses. The number of

clusters increase witithe number oflatapoints

The Dirichlet proced49] isone of the most populapriorsemployedin Bayesiamonparametric
methods. It is a distribution over distributionse. asampledrawn randomlyfrom a Dirichlet
processs itselfa probability distributionA common application of Dirichlet process iagsior
distribution in mixture models used for clustering dalla.mixture models, each data point is
assumed to belong to a cluster, with the data pointdea cluser distributed randomly within
that cluster.The number of clustermust be specifieé priori in classical clustering techniques
The use of a Dirichlet process primstead providesa mechanisnthat estimates both the
number of clusters and the paramete of the distributions characterizingthe clusters
simultaneouslyfrom data. An unbounded number of clusters is available, but onlgnzall
numberof them are used to model a giveset of data pointsLarge clustergrowlarger, faster.
When the number oflata points increase new clusters may emergss illustrated irFigurel.6.
This nonparametricsolution is evidently betteat dealing withthe combinatorial challenge

associated with model selectigrocedures

Although te use oDirichlet Procesas a nonparameic prior for graphical modelsrasexplored

before[40, 41, 44]thesetechniques by themselves are unsuitable for a supervised classification
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problem. A straight forward application of these techniques would use a separate model to
represent each action @ssand define goint distribution over theinput observations andhe
class labelSuchgenerativemodels describethe input while in a classification problem the
objective is tadiscriminatebetween the inputs Formulating models such that they providbe

best decision boundarieto distinguish the classes necessaryFurthermore, he use of
separate modelsprohibits the sharing of valuable information acrossthe different action
classesInformation exchangebetween clasess essential tdacilitate effective learningvith a
small number of training examplek is important to consider a nonparametric prior thas

suitable forclassificatiortasks

The central computation problem in Bayesian nonparametric methodsstepor inferenceg
i.e. estimating theposterior distribution of thanodel parameters given the observed datée
posteriordistribution often has a highly complex fortxcept in the simplest casgthere are
no closed form expressiemeadily availablg¢o evaluatethe posteriorsanalytically The use of
sequential data compounds the problelvhen deriving inference algorithms, it is important to
consider multiple variables together and make large moves in the probability sioace

computational efficiercy.

The research presented in ththesisdeals withthe important problem of choosing modalat
an appropriate level of complexity arhsuring thatthese modek aresuitable forsupervised
classification. It investigates the followingresearch questions in the context of action

recognition
Question 1.How to represent actions and activities using graphical metiel

Question 2.How to learnthe number ofstatesin the graphical modslfrom datarather than

usingmodel selection procedurés
Question 3.How toshareinformation between the action classes?

Question 4.How to ensure that the modehrediscriminative in naturso thatthe best decision

boundaiesto distinguish theactionscan befound?

Question 5.How toperform efficient posteriorinferenceover themodelparameter®

1.4 ThesiLContributions
Motivated bythe lack of existing methods to addrett®e abovequestions, this thesis proposes
three different and original constructions of honparametric graphical models that are suitable

for action classification.
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The actions are represented usirtgpe Hidden Markov Model (HMM)3p] and Hidden
Conditional Random Field (HCR¥F,[two wellstudied discrete statspace graphical models
used widely in sequential pattern recognition. The activities contain an inhdrenarchical
structure and they are represented usiagHierarchical Hidden Markov Modél-HMM) [81].
All the three modelsise3Djoint positions obtained from deptliideoto define thefeatures.In
the attempt to answer Question 2, nonparametric variaotshe canonical HMM, HiMM and
HCREF are developed. This avoidéiad model selection procedures and flexibly adapts the state
cardinality to changes in datd&urther, the modelparametes are formulated in terms of
distributions that are common acroskd classeso facilitate information sharingTo address
the fourth question, he models areconstructedin such a way that they are suitable for
supervised classification problentanally,posterior inference procedurethat are efficient for
sequentialdata are derived for all the modelsased onsimulation[36] techniques The main

contributions are summarized as follows:
A discriminative nonparametric HMMor action classification

The classical HMM is extended with a nonparamerior and augmented #th a discriminative
term. The resulting modeinfers the number of hidden states automaticallyith the model
parameters learnt in a manner that is suitable for classification taBks.model formulation
promoteseffective transfer of information betweeaction classe The model is evaluated for

action classification ohenchmarkdepth video datasets containing locations of joints.
A supervisednonparametric HHMM for activity classification

A hierardical extenson to the HMM with an unbounded number afction and pose stateis
developed. The formulation uses multinomial logistic regression to distinguish between the
activity classes based oaction states, thereby simplifying the model structur&éhe model
efficacy is demonstrated for activity classificatiaith joint positions and depth information

used to characterize activities
A nonparametric HCRF for action classification

A nonparametric extension to the HCRF that precludes the need to specify the nwber
intermediate hidden states is proposedhe discriminative HCRF models the classification rules
directly. The Bayesian treatment of the training procedure provides realistic characterization of
uncertainty in the parameters. Good classification resalte achieved in two differertepth

video datasetgontaininghumanactions

The proposed models are applicable to a wide variety of sequence labelling problems, besides

action sequences. The investigations in this thesi®baen published in192, 193 194, 19%.



CHAPTER-INTRODUCTION 26

1.5 ThesisStructure

These contributions are discussed in greater detail insthigsequentchapters of this thesis. A

brief description of theemainingchapters is as follows:

Chapter2 reviewsa broad range ofvorksthat arerelated to this thesis.The approaches used
for vision based humaaction recognition in the literaturare surveyed Thevarious features
extracted from thedepth images are discussa@udetail Thedifferent classiftation techniques
are outlined. A review d the nonparametricsolutiors usedin the literature and howthey

compare with the work in this thesisalso included

Chapter 3 providesthe technical backgroundecessary tadescribe the models useith this
thesis The HMM and CRFmodelsare introduced. The Dirichlet process, which is extensively
used as a nonparametric prior in subsequent chapters, is descriether background
information includingthe techniques used to construalepth imagesand the statistical

framework upon which the action class modats builtis provided in the Appendix

Chapter 4 presentsan action classificatiortechnique using a discriminativeonparametric
HMM. The action classes are represented by a meitel Hierarchical Dirichlet Process (HDP)
HMM. The model parameters are formulated as transformations from a base distribution and
are learnt in a discriminative manner. The chapter begins with the motivétiothis approach,
presents the model and derives the posterior inference mechanism. Fihallgxperiments

section discusses the results obtained on two different datasets.

Chapter5 develops @wo levelhierarchical HMM to perform activity classificatiorhe bottom

level states characterize granular poses while the top legsédtes characterize the coarser
actions associated with activities. In order to perform classification, the relationshipeeetw
the actions and activities are captured using multinomial logistic regresBi@nchapter begins
with an overview of the approach, provides the activity model structure and explains the

inference mechanism. The evaluations conductedvem different datasetsare also discussed.

Chapter6 proposes the use of a HCRF for classifying acfitresclassical HCRF is extended with
a nonparametric structure and the number of hidden statesutomatically inferred. The
training and inference procedusarefully Bayesian. The construction is based on scale mixtures
of Gaussians as priors over the HCRF parameters andhesglice sampling technique during
inference. The model representation and the mechanism to perfBagesian inferencare

presented along with the experiments.

Chapter7 concludeghe thesishy summarizing thenaincontributions Severafuture directions

and perspectives of the proposed techniguee presented.



2. Related Work

The aim in vision based action recognition is to determine the action type of a previously unseen
video. It is an active research area and the vast amount of papers published in the literature
every year related to this topic is a testimony to both its artpnce and the challenges involved.
This chapter reviews the existing literature on action recognition. Over the years many
techniques have been proposed. The focus in the review here is mainly on the approaches to

recognition based on depth images andraphical model based representation.

The approaches differ mainly in the features and the classification algorithms that are used. The
various feature descriptors extracted from the image sequences are discussed in Settion
The different classification techniques, ranging from those that explicitly model the temporal
dynamics of the motion to those that do not, are covered in Secfigh The Bayesian
nonparametric framework is used ihd recognition procedure presented in this thesis. Section
2.4 surveys the various nonparametric approaches. A final summary is provided in SeBtion

This chapter provides $ight into how the thesis differs from the other related work.

2.1 Overview

The research efforts in vision based action recognition date back as far as the early 1990s when
Yamato et al. [104] used Hidden Markov Models to classify tennis strokes. Someezirihe
methods used for motion analysis are reviewed in [105]. A variety of approaches have been
proposed since then and there are several surveys in the literature that provide an overview of

these methods. Some of the surveys are discussed below.

The tecmiques used for tracking, pose estimation and recognition are surveyed in [106]. The
review presented in [107] expands the recognition scope to include methods used for
interpreting cognitively higher level activities. The survey in [55] covers the gafiéaiures

that are extracted from the image sequences for action classification. In [4], a comprehensive
summary of the approaches used for activity analysis is presented using a tree structured
taxonomy. Yet another survey [108] lists the methods useddpresenting, segmenting and
learning actions. The recesurvey in[110] discusss the stateof-the-art research using the
taxonomy defined in [4]A survey of the datasets available for human action recognition is

presented in [109].

27
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The above surveydeal mainly with action recognition using visible light colour images. With the
widespread availability of lowost depth sensors, there has been lot of research interest of late

in using the depth image sequences for human motion analysis. There aresarfiey papers

that review approaches based on 3D data in the context of action recognition. The surveys in [6]
and [111] discuss depth data acquisition and the-precessing steps involved. In addition, they
review the algorithms used for action analysi$ie other surveys that focus on human action
recognition with 3D data include [5, 112, 113] and the very recent [114].

Most action recognition methods assume that some examples of videos and their corresponding
action class labels are available. A typical system first defines an abstract and compact
representation of the patterns in a video, commonly referred as featulesnodel is then
learned for the action classes during a training process using the features extracted from the
example videos. Given a video whose action label is not known, this video is matched against
the learned model in order to classify it. The vioias in recognition methods are mainly based

on the features and the classification algorithms used for matching the features.

2.2 Features

This section discusses the methods used to determine an image sequence representation that
is suitable for robust cla#ication of the actions. It is important to choose informative and
discriminative features. This process, known as feature extraction, is treated as the core problem
in many action recognition works. @ffe-shelf classifiers are often used for matchitig

features once they are obtained.

It is crucial to capture the temporal correlations between the images in the video for successful
recognition. Some methods extract the features frame by frame and convert the video into a
sequence of feature vectord.he matching algorithm used during classification analyses this

sequence to deduce the action. In other methods, the features explicitly include temporal

information.

While the range of features used for action recognition can seem overwhelming, theitynajo

them can be divided broadly into two categories: image based and skeleton based. In the latter,
an explicit model of the human body is defined and pose estimation is performed on the images
to determine the configuration of the body. This providdse skeleton¢ a schematic
representation of the locations of the body parts. The features are then chosen from the
positions of the joints that are part of the skeleton. In contrast, image based methods avoid
reconstructing the human form and rely on eatting features directly from the images in a

video. It is not usual to define an intermediate body model or explicitly identify the body parts.
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The two categories are discussed in detail below with an emphasis on the features used for

action recognitionn depth imageskigure2.1 lists the feature types discussed in this review.

2.2.1 Image Based Features

A diverse palette of lovlevel visual features hasebn proposed for action recognition. The
image based features fall under two typeshose in which the features are encoded from the
human as a whole and those that use a collection of local descriptors obtained from several
image patches. Some methodseuboth types of feature. A pose estimation procedure is
typically not performed when computing image based features. These features can be extracted

even from images in which the resolution is low.

Features
[ |
Image Based Skeleton Based
[ | | Relative Joint
Holistic Local Positions
Representations Representations
—Joint Angles
Silhouettes —Interest Points
—Histograms
——Contours
—Feature Descriptors
—Optical Flow —Joint Selection

Figure 2.1: Features types. The various features used for action recognition are shown in a

schematic representatiofee text for more details.
HolisticRepresentations

Theholistic representations consider the image region of interest in full. They often fallow

down approach, first detecting and extracting the human being before computing the features.
The actions are characterized using the appearance and motion information obtained from the
localized human. These methods are generally sensitive to aodare affected by variations

in viewpoint and occlusion [55]. However, they have been used successfully in many action

recognition works both for colour and depth videos.
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The human silhouette, in effect the foreground of a person in an image, providasde
representation that carries useful shape information about the body pose. The evolution of the
silhouettes over time can be used to recognize the actions. Instead of taking into account all the
pixels within a silhouette, sometimes only the boundpixels are used. These boundary points,
which contain no information about the internal structure of the image, have also been used to

approximate the body poses.

An early work using silhouettes is [115], where the differences between binary silhoaettes
accumulated to construct a Motion Energy Image (MEI) and a Motion History Image (MHI). The
former indicates where motion has occurred while the latter indicates how the motion evolves
in the temporal domain. The MEI and MHI together define an actiomptate and recognition

is performed by matching these templates based on a statistical model of the moments. The
work in [116] employed an extended Radon transform on the binary silhouette to define
features that are invariant to geometrical transformatsuch as scaling and translation. The
actions are regarded as 3D shapes induced by stacking the 2D silhouettes in th¢irpace
volume in [117]. The spadane shapesKigure2.2 (a)) encode both the spatial information of

the body and the global body maotion. The extremities of a human body such as head, hands and
feet are used in a representation of the body posture in [118]. These extremities treteld

from a body contour. In [119], the contours of the MEI are used to obtain a contour coded MEI

that is invariant to scale changes and translations.

It is not always easy to obtain stable shape information from colour images. The robustness of
the exracted silhouettes and contours iebk heavily on how accurate the background
subtraction is. When compared with the colour images, it is much easier to perform background
subtraction in depth images. Hence the silhouettes extracted from depth imagessaedly

noise free. The above silhouette based features have been extended successfully from the 2D

colour images to the 3D depth images for action recognition.

In [120], the MHI is extended to include the depth information. The resulting three dimensional
motion history image (3MHI) augments the conventional MHI with additional channels that
encode the motion history in the depth changing directions. The pixel values in thH3D
include a history of the increase and decrease in depth values. Anyaotizdignition system for
smart homes is developed in [121] using depth silhouettes. The extended Radon transform
employed for the binary silhouette in [116] is extended here to the depth silhouettes. The
ambiguity for different poses is more pronounced argdhe binary silhouettes, while the depth
silhouettes, with a richer set of intensity values, provide a better mechanism to differentiate

between the poses.
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In [74], a small set of representative 3D poirigy(re2.2 (b)) sampled from the depth silhouette

is used to characterize the shape of salient postures. The idea here is that the points inside the
silhouette carry redundant information and the iy shape can be described sufficiently by a
small number of extreme points of the contour. The depth map is projected on to the three
orthogonal Cartesian planes XY, YZ and XZ and points are sampled at equal distance along the
contours of the projection.ffe temporal dynamics of these sampled points are used to infer the
actions. A similar planar projection method is used in [122]. The depth maps are projected on to
the three orthogonal Cartesian planes and the motion energy obtained from the projected maps
are stacked together to form Depth Motion Maps (DMM). The DMM representation encodes
information about the body shape and motion in three projected planes and provides strong

discriminative clues about the actions.

@) (b) (€)

Figure 2.2: Holistic representations. (a) Space time shapes used in [117], containing both the
spatial information as well as the motion information of sikbouette (b) Representative 3D
points sampled from theegthsilhouette to characterize the shape of a posture in [74]. (c) Depth
sequence are represented in a 4D spiame grid with the occupancy value of the grid cells used

as features [123].

The approach in [117], where the 2D silhouettes are stackedemiera 3D spactéme volume,

has been extended to depth sequences as well. In [123], the space and time axes are divided
into multiple cells to define a 4D spatime grid for a depth image sequence as showRigure

2.2 (c). A saturation scheme is used to enhance the role of the cells and make them suitable for
recognition. The obtained feature vectors, called Spaitee Occupancy Pattern (STQiRes

the spatial and temporal contextual information while allowing irtiction variations. In [124],

the depth sequence is described using a histogram of oriented 4D surface normal (HON4D). The
features capture the distribution of the surface normal direntio the 4D space of spatial, depth

and time axes. The 4D space is divided using a 4D extension to a 2D polygon when constructing
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the features. It is argued that the distribution of the normal vectors for each cell in the 4D space

contains more informatiothan the occupancy patterns.

In addition to the shape based features, optical flow based features have also been used. The
pixel wise oriented differences between frames are captured and used to estimate the optical
flow in the image regions undergoindnange. Optical flow based features are particularly
applicable in the cases where background subtraction is difficult and the image resolution is

poor. However they may fail when there are sudden changes in motion.

In [125], actions are recognized based aptical flow measurements obtained from sports
footage in a setting where the image of a whole person may only be 30 pixels are so tall. The
pixelwise optical flow captures motion independent of appearance. Since the optical flow
computation is inaccutea in noisy data, the optical flow vectors are treated as a spatial pattern

of noisy measurements. The optical flow is used to extract pecgmtric motion features in

[126] for recognizing actions such as biking, diving etc. in colour videos. In oadlEvwidor the

noise in the optical flow, a windowing scheme is used here.

The application of optical flow to depth images for action recognition was explored in [127]. The
optical flow is computed as an extension to the third dimension of the traditi@@abptical

flow. However, the computation is restricted to some portions of the 3D scene. A grid based
descriptor is used for representing the flow information extracted from the point cloud within a
temporal sequence. The extraction of optical flow frdepth data has been limited. The main
challenge is that the computation of optical flow on all the 3D points in a scene is prohibitively

expensive.
LocalRepresentations

A collection of features extracted from independent image patches are used in thé loc
representations. These local features effectively capture the shape and motion information in
the video. These methods follow a bottemp approach. First a set of interest points are
identified and then the features are extracted from local patchesiad these interest points.

The features from multiple patches are combined together to obtain a final representation.

Unlike the holistic representations, detecting the humans and performing background
subtraction may not be necessary with this approadbence these methods are suitable even

in the situations where action recognition must be performed in unconstrained poor quality
videos. The methods are generally less sensitive to noise than holistic representations and may
be invariant to rotation andcale. However, it is often computationally expensive to construct

the features based on local representations.
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The interest points such as corners and edges contain significant local variations of the image
intensities and carry information that is stahlader small perturbations. They are well studied

in the spatial domain and have been applied to many object recognition tasks in static images.
The notion of spatial interest point is extended to the temporal domain in [128] by requiring the
image valuesn the spatiotemporal volumes to have significant variations along both the spatial
and temporal directions. These spatiotemporal interest points (STIPs), shdviguie2.3 (a),
correspond to image points that have large image intensity variations andowstant motion.

The features obtained by generalizing the Harris corner detector to the spatiotemporal domain

are used in [128] to identify interéiag events in image sequences.
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Figure 2.3: Local representations. (a) Spatiotemporal interest points detected in [128] during a
walking action (b) Interest points detected from a depth image sequence for the drinkimction

[137]. (c) The numbers of points that fall into the cells of a localized spatial grid are used in [88].

There are other extensions of the 2D spatial interest point detectitechanisms to the 3D
spacetime axes for action recognition. In [129], the image sequences are represented using a
collection of points that are salient both in space and time. The 2D saliency metric is based on
measuring the changes in the informationntent of a circular image region over a set of
different scales. This is extended to the temporal domain by considering cylindrical
neighbourhoods at different scales and temporal depths. The obtained points using the 3D
saliency detector correspond to tagty variation peaks. A 3D Discrete Wavelet Transform
(DWT) is used in [130] to detect spatiotemporal salient regions. The image sequences are
represented in a 3D Euclidean space with time as the third dimension. A multiscale 3D DWT is
applied to decepose the 3D volume and the resulting coefficients are used to compute
saliency. The actions are represented using simple features of the salient regions. The interest
point detector in [135] uses a Gabor filter on the temporal domain. At each interest, i
cuboid that contains the spatiotemporally windowed pixel values is extracted to determine the

feature vectors. The detector errs on the side of detecting too many interest points rather than
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too few. This is motivated by the observation that irredevfeatures generated by scene clutter

are handled well in object recognition tasks.

While the interest point detector selects locations and scales, the feature descriptors capture
shape and motion information in the neighbourhoods of selected pointgusmage gradients.
They encode statistics of the pixel distributions. Similar to the extension of interest point
detectors from the spatial domain to the spatiotemporal domain, the feature descriptors have
also been extended to the spatiotemporal domaimd have been applied to action recognition.
The welknown Histogram of Oriented Gradients (HOG) descriptor [77] used for detecting
humans in static images is generalized in [131] to the 3D spatiotemporal domain. The orientation
of the spatiotemporal graiénts is quantized using a polyhedron and the gradient histograms of
all the 3D cells are concatenated and normalized. The resulting HOG3D descriptor is used to
recognize actions. A similar extension is proposed in [132] to compute histogram descriptors of
spacetime volumes in the neighbourhood of interest points. The resulting descriptor is used to

recognize human actions that occur in movie videos.

The local representations based on the spatiotemporal interest points and feature descriptors
originally ceveloped for colour images have been extended to depth videos. In [136], a 4
dimensional local spatiotemporal feature that combines both colour and depth information is
used for activity recognition. This work is inspired by the local features developeaublfmur
videos in [135]. It uses separate response functions along the spatial and temporal dimensions
to detect the interest points. The features are obtained by computing the colour and depth
gradients from a 4D hyper cuboid centred at the interest poirhe work in [137] detects
interest points in the depth imagd-igure2.3 (b)) using the same technique proposed in [135]
for visible light images.madditional function is employed for correcting the noise encountered

in the depth maps, for example holes and value jumps. A 3D cuboid which contains the
spatiotemporally windowed pixel values around the interest points is used to define a
descriptor. Tie various interest point detectors and feature descriptors used for depth images
are evaluated in [134]. They include the Harris3D [128] and Cuboid [135] interest point detectors
extended for the depth images. The feature descriptors include HOG3D HGG/HOF [132]

and HOG [77].

New types of feature descriptors that are motivated directly by action recognition in depth
images have also been explored. In [138], a descriptor called Histogram of Oriented Principal
Components (HOPC) is proposed to capture fbcal geometric characteristics around each
point within a sequence of 3D point clouds. In order to obtain the descriptor at a point, first
Principal Component Analysis (PCA) is performed on a spatiotemporal volume around the point.

The resulting Eigemetors are projected onto a number of directions corresponding to the
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vertices of a polyhedron and are scaled by the Eigenvalues. The descriptor formed by
concatenating these projected Eigenvectors is used when performing action recognition. The
HOPC desigtor is claimed to be invariant to changes in viewpoints. In [139], a descriptor called
Local Depth Pattern (LDP) is obtained by computing the average depth values in a spatial cell
that is constructed from the interest points identified in a colour imaldee Comparative Coding
Descriptor (CCD) used for action representation in [140] encodes the structural relations of
points in space and time. The video is treated as a spatiotemporal volume of depth values and
a set of small atomic cuboids extracted frahis volume is used to construct a sequence of
codes that define the descriptor. The CCD has some invariance to perspective variations and

sufficiently depicts the depth information necessary for action recognition.

The occupancy patterns of the 3D spaipoint cloud used in the holistic representations are
also applicable as local representations. The numbers of points that fall into the cells of a
localized spatial gridfgure2.3 (c)) are used as features in [88]. These Local Occupancy Pattern
(LOP) features describe the appearance in a sub region of the depth image and are useful in
characterizing the interactions with objects when an actiqreisormed. A set of features called
Random Occupancy Pattern (ROP) is proposed in [141] for recognizing actions. The depth
sequence is considered as a 4D spatiotemporal volume in which the pixel values are binary. The
ROP features are defined by the sunitaf pixel values in a seNolume. There are a number of
subvolumes with different sizes and at different locations. Since the possible set-vbfwies

is prohibitively large, a random sampling approach is used to efficiently explore the sub

volumes.

The methods that rely exclusively on image based features for action recognition in depth videos
are becoming less popular. The estimation of human body poses in real time has become
possible with the use of depth images as demonstrated in [14]. Théellvisual features are
less important when pose information is available. The locations of the various body joints
provide essential information to discriminate between the actions. However, using image based
features in conjunction with the pose informi@n may be effective in some recognition

scenarios.

The action recognition methods in this thesis are based on the pose information. Hence the
above techniques where the features are extracted directly from the depth images are not
applicableon this work. A notable exception is in Chaptérwhere a hybrid of the pose
information and depth channel is used. The information in the depth image patches is used to
characterize the objects a person pamnhing an activity interacts with and some of the feature

descriptors discussed above are employed in that chapter.
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2.2.2 Skeleton Based Features

A number of approaches for action recognition, including those in this tresisyotivated by

the seminal study[2] of motion perception by Johansson, in which it was demonstrated that
actions can be understood just from a small number of landmark joints. A hierarchy of joints
connected by bones forms a skeleton and different joint configurations yield differemtspos

The actions can now be described using a sequence of positions of these joints in the skeleton

rather than by the pixel values in an image.

The human body is capable of a wide range of motions and estimating the configuration of the
human body from asequence of monocular images is Aivial. It is difficult to compensate

the loss of depth information that results from the formation of a 2D image. As alluded to in
Chapter1, the variations in appearance, colour, tesduand lighting further compound the
problem. Despite several years of reseal6h, 58, pose estimation from visible light images

remains largely unsolved [142].

The introduction of depth sensors provided a realistic opportunity to infer the body pbses.
particular, it was demonstrated in [14] that pose estimation can be performed in real time if
depth images are used. The algorithm proposed in [14] powered the commercially available
Kinect sensor, which produces estimates of a skeleton structureigh@mposed of 20 joints.

This algorithm is discussed AppendixB, but in a nutshell, first a depth image is segmented
probabilistically into body parts and then proposals of 3D body joint positions are generated

from this intermediate segmented image.

The availability of 3D joint positions aroused considerable interest in the action recognition
community and several works were published using the skeleton information. However,
recognition is still a challenge even whasing body joint positions. The variations within the
same action class, similarities in motion patterns between the action classes and noisy skeletons
due to sensor errors, occlusions etc. make it difficult to distinguish between the actions robustly.
This necessitates further processing of the joint positions to derive alternative feature

representations [114].

A simple feature for representing human motion is the pairwise relative position where the
difference between the 3D positions of any two joifgsused. The intuition behind this feature

is that an action can be described in terms of the relations between any two body parts. For
SEFYLX SE | agl 09S¢ | OtiAazy Oy 6S RSAONAOGSR | &
2NJ NR IK{ B théf&fure Bréfoi isldgfermined by taking the difference between

the position of a joint and all the other joints. The overall feature is determined by enumerating
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all the pairwise joints. A similar mechanism is employed in [89] to determigaantic skeleton

(DS) feature using relative joint positions.
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Figure 2.4: Skeleton data features. (a) Spherical coordinate system in [11] that uses the hip centre
joints for aligningthec oor di nates with a personés direct]
sized bins to derive a histogram based representétialuint angles representation useflli9)].

(c) A local skeleton descriptor that encodes the relative positions of jointugleslis used in

[156].

In [147], the relative joint positions computed from several video frames are used as features.
Apart from thedifferences between the joints in the current frame, the pairwise differences are
computed between the current framand a preceding frame to capture the motion properties.
The pairwise differences are also computed between the current frame and an initial frame that
approximates the neutral posture. The combination of all these differences forms a feature
representation Instead of using the difference between two joints, the distance between two
joints is used in [148]. The Euclidean distances between every pair of points in the current frame
and previous frames are used in the feature representation. The Euclideamaist between

all pairs of joints in the current and adjacent frames are also used in [159] to determine the
features. This work additionally includes as features the velocity of a joint along the direction
defined by two other joints and the velocity ofi@nt in the direction of the normal vector of

the plane spanned by three other joints.
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Instead of using the 3D joint positions, some action recognition methods use the joint angles as
features. In a kinematic tree representation of the human body [142particular joint is
selected as the root and the remaining joints are connected to the root in a hierarchical manner.
A set of relative joint angles that represent the orientation of the body parts with respect to the
parent in the hierarchy provides alternative representation of the 3D locations of the joints.
The 3D Cartesian coordinates representing the joint positions are transformed into 2D spherical
angles representing the directions of the body parts. The radial distance is omitted in the
representation thus excluding the length of the body parts. This angular skeleton representation

provides some invariance to the size of the human and the orientation of the depth sensor.

In [80], the relative azimuth and elevation angles of each joint witpeetto its parent in the
skeleton hierarchy are used to compute the features. For example, in order to calculate the
feature at the left elbow joint, first the sensor coordinate system at this joint is translated such
that the origin is at the left shoutt. Then a local spherical coordinate system is constructed in
terms of an elevation angle from the XY plane and an azimuth angle from the positive X axis. A
spherical coordinate system is also used in [11] to derive view invariant features. The hg centr
joint is defined as the centre of the spherical coordinates and the spherical coordinates are
aligned with the direction of a persoirifure2.4 (a)). The angles between the limbs and the
angles between limbs and planes spanned by the body parts are used in [151]. The works in
[152, 153 154] also employ joint angles as features for action recognition with [154] using

quaternionsfor representing rotations.

A similar joint angle representation is used in [149] with each joint position represented using a
pair of azimuth and elevation angles that specify the joints in a locally defined spherical
coordinate system. However, the apgl are computed a little differently. The positions
corresponding to the joints at neck, shoulder, spine and hips are considered as points of a torso
that is a vertically elongated rigid body as showkigure2.4 (b). An orthonormal basis is first
obtained from these points and the other joints are represented relative to this basis. The joints
adjacent to the torso such as elbows, knees and headcalled firstdegree joints and are
represented relative to the adjacent joint in the torso in a spherical coordinate system derived
from the torso frame. The same torso frame is used as a reference to convert the stegmd

joints such as the hands ameket at the extremities. A problem with this method is that it may
produce inconsistent angles and ntotal descriptions for the secordkgree joints. This
method is improved in [150] by considering rotations of the torso orthonormal basis when

construcing the angles for the secortkgree joints.

Instead of using the joint positions or the joint angles, some methods propose representations

that explicitly model the geometric relationships among the body parthdmecent worl155],
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the 3D geometriaelationships between various body pardse describedusing rigid body
transformations A family of relative 3D geometityased skeletal representations, referred as
R3DG features, is introducebh [156], a skeleton descriptor that encodes the relativeifians

of a set of four jointsKigure2.4 (c)) is proposed. Given a quadruple of nearby joints, a coordinate
system such that one of the joint positi is the origin and one of them is mapped piplp is
considered. A similarity transformation is applied on the remaining two joints with the

quadrupleencoded by six parameters that are well distributed in a 6D space.

Instead of directly using the jui positions or the joint angles as features, some methods apply
further processing on these to derive sophisticated feature descriptors. For example, in [11] the
azimuth and elevation angles of the hip centre joint are divided into equal sized binsvas sho

in Figure2.4 (a) and the angles corresponding to the other joints are probabilistically assigned
to the bins. The final descriptor called Histogram of Oriented Joints 3D (HOJ3D) is computed
from the histogram bins. In [157], a histogram of the directions betweengdmthe current

frame and adjacent frames is used. The resulting descriptor called Histogram of Oriented
Displacements (HOD) represents the motion of an object based on the distance it moves. In
[160], the spherical coordinates of the joint positions grgantized into a histogram with an
action modelled as a set of histograms. The number of bins is different for the azimuth and
elevation angles. The covariance matrix of the joint positions is used to derive a Covariance of

3D Joints (Cov3DJ) descriptofib8].

Some methods hypothesize that not all the joints contain useful information for action
recognition and a feature selection step is introduced to identify a subset of joints that are more
helpful in discriminating the actions. This may be done miyuaing some -@riori knowledge

on the data. For example in [152], a specific set of 8 joints are identified to recognize activities
related to falling event. The joints on the limbs are excluded since they are perceived to
introduce more noise than uself information required to decide whether a person has fallen.
Similarly in [11], 12 joints are pselected manually before constructing the features. The
excluded joints either contain redundant information or do not contribute to distinguishing the

motions.

Instead of manual selection, in some methods the joints are selected automatically when
constructing the features. For example, in [153] the most informative joints in a time window
are identified based on the relative informativeness of all the pintthat time window. The
joints that have high variance of their angular changes are defined as the most informative
joints. In [160], a pose feature is defined as a weighted sum of all the joint features with the
weights learned using a Partial Leasu&gs (PLS) method. A Support Vector Machine (SVM)

model is trained in [88] to determine how discriminative the features extracted from a joint are.
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This information is used to find the features for a subset of the joints. Even evolutionary
computation mehods such as Genetic Algorithm (GA) have been used to identify a subset of
joints in the skeleton hierarchy that provides a good representation of the motion patterns

[161].

Skeleton based features are used in the action recognition methods in this.tRésissimple
pairwise relative positions of the joints are mainly used as features. More sophisticated
descriptors are avoided. The temporal dynamics of the joints, as modelled by the classification
algorithm, are relied upon to distinguish the actionseTdhassification algorithms proposed in

this thesis are generally agnostic to the features and are designed to benefit from other types

of sequential data.

2.3 Classification

While the previous section discussed the methods used to extract features fromdibe, Whis
section describes the methods used to match the features. Once the features are available, the
action recognition problem becomes a supervised classification problem. A variety of algorithms
in statistical machine learning literature can be usednatch the features. The classification
algorithms used for action recognition can be divided broadly into two typesatic and
dynamic. In the static classifiers, the temporal domain is not considered while in the dynamic
classifiers the variations dhe features in time are explicity modelle&igure?2.5 lists the

classification algorithm types discussed in this review.

2.3.1 Dimension Reduction

Beforeusing the classification algorithms, many action recognition methods apply a dimension
reduction technique. The features extracted from the video frequently contain redundant
information, may be sparse vectors and are sometimes noisy. They are oftemeiry digh
dimensional space, for which a large number of training examples is required. Using a
compressed form of the features hugely benefits the classification algorithm. Hence the features
are subjected to a dimension reduction technique to obtain @usi and compact

representation.

The Principal Component Analysis (PCA) [16] is a commonly used linear dimension reduction
method which projects high dimensional features to a lower dimensional feature space. It is
employed in various works such as [1236,1147] to reduce the number of features. Linear
Discriminant Analysis (LDA) [35], which preserves the class discriminatory information while
reducing the dimensions, is used in [11] and [121]. In [88], a short Fourier transform is applied

to the featurevector at a time instant and the low frequency Fourier coefficients are used as
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features. By discarding the high frequency Fourier coefficients the features are made robust to

noise.

Classification

Static Dynamic
Classifiers Classifiers
NN —HMM
—H-HMM
SVM —DBN
L CRF

Figure 2.5: Classification algorithm types. The classification algorithms used for action
recognition are shown in a schematic representat@eme methods optionally include a

dimension reduction step and use code words. See text for more details.

Nonlinear dimensia reduction methods have also been explored for action recognition. These
techniques, known as manifold learning, identify the underlying low dimensional manifold in
which the high dimensional features are embedded in such a way that the properties of the
original feature space are preserved. The assumption here is that by the nature of the human
movements, the actions do not span the entire feature space and hence they must lie on a low
dimensional manifold. The features obtained as a result of manif@dieg are used by the

classifier.

In [162], a low dimensional embedding of the actions is learnt from the high dimensional
trajectories of the joints using a manifold functional variant of PCA. In [79], the trajectories
described by the 3D joint positiormse embedded in a Riemannian manifold. This formulation
takes advantage of the Riemannian geometry in the resulting shape space when comparing the
similarities between the shapes of different trajectories. The intuition behind this approach is

that the feature descriptors used in vision applications typically lie on a curved space due to the
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geometric nature of their definitions. Another recent work [163] uses an autoregressive moving
average (ARMA) model, which is parameterized using an observabilitixntatrepresent the
trajectory of the joint positions. The subspace spanned by the columns of the observability

matrix corresponds to a point on a Grassmann manifold.

2.3.2 Static Classifiers

When static classifiers are used for action recognition, it is asduthat the feature
representation already captures the information in the temporal dimension. Typically, the entire
video is summarized by a single feature vector. This may result in feature vectors of different

sizes because the number of frames in a&withay vary between the actions.

Many methods such as [131, 134, 152] etc. use adédgatures or bagpf-words model in which

the features are represented using a fixed size histogram. Typically a clustering algorithm such
as Kmeans is applied to theshture vectors to learn a set of centroid vectors called the code
words. Each feature vector is mapped to a code word by the index of its closest centroid. A set
of feature vectors can now be represented by the histogram of the code words. This method of
guantizing the feature vector is often employed to produce a global feature representation of
the entire action sequence when static classifiers are used. The loss of temporal structure with
this quantization does not matter since the static classifiermoiomodel the time dimension

anyway.

The'GNearest Neighbouf®NN) classifier compares the distance between the feature vector of

a test video and the feature vectors of the videos in the training examples to determine the class
label. The label mostoenmon among théQclosest training examples in the feature space is
chosen. ThéQNN classifier has been used for classifying actions in many methods such as [79,
115, 117, 119, 125, 127, 12847]. Different distance measures have been used. For deamp

the Euclidean distance is used in [117], Mahalanobis distance is used in [115], the Chamfer
distance is used in [129], the geodesic distance is used in [79] and a video to class distance based
on naive Bayes is used in [147]. It is also possible tcausistance measure iRNN that
compares two feature sequences, possibly of different lengths. For example, in [154], the

Dynamic Time Warping (DTW) algorithm is used as a distance measure.

The 'QNN classifier scales well with the number of classes alad avoids the over fitting
problem. It also does not generally need a training procedure. However, a stored database of
previously seen actions is necessary with this classifier. If there are a number of training
examples, comparisons become computatity expensive. Hence an adequately

representative set of training examples must be identified with this classification method.
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One of the most popular static classifiers for action recognition is the Support Vector Machine
(SVM) [65]. This discriminatiwaassifier, which learns a hyperplane in the feature space that
separates the classes, has been used by several methods such as [122, 124, 131, 132, 134, 137,
139, 140, 141, 152 157]. Both linear SVMs (e.g. [157]) andimear SVMSs, (e.g. [134]) in whic

the inputs are mapped to a high dimensional feature space using kernel functions such as chi
squared kernel, have been used. The probabilistic variant of the SVM, the Relevant Vector

Machine (RVM) has also been used for action recognition in [129].

The se of SVM as othe-shelf classifier by many methods is unsurprising since it has produced
stellar results for many other computer vision problems such as object recognition and human
detection [77]. However, since SVMs cannot model temporal data thsifiéasperformance

depends on how well the features capture the time dimension.

2.3.3 Dynamic Classifiers

Unlike static classifiers that consider a single data point, the dynamic classifiers analyse a
sequence of data points. The temporal dynamics are explinitiyelled in the dynamic classifier

and the order of the features are considered when matching them. Sequential patterns of data
are observed in many other fields such as speech recognition (e.g. phoneme sequences),
genomics (e.g. DNA sequences) and natarsguage processing (e.g. sentences). There is arich
body of literature on sequential pattern recognition. This survey focuses on those methods that

use a statespace graphical model for action recognition. See [4, 104] for other approaches.

In mest statespace graphical models, discrete valued state variables are encoded as graph
nodes. The edges between the states and the observed features characterize the model. The
most weltknown model in this family is the Hidden Markov Model (HMM) [32]. Sdwience

of states in an HMM follow a Markov assumption i.e. each state is conditioned only on the
previous state and not on the entire previous history. Together with the additional assumption
that the observations are independent when conditioned on therent state, the HMM

becomes a tractable model.

The HMMs are very popular in the speech recognition [51] literature and their use in action
recognition can be dated as far back as 1992 when Yamato et al. [104] used them to classify
actionsintennissDK | & WavYl aKQI WaSNBSQ: WwWol O1KFYR &i
separate HMM and the transition and observation parameters are learned during training. The
classification of an unseen action is performed by comparing the observation likeldfoall

the trained HMMs. The HMMs have been used in several action recognition works such as [11]

and [121] since their introduction in [104].
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The features in an HMM are considered frame by frame and hence sequences can be of any
length. Unlike the sttic classifiers, a vector quantization step that produces fixed size features
is not necessary. The HMMs also allow the observed features to be discrete or continuous. Using
a Gaussian mixture for the continuous densities is common while a quantized sgtbols

using a discrete distribution is also possible.

The HMMs are generative models in which a joint distribution over the features and class labels
is modelled. The HMM parameters learned during training are intended to explain the examples
correspording to the appropriate class label. Such a training procedure does not necessarily
guarantee good results in classification problems. Many works [164, 165, 166] pursue alternative
training criteria to ensure that the learned HMM parameters produce goaskdication results.

For example, instead of the traditional Maximum Likelihood Estimation (MLE) method where
the training criterion is based on the likelihood of observing the examples, a Minimum
Classification Error (MCE) method that minimizes the eiggliclassification error rate on the
training examples or the Maximum Mutual Information Estimate (MMIE) has been used [172].
In a recent work in [175], Fisher kernels are employed to discriminatively learn the generative
HMM parameters. The class simitardistances between the likelihood gradients for same

classes are minimized while those for other classes are maximized.

The HMMs are part of a larger class of models called Dynamic Bayesian Networks (DBNs). There
are other models that generalize the HMa3l increased costs for inference and learning. For
example, the Hierarchical HMM {HMM) [81] extends the canonical HMM by introducing a
hierarchy of states. Each state in theHMM can emit another subiIMM. In [167] the FHMM

is applied to recognize acities that are four levels deep in the hierarchy. When modelling
interactions between two persons, it may be necessary to express the temporal evolution of the
states corresponding to these persons individually and yet also tie the states together. The
coupled HMMs provide such a construct. They are used in [168] for activity recognition. The
method in [168] relaxes the Markov assumption and introduces explicit state duration models
producing a coupled seaMarkov model. An event driven mulgvel DBN iproposed in [169]

in order to model the interactions between groups of people. The scenario is a group level
YSSGAYy3 Ay 6KAOK GKSNB FINB (2L) t S@gSt S@Syia
subS @Sy Ga adzOK Fa Wi SORANAYEAR (K& WWNB RS Y NND
Probabilistic topic models such as Latent Dirichlet Allocation (LDA) can be used to automatically
discover the dominant themes in data. By including temporal information, the sequential nature

of the activity patterns cabe discovered in a better manner, as in [146]. The HMMs have been

used together withLDA In [145], the HMM is combined withDAto produce a hierarchical
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model called Markov Clustering Topic Model that allows simple actions to be combined into

complex global behaviours.

Conditional Random Field (CRF) [33] based models have also been explored for action
recognition. While the HMMs,-HMMs and the DBNs arerdcted graphical models, the CRF is
an undirected graphical model that is discriminative by nature. It models the classification rules

directly and is a popular method for classifying sequential data.

In [53], the spatiotemporal relations between humaages and objects are modelled using a
CRF in order to detect past activities and predict future activities. Since there is an inherent
ambiguity in the temporal segmentation of the sabtivities that constitute an activity, a range

of possible graph straiares are investigated using dynamic programming techniques. In [170],
the Hidden CRF (HCRF) [B5&pplied to recognize gesturdsis not necessary to segment the
gesture substructures because of the use of hidden stateg171],a modified HCRF ised to
categorize actionsThe initial parameters for an HCRF must often be carefully selected. To

overcome this problem, the hidden states are learnt using an HMM.

The classification algorithms proposed in this thesis consider sequences of features and

represent actions by graphical models composed of a set of states. Hence they are closely
related to the dynamic classifiers discussed in this section. However, there is a key difference

from the statespace models used in the above works for action dlaation. The HMM, H

HMM and the HCRF models above assume that the number of states is fixed in advance. This
constraint is relaxed in the models proposed in this thesis, by using a nonparametric extension

that allows the number of states to be learned antatically from the data.

2.4 Bayesian Nonparametric methods

Many methods in machine learning build a model with a fixed number of parameters where the
parameters can be thought of as a convenient summary of the training data. Consider as an
example a solutiorto the clustering problem which uses a mixture of Gaussians to define a
density function over the data. The parameters are the mean and covariance of a Gaussian for
each of the mixture component. In this parametric model, the number of mixture components
(i.e. the clusters) is assumed to be known in advance and hence there is a fixed finite set of

parameters.

The nonparametric models allow the number of parameters to grow with the data. In the above
clustering scenario, a nonparametric solution does noed¢he number of clusters to be
specified gpriori. It is assumed that there is an unbounded number of mixture components

(clusters), with only a finite number of them actually used to model the data.
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Bayesian methods represent uncertainty in the modetapaeters in terms of probability
distributions. The applicability of Bayesian data analysis increased widely with the availability of
posterior inference procedures based on simulations [36, 38]. The Bayesian nonparametric
methods extend the methodologyf@rior and posterior distributions to a model with an
unbounded number of parameters. In order to produce a tractable model, these methods use

appropriate priors to limit the number of parameters required to model the data.

The probability distribution®n an infinite dimensional space are called stochastic processes.
Gaussian Process, Dirichlet Process, Beta Process and Rigmprocess are some examples of
such stochastic processes. The most popular one by far in the machine learning literature is the
Dirichlet Process [19]. It has been used for a wide variety of problems including clustering,
regression, density estimation, latent feature modelling, sequential pattern recognition and
modelling random effects distributions [45], to name a few. Of patéir interest is the
Hierarchical Dirichlet Process (HDP) [44] model which couples multiple Dirichlet Processes
within a hierarchical framework. It models data which comes in multiple groups and captures
both the similarities and differences across thetadgoints within these groups. The
classification algorithms discussed in this thesis uses the HDP as priors to construct
nonparametric models and hence the review here focuses on HDP. The survey in [173] reviews
nonparametric Bayesian inference and tfarly recent survey in [174] discusses other priors

used to induce dependency between random measures.

In [68], the HDP was applied to an object recognition problem. A family of hierarchical models
is defined based on the HDP for a visual scene, witleaesbeing made up of objects and the
objects comprised of parts. The parts are shared between the different object categories. The
number of parts underlying the object categories and the number of objects in a scene are both
learnt automatically from thelata. The HDP is augmented with transformation variables that
describe the locations of the objects in an image. In the recent work in [177], the HDP is used
to learn admixture models of image patches similar to the topic models used for text documents.
It explores the cabccurrence of image features at different hierarchical levels. The HDP model
captures the similarities within image patches using image specific mixture component
distributions. This adapts the topic proportions to each image with smpatbhes favoured for

some images and textured patches for others. The use of HDP prior allows learning the number
of topics from data. The learning algorithm in [177] uses variational inference [16] rather than
the traditional simulation based inferende.[133], the Dirichlet Process is used to automatically
discover recurrent temporal patterns in time series. Activity patterns suclkaaspassing

pedestrian crossingre identified in an unsupervised manner.
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The HDP can be used as a prior over the Hii#dussed in the previous section to derive the
HDRHMM, which is applicable for modelling sequential data. The number of states in an HDP
HMM is unbounded with new states being instantiated when the data is not adequately
explained by the current set ofeges. Thus the cardinality of the states adapts to the data. In
[76] the HDPHMM was used to segment an audio recording of a meeting into different temporal
segments corresponding to individual speakers. Prior assumptions on the number of speakers
in the meeting are avoided by using a nonparametric model. The-HW@M in this work
introduces a new variable to encourage slower transition dynamics between the states. The bias
towards smoothly varying state dynamics provides better segmentation for spedeh lda
[178], the HDRHMM is used to detect activities that occur rarely and have not been anticipated.
An ensemble approach is used here in which first a set of DR based classifiers is used to
learn a decision boundary around the normal data in thatdre space. This boundary is used

to classify activities as normal or abnormal via -@fess SVM. A learning approach for jointly
segmenting and recognizing sequential data is proposed in [179]. Unlike many methods in which
the entire data set is avallde during training, the model handles streaming data by receiving
them in mini batches and segmenting and recognizing them on the fly. The stickiAMMP
proposed in [76] is used in this method as well. The nonparametric nature of the model allows
an unbainded number of classe$he spatiotemporal dependencies in complex dynamic scenes

is automatically learnt using a HBM in [143]. The model captures the state of the scene as

a whole and explains how the state changes over time and how likely the charge

The HDP has been used as a prior over other HMM variants as well. The Switching Linear
Dynamical Systems (SLDS) can be viewed as an extension of HMMs in which each HMM state is
associated with a linear dynamical process. They capture complex tehgepandencies that

exhibit structural changes over time. The HDP prior to the SLDS in [41] produces a model in
which the number of dynamical modes is not fixed in advance while allowing for returns to
previously exhibited dynamical behaviours. A mixtur&bDS is used in [180] to discover actions

that describe lowlevel motion dynamics and behaviours that are composed from actions to
capture highlevel temporal dynamics. By using the HDP prior over SLDS, the number of actions
and the number of behavioumre learnt from data. This unsupervised method segments tracks

into sequences of common actions and clusters the actions into behaviour patterns of people.

The advantages of sefMarkovian models and nonparametric models are combined in [92].
Thegenera@S LINRPOSadaa 2F (GUKS laa A& |dAYSYGSR gAlK
duration is given an explicit distribution. The HDP prior is applied to this Hidden Semi Markov
Model (HSMM) to produce a model in which the strict Markovian constraints ofFti&/1 is

relaxed and the number of hidden states is inferred from data. The-HE¥M structure is
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applied to an unsupervised power signal disaggregation problem. The idea of explicitly
parameterizing and controlling the dweiine for the HMM states is alsexplored in [176] in a
nonparametric setting. In some applications, HMMs may have restricted topologies such as
precluding all states that are already visited. The infinite structured hidden-Brkov model
(ISHSMM) in this work allows building nonpaedric models for the HMMs in which the states

are never revisited and where each state is imbued with an explicit duration distribution.

The infinite factorial HMM (IFHMM) in [181] introduces a probability distribution over a
potentially infinite number © binary Markov chains. The hidden states are represented in a
factored form that allows information from the past to be propagated in a distributed manner
through a set of parallel Markov chains. The distribution dlerMarkov chainss defined using

the nonparametric Bayesian factor model called Indian Buffet Process (IBP). In [182] this IFHMM
is extended to allow for an unbounded number of states in addition to the unbounded number
of nonbinary Markov chains. This model is applied to the Multipleut Multiple-Output
(MIMO) communication systems to infer both the number of transmitters and the number of
transmitted symbols based on the data. A nonparametric generalization of the hierarchical
HMM [81] is presented in [84]. It allows an unbounded numdiiehierarchical levels instead of
requiring the specification of the fixed hierarchy depth. The dependency structure between the
state variables is much simplified when compared with the canonical hierarchical HMM for

tractability. Additionally, cardindli of the state variables is fixed in this model.

Unlike the above works which use nonparametric HMMs in an unsupervised setting, the HDP
based solutions proposed in this thesis are intended for supervised classification. When using
HDPRHMM for classificabn, the traditional approach is to train a classifier for each class and use
the class conditional distributions to determine the classification decision boundaries. As
mentioned in Section2.3.3 this training proedure does not provide the best decision
boundaries in terms of minimizing the classification error rates. The-HdM proposed in
Chapter4 learns the model parameters in a discriminative manner. Further, it allows sharing
information across the action classes and considers both positive and negative examples during
training. It thereby combines the advantages of a generative model and rdisative

classification.

The nonparametric model proposed in Chapfeenables supervised classification by using
logistic regression on the states learnt using a hierarchical HMM with HDP pricrsddaiof

using a linear model with a generative process to capture the relationship between groups of
observations and their associated labels has been explored in the natural language processing
literature. Relevant examples are the supervised Latenicldat Allocation [183] and its

nonparametric extension the supervised HDP [18Agse techniques were mainly used in topic
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models for labelling text documents. The work in this thesis is different, in that it includes an H
HMM, which considers a factordderarchical nature of observations, and an application to a
vision problem involving sequence classificatiomarticular, the inference procedure in action
recognition considers the correlation between the observations in time while in document

labeling tasks this is not usually needed.

A nonparametric HCRF with HDP prior is used in ChépWhile there have been many works

in the literature using HDP priors for directed graphical models, the nonparametrinsgotes

for undirected graphical models is a new research area. The works in [185] and [186] propose
HCRFs with an unbounded number of states. The simulation based inference method in [185] is
not applicable for continuous observation features and the el inference method in [186]

has nonnegative constraints on the observation features. In contrast, the model in Chajster

well suited for continuous observations and does not enforce any constraints on thuedear

HRCF parameter weights. Perhaps the most important difference is that a fully Bayesian
treatment of the model is made. The posterior distribution for the HCRF parameters is

estimated.

2.5 Summary

The action recognition pipeline contains the following stagesnage acquisition, feature
extraction and classification. The various image based features such as silhouettes, contours,
interest points and feature descriptors were discussed. With thelabvitity of skeleton joints
obtained from depth images, recent works use joint information rather thanlexl image
features. The skeleton joints offer a convenient and a fairly reliable mechanism to characterize
actions. The methods in this thesis migiuse simple pairwise relative joint positions as features

unlike the sophisticated descriptors used in many works.

The static classifiers rely on the feature descriptors to capture temporal correlations of the
features, in addition to the frame spedcifieatures for classification. While static classifiers such
as SVM have produced good results with image classification, the dynamic methods that model
temporal evolution are intuitive and compelling for sequential data. When dealing with higher
order event structures such as complex activities, the use of dynamic classifiers is inevitable. The
state-space graphical models are a natural choice when using dynamic classifiers, with the well

studied HMM and its variants having been used in many action remgpiroblems.

The Bayesian nonparametric extensions to HMM and its variants preclude the need to fix the
number of states. Most of these models use the HDP as a nonparametric prior. While this HDP
prior is used in the nonparametric models defined in iis thesis, the key difference from other

works is the applicability of these models for supervised classification problems. The
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discriminative manner in which the HBMM parameters are learnt and the integration of a
linear model with hierarchical HMM meg the models in this thesis suitable for classification.
The fully Bayesian treatment of the nonparametric HCRF also distinguishes the work in this

thesis from others.

The suvey in this chapter is by no means exhaustive. In addition to the popular methods
discussed here, there are Deep Learning approaches based on Convolutional Neural Networks
(CNNs) [187] that avoid explicitly engineering the features and learn complexrdeatu
automatically from data. There are also methods that focus on the recognition speed rather
than the recognition accuracy in order to scale up to large size problems. However, the survey

does cover important methods that are related to this thesis highlights key differences.



3. Background

This chapter provides the technical background essential to describe the thesis contributions.
The two discrete state Markov models used in this thesis, namely the Hidden Markov Model and
the Conditional Random Feklare introducedin Section3.1 and Section3.2 respectively.
Background material necessary to develop nonparametric models is provided in Se8tibhis

includes the stochastic Dirichlet process and its hierarchical extension.

Further technical background can be found in the Appendig. fEchniques used to construct
depth images using active 3D sensiagdscussed in Appendi®. A brief overview of the
mechanism to estimate 3D joint positions from a depth imagerovided in Appendi.
AppendixCprovides an introduction to Bayesian analyasmsl AppendiD provides an overview

of the graphical models. The approximate inference techniques that are necessary to compute

posterior distributions are reviewed ippendixE.

3.1 Hidden Markov Model

The Hidden Markov Model (HMM) [32] is a popular model for representing sequential data. It is
a directed graphical model and a special case of a Bayesian network. HMMs are widety used
many fields such as speech recognition [51], biological sequence analysis [48], econometrics [50]

and natural language processing [49].

In order to abstract the input characteristics and produce a rich set of models, the HMM includes
a discrete variale @ corresponding to each input value. This variable concisely summarizes
the attributes of an input observation at tinte The variable is usually latent and is referred as
ahidden statevariable Leta denote the value assignedto and» & . There is a finite
number O of hidden states andd N phchB 0 . The Markov assumption is now applied to

hidden states instead of the input observations.

a UYag sa 3.1

Further, the model assumes that conditioned on the hidden states the observations, which may
be discrete or continuous, are independent. Leétdenote all variables except the variable at

time instanto. Then,

® U sa (32)
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Figure 3.1: HMM representation. The hidden statashave the Markov property. The

observation® are independent, conditioned on the hidden states.

In order to express the relationship between the latent varialtend the input variables,
distributions over the combined set of variablé$ 4t must now be built Following the HMM
representationshown inFigure3.1, the joint density function of the combined set of variables

factorizes as

N @g Mg nagy 1oy (3.3

An HMM is defined by the state transition distributiap ¢ X and the observation
distribution)y W< . The state transition distribution is specified by the p 0 matrix*“
defined by:

y s T~ ¥ « ?Q n8 &
na xa Q A 0 p8 &) (3.4

The* row contains the initial probability of being in a stawithna Q  “ . The

matrix “ is called the transition matrix. It follows from the definition of (3.4)"ofhat Tt

r pandB * for 'Q m8 0. Theconditional distribution of the input valué is

defined by:

nog & 0— (35)
Here— are the parameters of the famil{pof distributions. The model is tractable for a wide
range of distribution families. It is common to use a member of the exponential famil foat

— —8 — . The set of parameters that govern the HMM model is given by:

“ e (3.6)

Wheno p,n a issimplyn a
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3.1.1 Inference

The marginal distributions) @ gy and 1 a LWy RY o6 are of particular interest when
performing inference in an HMM. The former, referred as filtering, is used to estimate the state
a given all observations at times up to and includinghe latter, referred as smoothing, is used

to estimate the present state conditioned on the past and future observations.

The message passing techniquélined inAppendixD.3can be used to compute the marginal
distribution & in both cases. Note that in the case of an HMM, there are additional observation
nodes that are conditioned upon during inference. The messages in equdlid7s 4nd D.18)

are updated to include the conditional distribution of the obseroat and are now written as:

a | no ©« Na a 5 @ (37)
a fd no &« "na La 5 @ (38)
The marginals can then be computed from the messages as follows:
Nawy *nod a ja (3.9)
NaLy SNow & 5@ & {a (3.10)

The above message based representation of the marginals can also be derived using the
forward-backward algorithm [32]. This classical algorithm defines two term& andf & .

The former term is éorward messagéhat represents the joint probability af stated andthe
observations up to timé. The latter term is Aackward messagihat represents the conditional
probability of all future observations from timg p to "Ygiven the state as . These terms

relate to the messages in @.and (38) as follows:
o o nosa ;4 (3.11)

T a no Mok & #da 312
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Time

v

States 0

Figure 3.2: Viterbi decodingEach circle represents one of the possible states at a time instant
and the lines denote a possible path for the state seqUédrec¥iterbi algorithm determines the

most probable sequence of states (1, 2, 2, 3 here).

In some inference situations, it iseful to find the most probable sequence of hidden states for
a given observation sequence (deigure3.2). Maximizing the marginafs & vy individually
at each node may not yield the most likely state sequence and may even produce an infeasible

sequence. In detail, we wish to find:

GUAOCT Agoagt nox (313
8

The same technique used to distribute the summations efficiently for computing the marginals
can be applied here, with the summations now replaced by maximization. Let us define a new

term| & such that

T e TAgoma ja (3.14)
¢ ¢ T ABe @ ndw a i 4 (3.15)

The maximizing assignment can then be found from therms. This yields the Viterbi algorithm
that efficiently finds the most likely state sequence withirme complexity that grows linearly

with the number of observations.

3.2 Conditional Random Fields
The Conditional Random Field (CRF) [33] is a probabilistic method that combines the advantages
of discriminative classification techniques with graphical maalgllit is widely used for labelling

sequential data. It is an undirected graphical model belonging to the family of Markov networks.
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CRFs have been applied successfully in computational biology [52], computer vision [53] and

natural language processing [54

In a CRF, there is a discrete random variabé each time instanb. Letw be the value assigned
to @. Given an input sequenog the output sequence () is predicted. The outputs
are usually class labels. In a classic examegkea sequence of words andis the sequence of
part-of-speech labels for each word. There is a finite numbenof the labels and & ©

phciB 0 . The Markov assumption is plied to the outputs in order to simplify the graph

structure. The resulting model is referred as a Linear Chain CRF.

In a linear chain CRF, the relationship between the combined set of input and output variables
L Ljs given by a conditional distribution. lretdenote a potential function with values in.

The conditional distributiom «Se factorizes in linear chain CRF as follows:

p
Ve

. [ G Foe (3.16)

Herew e is normalization factor over all output sequences given an input sequence

Ve  Gfo  Fobe (317)

The conditional dependency of each output on the inputs is defined in CRFs through a set of real

valued functions called thieature functions A feature functiorr is defined as follows:

* dehef00 7 (3.18)

It can be understood as a feature on the input sequence that determines the likelihood of an
output value at a time instant. It is not required to have a probabilistic interpretation for the
range of a feature function. It is common to have a number ofuiesafunctions at each time
instant and they may be nonzero only for a particular output. Consider for example that the
input is a sequence of words and the outputs are the category of each word such as Name,
Location etc. A feature function may be definedhave a value 1 if and only if the outputdat

is a Location and the input at appear in a list of country names. The exact form of the feature

functions is problem specific.
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-

Figure 3.3: Linear Chain CRF. The outpuisllow a Markov assumption. The dashed line edge
between nodem andw illustrates an outpub  depending on the input observatiansand

W

The CRF model is parameterized by a set ofwalaled weights, one for each feature function.

Let—be the weight corresponding to a feature functien. The potential functiom at time

instant ois defined as follows in a linear chain CRF:

I ohd hhe AD — O e (3.19

The main advantage of the CRF is that it does not make any conditional independence
assumptions among the input observations andait ecnodel interdependent features. Hence it

is better suited to cases in which the features overlap. This is evideniB),(&here the feature
function accepts the entire set of input variablesand has the flexibility to examine all these

input variablesFigure3.3 depicts thegraphicaimodel of a linear chain CRF.

The message passing teddune derived for the HMM can be used unchanged for the linear chain
CRF. The only difference is in the interpretation. Instead of the conditional distributions used in
the HMM, the potential function as defined in {3) is used in the linear chain CRFeTh

messages in (3) and (38) are now written as:

a4 [ o [ oy e

=
e-
=y

(3.20)

a4 §w [ o hohhe &

=y
e
(0]

(321

3.3 Nonparametric Models
The statistical models discussedboveuse a fixed number of parameters and the parameter
space has a finite dimension. In contrast to thgseametricmodels a nonparametricmodel

usesan unbounded number of parameters and the parameter space is infinite dimensional.
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Even though there are annbounded number of parameters, only a finite subset of these
parameters are used to explain a given datasée number of parameters may grow (or shrink)

depending on the data.

Several welknown problems benefit from using a nonparametric method. @hmnsthe
traditional finite mixture modelling approach to clustering in which the number of clusters (i.e.
mixtures) are specified in advance. In a nonparametric model, the number of clusters needed to
model the data is estimated from the observed data aedv clusters are instantiated as new
data points are observed. If the complexity of the model is measured by the number of clusters
used, it is evident that in a nonparametric model the effective complexity adapts to the data.
The nonparametric models haween applied to a wide range of machine learning problems

including clustering, classification, regression and sequence learnihg [18

3.3.1 Dirichlet Process

In a Bayesian approach the parameters are treated as random variables and are assigned prior
distributions. Bayesian nonparametric methods define a prior over an infinite dimensional
parameter space in such a way that the number of parameters used vary with the data
complexity. The Dirichlet Process (DP) [42, 19] is a commonly used nonparametric pribeove
infinite dimensional space of distributions. It is a distribution over probability distributions. Each
sample drawn from a DP is a discrete distribution. Tractable posterior inference procedures can

be developed when employing a DP prior, makingatpcally useful.

There are several perspectives on the Dirichlet Process. The DP can be constructed frem finite
dimensional Dirichlet distributions. It can also be defined implicitly by an underlying process that
generates a sequence of random variabl&®t another perspective is to describe the random
draw from a Dirichlet Process explicitly using &albed stickoreaking construction. Finally, the

DP can be viewed as the infinite limit of finite mixture models. These perspectives are mentioned

below.

Let'Obe a distribution over a probability spageand! be a positive real number. Led 18
be a partition ovelg suchthatz & gandd . 6 nH Q QA random probability
distribution"O is Dirichlet Process distributed if for every partitiorgofthe joint distribution of

random probabilities is Dirichlet distributed as follows:

06 BROd x O '@ B ®D (322

The draw from a Dirichlet process is denoted@s 00 [ RO, where the base distributioi®is

the mean of the DP and the concentration parametercan be interpreted as an inverse
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variance that controls the variability arouri@® A larger value fof will result in the DP

concentrating its mass arourtde mean.

It is possible to draw samples fro@ becauseO is a random distribution. Lelbo 8 608 6o
be a sequence of independent samples drawn ff@mwith each%. taking values irg. The

posterior distribution of the DP is given as follows:

00 MRO O 6B %> OO @ O BRF ® 0 (3.23)

Here0l M@ 0 denotes the number of samples @ . The posterior distribution of
the DP is also a DP. Thus the DP provides a conjugate prior over distributions, a desirable

property that simplifies posterior computation.

The values drawn frof© are repeated because it is a discrete distribution.-¢8 h—H —
be the unique values amongof8 % and 0 be the number of times— is observed.

Marginalizing outO, a new valués is sampled as follows:

%o §%o 8 %o X —] -0 (324)

where] is an atom locatd at— The probability that— will be repeated depends on the

number of times it has already been observed.

The unique— values induce a random partition of the s@tf i¢ into clusters. Consider the
set of %Q & & A (i K— KaRi&yas BelOrigihg to a clust€r The above sampling scheme
assigns an observation into an existing clu¥darith a probability that depends on the number

U of observations already assigned to the cluster and creates a new clustepraithbility

—. The largef is, the higher the probability that clust&will be assigned more observations.

Larger clusters grow larger, faster. This implies agetisricher phenomenon that is desirable

in clustering.

The above distribution over thpartitions is understood intuitively by th€hinese Restaurant
Processnetaphor shown irFigure3.4. There is a restaurant with an infinite number abtes
(clusters). The first customer is seated at the first table. A second customer sits either at the first
table or in a new table. In general, th& p customer joins an already occupied table with
probability proportional to the numbeb of customers already seated at tatie The customer

can also choose a new table with probability proportional to
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Figure 3.4: Chinese Restaurant Process. The circles denote the tablesiarie unique value
associated with tabl@ The diamonds represent the customers %itlbeing thet  customer.
A new customer selects an existing table with a probability proportional to the number of

customers already seated at a table. A new table may also be selected.

The stickoreaking representation [43] shows explicitly the discreteness of the aand
distributions drawn from a DP.he random distributioO can be determined by drawing an
unbounded number of samples from a Beta distribution and the base distribifoihe

generation process is as follows:

I s x 6 Qophh P p T Q pht8 (3.25)
—sOx 0 0 pht8 (3.26)
"0 T (3.27)

The values— are drawn independently from the base distributi@and{ is a probability
associated with the atorh andB | p. The construction of can be understood
metaphorically by the division of a stick into an infinite number of segments as depidteline

3.5. We start with an unit length stick, chodse according to (25) and break the stick &t .

For the remaining segment, we chodseand break off thé proportion of the remaindenf

the stick and so on. This provides a distribution on the strictly positive integers. It is common to
write the weights i obtained using (25) asf x "O00r , named afterGriffiths,
Engen, and McCloskey

The above representation is uséin the interpretation of the DP as the infinite dimensional
generalization of a finite parametric model. Consider a finite mixture witomponents.The

density for this mixture model over observationss represented as follows:
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Figure 3.5: Dirichlet ProcessLeft A representation of the Dirichlet Process mixture in a

graphical format. The variables are represented as nodes in the graph. The latentvariable

indicates the mixture component an observatibnbelongs to. The replicated variables are
compactlyrepresented using the plate notation [2Bhe rectangles denote replication with the
number of replicates given in the bottom right corRéght The stick breaking construction. The
stick is broken d@t and subsequent weiglits are obtained asandom proportions of this

segment.

Neo 0 i e (328

Here0 is the weight for theQ component of the mixture and— is a set of parameters

associated withthe Q component. This density can also be written as

;6 A 8—"0 —Q— (3.29)

where"O is a mixing discrete distribution and is defined as follows:

O 0 (3.30)

In the nonparametric extension to the finite mixtures, the mixing distribution in equati@v)3.
is used instead of (30). This givesise to a mixture model with an unbounded number of
mixture components. The DP is used as a prior @end the resulting mixture model is called

the DP mixture [42]Thel  terms in (327), which defines a probability distribution on the set

d , is interpreted as the mixture weights. This probability distribution is chosen at random via

the stick breaking process.
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The process by which observatiorsse generated from a Dirichlet process mixture with

concentration parameter and base distributin "'Ois described as follows:

0] Generate the stick breaking weiglitsasf sf x "OO Uy

(i) Draw independent samples of the parameters from the base distribution as
—sO¢ ChQ ph; 88

(iii) Draw a latent variabley that indicates the mixture component that the
observation belongs to. This is done using the stick breaking weights and is denoted
asa g x TR p80.

(iv) Draw an observationw given the latent variables and the parameters as
wsdh— x O0— hQ plkB & pBG. Here "O denotes the

distribution family of the mixture component usirggas its parameter.

Figure3.5 illustrates this process. In the Dirichlet process mixture, the mixture compaofent
described by the distributioiO— . Note that the%o discussed in the Chinese restaurant
process isimply— . The probability that an observation is assigned to thecomponent is
I 8Note that the number of components © H. Thus the DP can be used to model a mixture

with no upper bound on the number of components.

3.3.2 Hierarchical DirichletrBcess

In many situations, we encounter data organized into distinct groups. There is a need to capture
both the similarities and differences across the individuals within these groups. As an example,
consider the problem of modelling the topics [183] erdded in a corpus of documents. A
document consists of a number of words which arise from a set of underlying semantic themes
referred as topics. We want to describe the way in which the topics are shared across the
documents and yet capture the documentesjific properties of a topigi.e. we wish to share a
common set of clusters (topics) among several related groups (documents). The Dirichlet
Process as such cannot be used to model grouped data. The need to share clusters among groups

motivates the use ba hierarchical model.

TheHierarchical Dirichlet Procedd@P [44]isanextensionof the DRIt is used to model groups
of data. Each group has a separate DP prior but all these DPs are linked through a global DP. This
provides a mechanism fonferring group specific probability masses while at the same time

shating parameters across the groups

As before, letO denote a draw from a Dirichlet Process with concentration paranjei@nd a

base distributionQ The HDP defines a set of random distributiol®  over 0groups of



CHAPTERGBACKGROUND 62

data. Given the global distributid®, the set of distributions over thegroups are conditionally
independent.
"0 g oK ‘001 RO (3.31)

"0s FOx 00| FO Q pB O (3.32)

The’™Q@ I NP dzLJQa ROchniahd \aldes drawyi frofO with| N a controlling the
variability aroundO. The distributioriO can be interpreted as the mean distribution across alll

the groups.

Figure 3.6: Chinese Restaurant Franchise. The diamonds represent the customsss baihg

the¢ customer at restaurai?The circles denote the tabléhe dishes are shared across the
restaurants with the dish (parameter)oeing reused. The tablesand dishes are selected based

on the proportion of them being used. A new table or a new dish may also be selected.

The HDP can also be described using a metaphor, now callé&hihese Restaurant Franchise
illustrated inFigure3.6. There are nowrestaurants (each corresponding to an HDP group) with

all the restaurants sharing a single menu of an infinite number of dishes (parameter%). Let

denote the¢ customer from the 'Q restaurant. Let— h—HM — be the dishes served
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across all the restaurants and ket denote the dish served at tabtein restauranfQNote that
each%. is associated with onel while each-F is associated with one—. Let the number of
tables in restauranitbe O gA new customeféo  selects an existing tabkeproportional to

the number of customer8 already seated at the table. A new table may also be selected.

5
%0  S%o 8 %o X -] | -0 (3.33

A dish'Qis selected at a table based on the numbey of tables across the restaurants serving

the dish. A new dish may also be selected with a probability where 0 gis the total number
B8

of occupied tables.

+tstrtBrtBLtrt x Vs, [ o (3.34)

r U r Ug

Similar to the stick breaking representation of the global distribut@nn equations (25) to

(3.27), the group speciti"O distributions can be explicitly written as follows:

0 “ (3.35)

Thel  atoms are shared across all the groups but each gfthgs a different set of weights
“ . Let® “ andB  *“ p. The stick breaking construction for is based
on independent sequences of thé random variables drawn from a Beta distribution. It

is written as follows:

“ sfhx6Qoih h p f Q plt8 (3.36)

0 plt8 (3.37)

The weights are independent giveh and each' is independently distributed according to
00| i .Boththg and“ terms are interpreted as a random probability distribution on the
setd . The average weight of the clusters is determinefl bwhile| controls the variability of

the weights across groups.
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Figure 3.7: Hierarchical Dirichlet Process. A representation of the HDP used as a nonparametric
prior for clustering grouped data. The variables are represented as nodes in the graph. The
concentration parametér| and the priofOare shown as texThe latat variabled indicates

the mixture component an observation belongs to. The parameter is shared by all groups

while the mixture proportioh may vary among the groups. The plate notation is used.

While the DP is used as a prior fomixture model for clustering data, the HDP is used as a
nonparametric prior distribution for a set of mixture models that are used for clustering grouped

data. The process by which observations are generated based on the HDP is given as follows:

I sfx 00l
“ o fx 00| H Q pB Y
— g0 "0 0 it (3.39)
a s“ x Q pBUE p8O
® sa& h— x "O0— 0 pBUE p8O

Hered is a latent variable that indicates the mixture component that e 3 N2 dzLJQ &

observationw belongs to. The, discussed in the Chinese restaurant Franchise is For a

given componeniQ all thebgroups share the same set of parametersbut theQ group uses

“ proportion. This process is shownkigure3.7.

This thesis uses HDPtenxsively to enable construction of nonparametric models.



4. Discriminative
nonparametric HMM

In this chapter, a nonparametric HMM based on the Hierarchical Dirichlet Pr@d&43) is
proposed for classifying human actions. The proposed model addresses an important limitation
of the classical HMM, namely the need to fix the number of hidden staf@$oa. The novel
construction provided here produces a flexible model théeter suited for classification tasks.

The formulation enables information sharing and allows the use of unlabelled examples.

The chapter begins with an overview of the proposed approach in Setticand introduces

the HDPHMM in Sectiond.2. Instead of using separate models for each action class, a single
HDRHMM is used to model all the actions. In order to distinguish between the actions, the HDP
is extended by an additional level and class #metransformations are introduced for the
distributions of HDP parameters. SectibBelaborates on this model structure. During training,

the parameters are learnt in a discriminative manner. This process is discussed om &&cti

and is followed in Sectior.5 by the derivation of the posterior inference procedure.
Experiments are conducted on two different publicly available datasets thatiato depth

image sequences. The information in the skeletal joint positions is used to classify the actions
using the proposed model. The results are presented in Settihe chapter ends with some

concluding remarksniSection4.7. Portions of this chapterave beerpublished[192, 193].

4.1 Overview
Depth sensors such as Kinect, with inbuilt human motion capturing techniques, provide
SadAYlLGdSa 2F | KdzYhy &1 SheS[idp Highdeved dtior® 2ah Yal  LJ2

inferred from these joint positions. However, robust and accurate inference is still a problem.

Given a sequence of 3D joint positions, a state space model such as a Hidden Markov Model
(HMM) is a natural way to represemmn action class. The HMMs are proven models for
sequential pattern recognition [48, 490]. Recall that in an HMM, a sequence of discrete state
variables are linked in a Markov chain by a state transition matrix. Each observation is drawn
independentlyfrom a distribution conditioned on the appropriate state [32]. If each action class

is represented usingreHMM, the model parameters corresponding to a given class, namely the

state transition matrix and the state specific observation distributions, carelarnt from

65
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conditional posterior densities.

In classical parametric HMMs, the number of states must be specifipdoda. In many
applications this numhbeis not known in advance. For instance, there is fpuiari knowledge
about the number of intermediate poses that comprises an action. This number will vary
depending on the complexity of the action and the number of subjects in the data set. A typical
solution to this problem is to carry out training using different choices for the number of states
and then apply a model selection criterion to find the best result. There is little understanding
of the strengths and weaknesses of this procedure and aftenplex application specific tuning

is involved.

Instead of this ad hoc model selection, it is preferable to estimate the correct number of states
automatically from data. This allows the model complexity to adapt to the size of the data set.
The nonpararatric methods [18, 19] provide the necessary statistical framework to model the
data with an unbounded number of parameters. The number of parameters grows with the
sample size. In [44], a nonparametric Bayesian method, the Hierarchical Dirichlet PHIZB3s (

is defined. The HDP is used to construtt-tMM with an unbounded set of states. The prior
distribution on the HMM transition matrix is over an infinite state space but for a given set of

observations, only a finite number of the states is used falar the data.

It would be straight forward to use separate HERIMs for each action class and train them
individually. However, this would prohibit the sharing of training examples across the action
classes. To see the merit of sharing examples, coniidé an action is a sequence of poses. It

is quite likely that two or more actions share many similar poses with possibly a few poses
dzy AljdzS G2 LI NI AOdz | NJ | Ol A 207300 MERGFUEAIIY | @6 K | I¢
same set of poses witonly the temporal order of pose sequences differing. What necessarily
differentiates one action from another are the transition probabilities of the poses. If a particular

pose is absent from an action class then there is a low probability of transititre state for

that pose. In this work, a single HBIRM is used to model all the action classes. The canonical
HDRHMM is extended with an additional class specific hierarchical level that accounts for

differences in the state transition probabiliti@snong the action classes.

In the canonical construction of the HIBMM, the mixture components are shared across the
hierarchical levels. It would be more flexible to allow the mixture components of an action class
to varyslightlyfrom the other classes;e. we seek a class specific transformation of the shared
mixture component parameters so that the classes can be discriminated in a better manner.

Note that this is different from using individually trained HB®M models where the
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component parameterare not shared among the classes. In this work, the mixture components
are assumed to have Gaussian distributions, and class specific affine transfosudtiine
Gaussian distribution parameters (mean and covariance) are Aseolverview of the approdc

is provided irFigure4.1.

M= 5%
M‘% =

Shared Parameters
)
I )
e

o

Training Examples

6%6
<0 @ [+ ¢

)

Class Specific Parameters

Figure 4.1: Discriminative HDPHMM overview. Training examplescontain joint position
sequences from different action classes. The examples from all these action classes are combined
in order to infer thesharedpose transitions and pose definitions. P1, P2, P3 and P4 Shéned
Parametergyroup represent the various poses (states). Each pose is defined by a distribution. The
actionclass specifidransitions and distributions are inferredtesformationsof this shared
representation. Pos&may be absent in the first action class and hence there is a low probability

of transition to it (shown with an absence of arrow to this state). The action class labels in the
training examples and the learned shapadlameters are used to infer the class specific

parameters.

The HDRHMM based classification approach described above defines a joint distribution of the
input data and class labels to train the classifier. gjbigerativemodel allows the augmentation

of the labelled training examples with unlabelled examples and thus provides a framework for
semisupervised learning. In contrastdacriminativemodel usedhe conditional distribution

of the class labels given the input data to train the classifiés djproach often produces good
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classification results [64]. For example, Support Vector Machines (SVMSs) [65] use a margin based
likelihood that maximizes the distances of the feature vectors to the classification boundary
while minimizing the empirical ssr rate on the training set. Inspired by this, a margin based
term is incorporated in the likelihood function used in HBMM training. The inclusion of this
discriminative term in the otherwise generative model, compensates for potential model

misspeciftation and leads to better classification results.

Incorporation of a discriminative term into the HIBRM model makes the posterior sampling

less straighforward. The HDP model as such has no provision for including an additional term
for the mixing prgortions. To address this, a normalized gamma process formulation [66] of
the HDP is used. This allows a scaling of the mixing proportions of a DP through a discriminative
weighting term. For the mixture components with Gaussian distribution parameteespiior

is no longer of the same form as the likelihood and hence is not conjugate. Slice sampling [39]
based techniques allow sampling from any likelihood function, even if the normalization is
unknown. A Gaussian prior is placed on the parameters dipti¢zl Slice Sampling [67] is used

to sample the posterior efficiently.
Contributions

The main contributions in this chapter are the construction of a discriminative nonparametric
HMM and the derivation of a tractable inference mechanism. The proposedehtwas the

following advantages:

(@) The nonparametric formulation allows the number of states to be inferred
automatically.

(b) The use of a single HBVM promotes information sharing.

(c) The discriminative terms ensure that the HEIRIM is suitable for classifidah tasks.

(d) The model can be used for semipervised learning.

(e) The model is generic, in that it is applicable to other sequence classification problems.

4.2 HDRHMM

Recall the HMM in Sectidhl. The HMM is parameterized by the transition matriwhere the
"Q row of the matrix defines the probabilities of the transitions from the st@&he hidden
statesd 4 have the Markov property. The probability of transitioning to a statet a time
instantofrom a previous statér  is specified by the transition matriAdditionally, there are

state specific observation density parameters where is the number of hidden states.

For the Bayesian version of the classicalNHM is necessary to introduce priors. Note that the

rows of* cannot have independent priors because the transitions out of the different states
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must be coupled. Let the priors Bex O Q+ and“ x O"Qit 8§ where O Qis the
Dirichlet distribution andr A are some positive real numbers. The observation density
parameters are assigned a pri@ With this definition, an observation is generated in the

Bayesian HMM as follows:

I osrx 'O"Q‘lll;— 4.1

“ g hx 00 8T Q pB O 4.2)
—sOx 0 Q pBo (4.3)
as'hy x ¢ o pfB8Y (4.4)
wsah— x "O— o pMBTY (4.5)

Figure 4.2: Graphical representation of HEHMM. The statesi 4 have the Markov property.
An observationw is conditioned on the state. The states are generated from the transition
matrix * and the observations are generated from the mixture component parameters. The

number of states and the number of mixture components are unbounded.

This generation process is remarkably similariie process by which the observations are
generated using HDP shown in Equatio38B. Section3.3. A group specifit distribution in

the HDP is a state specific distribution in the HMM with greupsin the HDP formulation
corresponding to thestatesin the HMM. If an HDP prior is assigned over the state transition
matrix, the matrix will have an infinite number of rows and columns with the HDP semantics
ensuring that only a finite subset of thesetetmare actually instantiated. Thus the HMM is now

nonparametric. The HBRMM can also be interpreted as an infinite extension of a dynamic
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mixture model. The mixture weight of an observation depends on the previous observations and

there are an unboundedumber of mixtures.

To complete the definition of the HEMM, let "Obe the Gaussian density. The density
parameters for the observation density associated with st@are now the meart and
covariancd . Itis convenientto write— * R .Letthe mixture mean have a normal prior

FX “ B and let the covariance have an InveMéshart priortx "‘Ow M . An

observation is generated in the nonparametric HMM as follows.

I srx "O0Ur (4.6)

“ g fix 00 R Q pltiB 4.7)

s R xT i Q pitlB (4.8)

t s Bx Ow B Q pltfB (4.9)

as by x oo o piB8Yy (4.10)

wsdh i x ¢ R 0O pBTY (4.11)
Figure4.2 provides a graphical representation of this HBRM.

4.3 Model
Let a training dataset comprising observations®  ® together with labels

® be givenHere® & B foo B ho is aninput sequence andd N p8 a8 6 is
the clasdabel corresponding to the sequence. For example, in action classificatian, is an
input image sequence ard is an action class label. The observationstaei labels are drawn
independently from the same fixed distributioBachew N s corresponds to the features
extractedat time stepofrom the input. Further discussion of the features is deferred to Section
4.6. Let the set of all model parameters be The objective is classification, where given a new
test observation sequence the corresponding action classtnust be predicted. A suitable

prediction is

G A O C InAdgL (4.12)

The distributior) Gsaftad can be written in the form

s N wsch—n —sohd Q— (4.13
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The model proposed in this chapter differs from the canonical-HDI® in two key aspects.
First, an extra leveih the HDPis introduced to model class specific mixture proportions as
discussed in Sectich3.1. The second difference is the extension of the HDP parameter space
with class specific distributions for the mean and covariancarpaters.This novel formulation

is presented in Sectiof 3.2

4.3.1 Two level HDP

If each action class is represented by a separate HRIRl, then — | H H g h & are
the parameters for clag§y — — is the set of all parameters for the different classes and
'hH R H Fe are the hyper parameterslt would be straight forward to estimate the
posterior density of parameter§y —s&h if each HDPMHMM model were to be trained
separately i.e. a class conditional densijtyosc can be defined for each class and the posterior

can be estimated from

n—sohd N — N s— N (4.14)

However, in this approacthe training examples from other classase not used whetearning

the parameters of a class. As notedSttion4.1, many actions contain similar poses and it is
useful to incorporate pose information from other classes during training. Specifically, the
inclusion of additional observations for a similar pose benefits estimation of the Gaussian
mixture parameters. The state transition parameters must continue to be different for each

action class since it is these parameters that necessarily distinguish the actions.

Instead of separate HBIRFMMSs, a single HDRMM is definedfor all the action classes albeit
with an extra level that is class specific i.e. in addition to the global distribi@@md the state
specific distributionsO in the canonical HORhere are nowclass specific distributiori® for

every state.The tweolevel HDFHMM is defined as follows.

"0 g Fox ‘001 A0 (4.15
"Osl FOx 00| RO Q pkefB (4.16)
"0 s_fi0x '00_RO w pBs (4.17)

Just as théOs are conditionally independent givé@, the "Os are conditionally independent
given’O. All the classes for a given state share the same subsaixtdire parameterdut the

proportions of thesemixtureswill differ for each clasasdetermined by thepositive real valued
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concentration parameter_. The varyingnixture proportions induce differences ithe state
transition probabilities betweerthe action classes and ensure that classification can be

performed.

Recall the stick baking construction of the canonical HDP presented in Equa(i®85) to
(3.37). The extension of this construction tbe additional class specific measugestraight
forward. In addition to the stick breaking weightsand “, a new weight tern» is now
introduced to represent the second level. Independent sequences of ¢he random

variables are drawn from the Beta distributiGippendixC.3). The formulation igsfollows:

e s A x6Q0od hp “ Q plts
. . p e 0 phkt8 (4.18)
0 .
Similartg and“ , e . can be interpreted as a random probability distribution on

the setd . Assuming the variablés,‘ andt are defined as in equations (4.7) to (4.8
generative story for an observatian belonging to clasg sampled at timéfrom the two level
HDRHMM is written as

o s_H x 'OG=H'
asa R Ghe T x e (4.19)
Gsah' B xT ¢ R

Consequently, for the two level HEHMM, the set of all model parameters is-

THP B gh g withfh A R R e h_as the hyper parameters.

4.3.2 Transformed HDP Parameters

In the HDR the samemixture component parameterare used by the different groups i.e. the
parameters— remain the same in dlD (and"O in case of an additional level). This is less flexible
than allowing the parameters to vary across the groups. As an exammgeposition and
orientation of the joints im squat pose mighhostlylook the same awoss action classes such
as situp, sitdown and pickup while it mayslightlydiffer for pickup classin this case, it would

be useful to capture the deviation from the standard squat poseHermickup action clasg
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i.e. we wish to introduce a transformation of the parametayse for eaclaction classfrom its

canonical form—.

The affine transformation of the Gaussian distribution parameters meand covariance is
considered herg68]. Let” be a vector andet ¥ be an invertible matrixThe transformation of

the Gaussian didtsution defined by’ , ¥ is as follows

‘ H_ ¥ » FTX. 'hf (420)

It is usual to restrick in order to ensurecomputational tractability. A useful simplification is to
set ¥ equal to the identity matrix. This is equivalent to restricting the transiations to a

translation of the Gaussian mean byOtherrestrictions include requiring to be diagonal, to

e

jd

Figure 4.3: Graphical representation of the two level HBERIM. The HDRHMM is extended

account for scaling.

Hs

with the class specific mixture weights and class specific transformation parametersThe

observations on the left side are generated by the parameters fab clgswhile those on the

right side by the parameters for class 6.

The class specific transformation based on (4.20) redunted here to the Gaussian mixture

parameters. Let the variable responsible for shifting the mean have a zero mean normal prior
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-

ie. "X mhm . The focus here is only on scale transformations. hissassumed to be
diagonal. In effect, the scaleansform variable is now a vector and independent log normal
priors can be assigned for each elementd.& % x ~ 7 h, . Anobservatiomy belonging

to classwsampled at timed from the two level HDIMMM that uses Gaussian mixtures with

transformed parameters is generated now as follows.

I g 00 “ g fx 00 i e s_H x O0_f
s R R t s B x 0w M
" smx * Tim aemg R x" TR (42
a sd& Mo che ﬁﬁ X .
o s fo Gt R o RT R Mg T oo Rty

Inclusion of the class specific transforms can be interpreted as an extension of the parameter
space. The globdlistributionis now being drawn frof>x 00 FO "0 & &0 , where’'O

is a base distribution for parameters that are shared across the classes@{HI&iO are class
specific. During inference, the posterior distributions for the shared parameters do not depend
upon the class labels unlike the class specific parareetWith the augmentation of transform
variables, the set of all model parameters4s T HbP BH ghH g 8w & and

rh R AR B hhmA h arethe hyper parametersA graphical representation of the full

model isshown inFigure4.3.

4.3.3 Chinese Restaurant Process Metaphor
The mixture components generated Hye extended HDP modehln be understood usiniie
ChineseRestaurant Procesmetaphor discussed in Sectioi.3.1. Recall that in the HDP

analogue, multiple restaurants share a single menu of dishes across the tables in the restaurants.

In the HDP extended to a second level, each restaurant in the franchise has sectioaly

family, kids and adults section. There is still a single menu across the sections and the
NB&AGFdNI y(ia® DAGSY (KS OdzAd2YSNRGverL®RAFHINNS R
selects a table in proportion to the number of customers already seated in the tables of that
section of the restauranfThe customecan also select a new table in that section. Each table is
now assigned a dish in proportion to the mber of tables across the sections, across the
franchise serving that dish. In this td®vel HDP metaphor, the sections correspond to the

action classes.
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In the case of twdevel HDFHMM with transformed parameters, each dish now contains a base
part anda flavouring part. A dish contains flavours for every section viz. spicy flavour for family,
bland for kids and hot for adults. A dish served at a table in a given section (of any restaurant
in the franchise) has its base part seasoned according tatfBiO G A 2 y Q& Ff | @2 dzNIp
the flavours correspond to the class specific transfation parameters while the base part

correspond tathe parameters shared across the classes.

4.4 Discriminative Learning

In the two level HDIMMM with transformed parmeters described above, let the model
parameters specific to a clashe— ¢ [ g fir g andlet the shared parameters across
the classesbe- T HH g R g .Notethat—m —° — . The posterior distribution
for the chss specific parameters is vesinilarto the form of (4.14), butwith an additional

conditioning orthe shared parameters

N — s@th— © 1 — N s—h— (4.22

The joint distribution over the inputs and labglssftos— is used in this formulation. This type
of learning is intended to bestxplainthe training examples belonging to a class. In the
asymptotic limit as the number ofraining exampless increasedthe distribution specified by
the modelconvergedo the true distribution of data This generative modés$ a very effective
way of learning. Howevein practice, the specified model isften inaccuratebecause of a
shortage of training data. In addition it may be necesstoycompensate for model

misspecificiion [64].

In contrast,the large margin based training used in discriminative learning methods often
produces good classification results. The empirical error rate on the training data is balanced
against theerror rate arising from thgeneralization ofhe test data. The tolerance to mismatch
between training and test data is due # wide separation between thelassifier decision
boundaryandthe classeg i.e. the decision boundary has a large margatween it andthe
training examples. Since the staconditional data likelihood is used during prediction in the
generative model above, the classifier margin is a function of the model paramatgusting

the parameters alters the margins.

There is an implicit assumption {@.22)that the parameters of a class are (conditionally)
independent of the parameters of other classes+e.U — s—. Let us relax this assumption

and consider a slightly different formulation.
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N —soith—h- © fh— 2 — —REh- = Ao s—h- 4o
d
Here the Bayes theorem product rule fipr— sh— is used The introduction of the second

termn — —h , referred henceforth as the discriminative term, offers more flexibility. For
example, thigerm can be usediuring inference to minimize classification error on the training
set and introduce margin constraints. This discriminative term compensates for the model

misspecification and improves classification results.

4.4.1 Scaled HDP and Normalizédmma Process

The HDP with its stick breaking construction does not provide any mechanism for influencing
the pergroup component proportions through additional factors. This makes incorporation of
the discriminative ternduring inferencefor »  tricky. An alternative construction for the last
level in the twelevel HDP in (4.18) is

(4.24)

A Dirichlet distributed vector can be generated by independently drawing from a gamma
distribution and normalizing the values. Its nonparametric extension relates to the above
normalized gamma process construction"®of. The representation in (4.24) asich does not
allow using an additional factoLet each component be associated with a latent location and
let the group specific distribution of the HDP be formed by scaling the probabilities of an
intermediate distribution. More specifically, let usodify the last level in the twdevel HDP
described in (4.17) as

"0 s_HOx '00_RO

5 (4.25)
"0sOh © 0 zQ

Here"O is an intermediate distributiotior the existing parameters and is a scaling factor

that depends on the latent location. Based on sugaledHDP structure, the secondriable of

the gamma distribution can be used to draw the class specific component proportions as

« s A h x Ovaad M (4.26)
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The derivation of (4.26) follows from the property thatif "Oc) & & ép and is scaled by
Tito produced @ thendx "0 & & & [66]. This additional scaling factor allows the
incorporation of the discriminativestm. During inference, is drawn in such a way that the

posteriore is primed for classification.

4.4.2 Elliptical Slice Sampling

Conjugate priorscannot be usedor the transform parameters g hr g because of the
presence of the discriminative term. Hence there is no closed form solution for posterior
inference of these parametersSlice sampling [39] provides a way to sample from a density
function without having to find a good proposal distritarti As discussed #ppendixE3, the
challenge in slice sampling is to defiam appropriate horizontal slicewhich encloseghe
current samplevalue from whicha new value will be drawn. This is especially diffiduthe

target variabletakes values in a high dimensional spaces#sicase here

If the density function is a product of a likelihood function and a zero mean Gaussian prior, then
Elliptical Slice sampling [67, 103] provides a better sampling mechafise idea in this

algorithm is to define an ellipse that passes through the current sample value and use a
likelihood threshold similar to slice sampling for determining a slice. It is much easier though to

define a sampling interval with an ellipticaics! unlike slice sampling.

LetD %o be a likelihood function and let the prior for the target variabdeébe a zero mean
Gaussian distribution 1 . Letd be an auxiliary variable drawn such thét 11 18D %o

where " is the uniform distributionLet an ellipse at the current valGé be defined as

%o [ % ATTO T i QT (4.27)

wheref x©  mift and[ is a parameter denoting the angle withv mit* . This ellipse goes
through both the current valud and an auxiliary drawn from the Gaussian prior. The
algorithm proposes angles from a bracket h which is shrunk repeatedly in an
exponential manner until an acceptable value is found. Similar to slice sampling a new value

%o [ is accepted ib %o [ 0.

The values considered for an update lie in a two dimensional plane. The elliptical slice captures
the structural properties of the Gaussian prior in a better manner than the horizontal slice used
in slice sampling. This algorithm provides an efficierechanism for sampling even high
dimensional variables. Elliptical slice sampling is used here for inferring the transform

parameters’ g hy & from the density function defined in (4.23).
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4.5 Posterior Inference

The central computation problem is gesior inference for the parameterdt is intractable to
compute the exact posterior and the Markov Chain Monte Carlo (MCMC) technique is used to
draw posterior samples from) —s& . Recall that the shared parameters are

IHH ghH g and the class specific parameters are- « H g hr g  with

AR A R fe A R being the hyper parameters. Gibbs sampling, as discussed in
AppendixE 2, is applied here. The shared parametersare sampled first and then gives,

the samples for each class are drawn one by one. The inference algorithm is outlifieolen

41.

4.5.1 Truncated Approximation

For sampling the HDRMM parameters, one option is to marginalize over the infinite state
transition distributions' and component parameters A and sequentially sample the hidden
states @ . Unfortunately this technique, refeed asdirect assignmenbr collapsedsampler

exhibits slow mixing rates because the HMM states are temporally coupled.

A better technique is tdlock samplehe hidden state sequencé using the standard HMM
forward-backward algorithm discussed ircion 3.1.1. In thissampler the state transition
distributions and component parameters are explicitly instantiated. Slice sampling techniques
[69, 70] or truncated approximations [71] can be employed to take account dathighat the
number of states and parameters is unbounded. In almost sure truncations, for a given number
0 the stick breaking construction is discardeddor pi) ¢ 8 Hbby setting p in equation

(3.25). An alternative technique is to considewaak limit approximatiorto DP and set

ooy 1 O "Q%FB % (4.28)

Here 0 is an upper bound on the number of components andd&s Hs, the marginal
distribution of this finite model approaches the DP [76, 91]. This weak limit approximation is

used for its computational efficiency in this work. With this approximation, (4.21) simplifies to

[

Ly odgis!

6
o fix 0T MBI (4.29)
. st x 00 B
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The prior induced by HDP ensuthat only a subset ob states are used. Thigvalue is usually
set to a large number. Given this truncated approximation, the standard forvacttward

algorithm [32] is employed to sample the hidden state sequences.

4.5.2 Sampling State Transitions
The samgdr is initialized by drawing the initial values of the parameters from their respective

priors. For a training exampte whose® @) given the state transitionse h i . the

component means ¥ ” and the covariancesy t+ ¥ , the hidden state

sequence is sampled from

~ Y]

na Qo . a Q° onr: " he t oy (4.30)

Hered  "Qisthe HMM backward message that is passed fiorto @ and is determined

recursively as

ar Q c 4 5O oMt " Pty (4.31)

Let¢ N v be a matrix of counts computed from the sampled hidden state sequences

with £ being the number of transitions from stat&o "Ofor classto The notatiorg Is used
to denote the number of transitions frof@o "Cfor all the classes arif to denote the number

of transitions to 'Q The scaling factor in (4.29 is used as the discriminative term and is set

as

(4.32)

Intuitively, the weight for a stat&will be higher if there are fewer transitions to this state from
classes other tha Here- is a prior that controls the importance of the scaling factor &nd
is a sufficiently large constant to ensure that the scaling factor is positive. The posteriors are

then sampled as

PR S
X —
I ¢ OQE O(SF‘B0 dg

“ g hREx OQir & MBI ¢ (4.33)
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Hered FE are auxiliary count matrices that are sampled from the class specific matricés

the Chinese restaurant metaphor, these matrices correspond to the number of tables across the
franchise serving a dish and the number of tables across sections in a restaurant serving a dish.
These auxiliary matrices and the hyper parametdish_ are sampled in the standard way as
outlined in [44].

4.5.3 Sampling Component Parameters

The shared parameters are sampled first, followed by the class specific parameters. Further the
posteriors are sampled one component at a time. Let the set of observateloading to class

wand assigned to hidden staf@be n W NODd ZO  owithn n

The mean and covariance parameters that are shared across the classes use conjugate priors
and the posteriors can be computed usitite standard closed form updates discussed in

AppendixC.3 as

+

M..
F
0«

n x O [te

where
L - B
(4.34)

3 3 W ‘ w ‘

N
1 1 N ¢
‘r o+t 1 w

N

For the transform parameters, the posterior must be sampled from (4.23) after defining the
form of) — —hdh— . There are several choices for the discriminative terme Gption is

to set it based on the distance between the distributions of component parameters. If the
distribution distances are large, the parameters are well separated and this will result in a larger
margin for the classifier decision boundary. For tate Qof classwhose transform

parameters need to be sampled, the density is set as

§— —h— (4.35)
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(9 ~ - ~

Agb, I Agh- © ‘Th §  ‘TH

where
1] r ,x. 13 ”
t vty
Here'O 0D measures the similarity between two distributioBsand 0, — is a prior that

specifies the minimum separation distance and is a constant that controls the overall
importance of the discriminative ternSince normal distributions are used, the Hellinger or
Bhattacharya distance [72] can be used as a similarity measure. Intuitively, the distribution of a
component’Qfrom classthat we wish to sample is compareuth all the competing classes

and their corresponding components. If the distance is less than sp@eified minimum
separation, then the pdf value will be lower and perhaps the sample is inappropriate. The
discrimnative term specified in (4.35) is computationally simple since it does not involve the

training examples and instead uses the sufficient statistics.

Another option for the discriminative term is to use the likelihood of observations. The idea here
is toensure that the Gaussian pdf value of an observation from dassigned t@ component

Qs larger than the pdf value of competing classes and their corresponding components.

r‘_] . _H_IV“IV“
Agb, | Agnh-
O i LAG Gnrh (4.36)
4
where
1] r ,x, ‘ ”
+ ¥+

If the model is considered as a single component Gaussian insteadHif1 with Gaussian
mixtures, then (4.36) tends to make the pdf value for the correct class greater than the pdf value
of competing classes. The above discriminative term can be treated as an approximation to the

empirical error rate and- offers the flexbility for a soft margin.
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By plugging in (4.35) or (4.36) into (4.23), the posterior distribution for the transform parameters
is obtained. Thetermr s H R is sampled followed by s¥ H R . Since the priors for
both thesevariables are Gaussian distribut®relliptical slice sampling, as specified in Section
4.4.2, can be usetb obtain the posterior updates. Note that for a Gaussian prior with-nero

mean, a shift must be pormed to produce zero mean but this shift can be done trivially.

4.5.4 Prediction

The label for a test sequena® is determined during prediction. Given the parameters
corresponding to a posterior sample, the class conditional likelihood of the observatisads

to obtain the class label as shown in (4.37). The likelihood is obtained using the standard HMM
forward-backward algorithm. This process is repeated for all the posterior samples and the final

label is selected based on the mode.

au A O C inAugdh—h— (4.37)

Table 4.1: Posterior Inference Algorithm

Input:  Training observations with their corresponding class labels.

Output: Samples of posterior parameters.

1. Sample the initial valel 'R gh g BF S & from their respective hype
parameters.

Sample hidden state sequenagsusing HMM forward backward algorithm as [§4r30)
For all classes, compute the matrix of countfrom the sampled hidden states.

For all classes and all states, determine the scaling factoas per(4.32)

a > w DN

Sample the top level stick breaking weightaccording ta4.33)using an auxiliary cour

matrix.

6. Sample the state specific stick breadkiweights® for all states according t¢4.33)using
an auxiliary count matrix.

7. Sample the class specific stick breaking weigftr all classeandall states according t
(4.33)

8. For all components, sample the shared covariancand then the mean as per(4.34)

9. For all classs and for all components, use (4.3%)(4.36)in (4.23)and sample the
transform parameteré hy usingelliptical slice sampling.

10. Sample the hyper parameters.

11. Repeat from step (2) to collect more samples.
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4.6 Experiments

The experiments for action recognition are conducted on the publicly available UT&irtemt

[11] and MSR Action 3D [74] datasets. The datasets contain various actions performed by
different human subjects. Each action involves only one iddal and there are no objects
involved when an action is performed. All these datasets use an infrared camera to capture the
depth image sequences as outlinedAppendixA.1. The datasets also contain annotdt8D

joint positions of the subjects. These joint positions were estimated from the depth image
sequence as outlined iAppendixB. The estimated joint positions may contain errors and the

experiments are conducted witthese noisy joint positions.

4.6.1 UTKinectAction dataset

<

Figure 4.4: UTKinectAction dataset samples. The top row shows the RGB image for the actions

\
)
)

~ =~

walk, sit-downand pick-up from the UTKinectAction [11] datasetThe middle row shows the
depth image corresponding to these RGB images for the same set of actions. The last row shows
a sequence of 3D skeletal joint positions fontla@eaction. The information in the joint positions

is used for classifying the actions.
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The videos in the UTKineAttion [11] dataset were captured using a single stationary Microsoft
Kinect camera. The RGB, depth and the skeleton joint locations were calidegl in a
synchronized manner. The final frame rate is about 15 frames per second. The resolution of the
depth map is 320x240 and the depth range is 4 to 10 feet. Altogether the data set contains 6220

frames of 200 action sequences with an average fréangth of 32 per sequence.

The dataset contains the actionalk, sit-down, stand-up, pick-up, carry, throw, push pull, wave

and clap-hands Each action was performed by ten different subjects with one of the subject
being a female. The actions were @drformed indoor. The action sequences were taken from
different views and there are significant variations in the realization of the same action. Further,
occlusions and body parts out of view add to the difficulty of this dataset. A sample of actions

from this dataset is shown figure4.4.

Each depth image frame contains 20 joint positions with coordinatdsfix in a world
coordinate frame. Té pairwise relative joint positions within a frame are used as features. The
relative positions) 0 of 19 joint position pairs0 ) , where 0 D ¥ ofudnr , are used.

The skeleton hierarchy that determines these pairs isgafined according té-igure4.5. Some
examples of the joint position pairs aregitl, Shoulder Centre) and (Left ankle, Left feet). The
total number of features is 57 per frame. By using relative joint positions, invariance to uniform

translation of the body is ensured.

The experiments are conducted for the challenging setting intwtiie subject is seen for the
first time during prediction. 60% of the subjects were used for training while the rest of the
subjects were used for testing. Following Bayesian hierarchical modelling, the hyper parameters
have weakly informative hyper prier The concentration parameters were all given a vague
gamma prior similar to [44, 76] ensuring that the initial choice of the concentration parameters
is not important. In the first iteration during posterior inference, all the hyper parameters are
initialized from their respective priors. All the other parameters are sampled from their
respective prior distributionsThe hyper parameters are +wampled after each sampling
iteration. The first 500 samples were discarded and a total of 100 samples wezetedllWhen
sampling the posterior for the Gaussian distribution parameters and the concentration
parameters, a further bumrin period of 50 iterations was used. The posterior inference
procedure uses the forwarbdackward algorithm which has a time comptgxf0 "™  where

"Yis the length of the sequence andis the number of stateslo verify convergence, the change

in the number of instantiated states and the difference in the Gaussian distribution parameter

values between iterations were checked.
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H Head

SC Shoulder Center
SL/SR Shoulder Left/Right
EL/ER Elbow Left/Right

LR WL/WR | Wrist Left/Right
S Spine
KR C Hip Center

HL/HR Hand Left/Right
LL/LR LegLeft/Right
AR KL/KR | Knee Left/Right
FR AL/AR Ankle Left/Right
FL/FR Feet Left/Right

Figure 4.5: Skeleton Hierarchy. The predefined skeleton structure [75] used for defining the joint
position pairds shown. The arrows indicate the parelnild relationship that determine the joint
position pairs. For example, the Left Ankle and Left Feet structure define the joint position pair
(AL, FL).

In order to verify the efficacy of the model, additional expegnts are conducted with the
parametric HMM and a nonparametric HMM. The mHdirel nonparametric HMM is then
evaluated and finally the results are presented for the full model in which the parameters are
learnt in a discriminative manner. The resulte aeported using the standard performance
measures for a classification problem namely precision, recall and accuracy. The precision for a
class is the ratio of the correct predictions (true positives) to all the positive predictions (true
positives and fise positives), while recall is the ratio of the correct predictions to all the
members of the class (true positives and false negatives). The accuracy of the classifier is the
ratio of the correctly classified instances (true positives and true negativéise total number

of instances.
Parametric HMM

A classifier is trained, independently for each class, based on the classical HMM. The standard
BaumWelch algorithm [32] is used for learning the HMM paramet&isice the number of

states must be specifita-priori for parametric HMMs, different numbers of states for each class
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are tried during training. In the absence of priors, an additional clustering step viiteags is
performed to estimate the initial values dfie transition matrix and the mean ancbvariance
parameters. During testing, a test example is evaluated against all the classes and the class with
the largest likelihood is selected as the predicted class. The observed best classification accuracy

was56.8% The summary of classificatiorsidts for HMM is presented ifiable4.2.

Table 4.2: Classical Parametric HMM classification results

Precision(%o) Recall(%)
Number of States Accuracy%)

(Average across classe (Average across classe

3 49.1 52.0 49.8

5 47.7 60.1 48.4

7 52.8 64.2 53.3

10 56.8 65.3 58.4

15 55.3 70.1 55.8

NonparametricHMM

A HDPHMM based classifier is also trained, independently for each class as before. The upper
bound on the number of states is set to 20 with the weak limit approximation discussed in
Section4.5.1being used. Té& number of states is automatically learnt from the data for HDP
HMM unlike the parametric HMMrigure4.6 shows the total number of states for the different
action classes in a sample collected during training. In an equivalent parametric HMM, a tedious
and ad hoc model selection step for eachssl must be run individually because the optimum
number of states varies between classes. This advantage of automatic state inference with HDP
HMM is reflected in an improved classificat@rcuracy o¥4.1% The results are shown rable

4.3.

Table 4.3: HDP-HMM classification results

Action Precision(%) | Recall(%)
walk 100 87.5
sit-down 50 50
stand-up 66.6 100
pickup 100 50
carry 7.7 100
throw 100 50
push 71.4 62.5
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pull 66.7 75
wave 85.7 75
clap-hands 50 75

clap
wave
pull
push
throw
carry
pick-up
stand-up
sit-down

walk

Hidden states

Figure 4.6: Hidden stateplot to show the number of hidden states active for different action
classes in a sample collected during training. An active state is one to which at least one

observation is assigned.
Multi -level HDPHMM

The results are evaluated on the tvievel HDFHMM excluding the discriminative criteria. In

this method, examples from all the classes are used during parameter estimation. Thus it allows
sharing of parameters across classes and enablessguervised larning. In order to exclude

the discriminative conditions for the state transitions, the scaling factois simply set to zero.

This is equivalent to sampling (probability oftransitioning to statéQgiven the current state

is 'Ofor a clas @) as per equation (4.18) instead of (4.34). Similarly for the class specific
transformation parameters) — is set to be a constant in equation (4.25) thereby excluding
the discriminative conditions. The classification results are shoWwmlrte4.4. The accuracis

75.3% TheseNBadz Ga O2y FTANY (GKFdG akKFNARY3I LI NFYSH
classification any worse. The lack dfig increase in accuracy when compared with HHIDRVI

is interpreted as an indication that there is a need for an additional discriminative condition. In
addition, the smaller number of training examples in this dataset could be a factor. Nevertheless,
thistechnique provides a way to learn parameters in situations where unlabelled examples can

be incorporated.


























































































































































































































































































