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Abstract

Data warehouses integrate data from remote, heterogeneous, autonomous data

sources into a materialised central database. The heterogeneity of these data

sources has two aspects, data expressed in di�erent data models, calledmodel het-

erogeneity, and data expressed within di�erent schemas of the same datamodel,

called schema heterogeneity.

AutoMed1 is an approach to heterogeneous data transformation and integra-

tion based on the use of reversible schema transformation sequences, which o�ers

the capability to handle data integration across heterogenous data sources. So

far, this approach has been used only for virtual data integration. In this thesis,

we investigate the use of this approach for materialised data integration.

We investigate how AutoMed metadata can be used to express the schemas

present in a data warehouse environment and to represent data warehouse processes

such as data transformation, data cleansing, data integration, and data summa-

rization. We discuss how the approach can be used for handling schema evolution

in such a materialised data integration scenario. That is, if a data source or data

warehouse schema evolves how the integrated metadata and data can also to be

evolved so that the previous integration e�ort can be reusedas much as pos-

sible. We then describe in detail how the approach can be usedfor two key

data warehousing activities, namely data lineage tracing and incremental view

1Seehttp://www.doc.ic.ac.uk/automed/
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maintenance.

The contribution of this thesis is that we investigate for the �rst time how Au-

toMed can be used in a materialised data integration scenario. We show how the

evolution of both data source and data warehouse schemas canbe handled. We

show how two key data warehousing activities, namely incremental view main-

tenance and data lineage tracing, are performed. This is also the �rst time that

data lineage tracing and incremental view maintenance havebeen considered over

sequences of schema transformations.
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Chapter 1

Introduction

1.1 Data Warehousing

A data warehouse consists of a set of materialised views de�ned over a number

of data sources. It collects copies of data from remote, distributed, autonomous

and heterogeneous data sources into a central repository toenable analysis and

mining of the integrated information. Data warehousing andon-line analytical

processing (OLAP) are essential elements of decision support, which has increas-

ingly become a focus of the database industry. Many commercial products and

services relating to data warehousing are currently available, and all of the prin-

cipal data management system vendors, such as Oracle, IBM, Informix and MS

SQL Server, have o�erings in these areas.

Research problems in data warehousing include data warehouse architecture

design, information quality and data cleansing, maintaining data warehouses, se-

lecting views to materialise, Workow data management [BCDS01], data lineage

tracing in data warehouses, and so on. Comprehensive overviews of data ware-

housing and OLAP technology are given in [CD97, Wid95]. Currently, increasing
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numbers of data warehouses need to integrate data from a number of hetero-

geneous and autonomous data sources. Extending existing warehouse activities

into heterogeneous database environments is a new challenge in data warehousing

research.

The heterogeneity of these data sources has two aspects, data expressed in

di�erent data models, calledmodel heterogeneity, and data expressed within dif-

ferent schemas of the same data model, calledschema heterogeneity.

Up to now, most data integration approaches have been eitherglobal-as-view

(GAV ) or local-as-view(LAV ) [Len02]. In GAV, the constructs of a global schema

are described as views over local schemas1. In LAV, the constructs of a local

schema are de�ned as views over a global schema. One disadvantage of GAV and

LAV is that they do not readily support the evolution of both local and global

schemas. In particular, GAV does not readily support the evolution of local

schemas while LAV does not readily support the evolution of global schemas.

Furthermore, both GAV and LAV assume one common data model for the data

transformation and integration process, typically the relational data model.

Other approaches for managing distributed, heterogenous,and autonomous

databases and database applications includefederated databases[SL90, BIG94,

SG97] andmiddleware [BCRP98, CEM01]. In contrast to data warehouses be-

ing materialised data integration scenarios, federated database systems are vir-

tual data integration scenarios which use virtual federated schemas integrating

schema information from distributed and autonomous sourcedatabases. They

are an early example of the GAV approach. Global query processors are used

to evaluate queries over federated schemas by accessing thedata in the source

1A view in a database system is derived data de�ned in terms of storeddata and/or possibly
other views. View de�nitions are expressed as queries over their source data. A view can be
materialised by storing the data of the view, and subsequentaccesses of the materialised view
can be much faster than recomputing it.
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databases. The middleware approach presents a uni�ed programming model to

resolve heterogeneity, and facilitates communication andcoordination of distrib-

uted components, so as to build systems that are distributedacross a network

[Emm00]. For undertaking data transformation or integration, middleware can

adopt GAV, LAV or both approaches.

1.2 The BAV Data Integration Approach

AutoMed2 supports a new data integration approach calledboth-as-view(BAV )

which is based on the use of reversible sequences of primitive schema transfor-

mations [MP03a]. From these sequences, it is possible to derive a de�nition of a

global schema as a view over the local schemas, and it is also possible to derive

a de�nition of a local schema as a view over a global schema. BAV can therefore

capture all the semantic information that is present in LAV and GAV derivation

rules. A key advantage of BAV is that it readily supports the evolution of both

local and global schemas, allowing transformation sequences and schemas to be

incrementally modi�ed as opposed to having to be regenerated.

Another advantage is that BAV can support data transformation and integra-

tion across multiple data models. This is because BAV supports a low-level data

model called the HDM (hypergraph data model) in terms of which higher-level

data models are de�ned. Primitive schema transformations add, delete or re-

name a single modelling construct with respect to a schema. Thus, intermediate

schemas in a schema transformation/integration network can contain constructs

de�ned in multiple modelling languages. Previous work has shown how rela-

tional, ER, OO, XML and at-�le data models can be de�ned in terms of the

HDM [MP99a, MP99b, MP01].

2Seehttp://www.doc.ic.ac.uk/automed/
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AutoMed is an implementation of the BAV data integration approach. In

previous work within the AutoMed project [PM98, MP99a], a general framework

has been developed to support schema transformation and integration. So far,

the BAV approach and AutoMed have been used only for virtual data integra-

tion. In this thesis, we investigate the use of the BAV approach for materialised

data integration. We �rst investigate how AutoMed metadata can be used to

express the schemas present in a data warehouse environmentand to represent

data warehouse processes such as data transformation, datacleansing, data inte-

gration, and data summarisation. We then discuss how schemaevolution can be

handled in such a materialised data integration scenario. That is, if a data source

or data warehouse schema evolves how the existing warehousemetadata and data

can also be evolved so that the previous integration e�ort can be reused. We then

describe in detail how the approach can be used for two key data warehousing

processes, namely data lineage tracing and incremental view maintenance.

1.3 Problem Statement

In order to use AutoMed for materialised data integration, there are four research

problems considered in this thesis.

1. How AutoMed metadata can be used to express the schemas andprocesses

such as data cleansing, transformation and integration in heterogeneous

data warehouse environments, supporting both schema heterogeneity and

model heterogeneity.

2. How AutoMed schema transformations can be used to expressthe evolu-

tion of a data source or data warehouse schema, either withinthe same

18



data model, or a change in its data model, or both; and how the exist-

ing warehouse metadata and data can also be evolved so that the previous

transformation, integration and data materialisation e�ort can be reused.

3. How AutoMed metadata can be used for data lineage tracing in heteroge-

neous data warehouses, including what is the de�nition of data lineage in

the context of AutoMed, and how the individual steps of AutoMed schema

transformations can be used to trace data lineage in a step-wise fashion.

4. How AutoMed metadata can be used for incremental view maintenance in

heterogeneous data warehouses. Here, we discuss how AutoMed can handle

the problem of maintaining materialised data warehouse views if either the

data or the schema of a data source change.

1.4 Dissertation Outline

The outline of this thesis is as follows:

Chapter 2 gives the background of this thesis, including a review of major

issues in data warehousing.

Chapter 3 gives an overview of the AutoMed framework, at the level neces-

sary for the work in this thesis, and discusses how AutoMed metadata can be

used to express the schemas and processes of heterogeneous data warehousing

environments.

Chapter 4 describes how AutoMed schema transformations canbe used to

express the evolution of schemas in a data warehouse. It thenshows how to

evolve the warehouse metadata and data so that the previous transformation,

integration and data materialisation e�ort can be reused.

Chapter 5 develops a set of algorithms which use materialised AutoMed
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schema transformations for tracing data lineage. By materialised, we mean that

all intermediate schema constructs created in the schema transformations are

materialised, i:e: have an extent associated with them.

Chapter 6 generalises these algorithms to use arbitrary AutoMed schema

transformations for tracing data lineagei:e: where intermediate schema constructs

may or may not be materialised.

Chapter 7 discusses how AutoMed transformation pathways can be used for

incrementally maintaining data warehouse views.

Finally, Chapter 8 gives our conclusions and directions of future work.

1.5 Dissertation Contributions

A formal approach has been chosen as the methodology of this research. We �rst

investigate previous relevant work on data warehousing, schema evolution, data

lineage tracing, and incremental view maintenance. We theninvestigate how

the AutoMed data integration approach can be used for these activities in the

context of heterogeneous data warehouse environments, develop new theoretical

foundations and algorithms, and implement some of our algorithms.

The contribution of this thesis is that we investigate for the �rst time how the

AutoMed heterogeneous data integration approach can be used in a materialised

data integration scenario. We show how the evolution of bothdata source and

data warehouse schemas can be handled. We show how two key data warehousing

activities, namely incremental view maintenance and data lineage tracing, are

performed. This is also the �rst time that data lineage tracing and incremental

view maintenance have been considered over sequences of schema transformations.
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Chapter 2

Overview of Major Issues in Data

Warehousing

This chapter gives an overview of major issues in data warehousing. In Section

2.1, we discuss a de�nition of a data warehouse. Section 2.2 presents the archi-

tecture of a data warehouse system which includes the data sources, the staging

area, the data warehouse itself and end-user applications and interfaces. Section

2.3 discusses a commonly-used data modelling technique in data warehousing,

multidimensional data modelling. Section 2.4 discusses the processes of building,

maintaining and using a data warehouse. Finally, Section 2.5 summarises the

discussions of this chapter.

2.1 What is a Data Warehouse?

A data warehouse is a repository gathering data from a variety of data sources and

providing integrated information for Decision Support Systems of an enterprise.

In contrast to operational database systems which support day-to-day operations
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of an organisation and deal with real-time updates to the databases, data ware-

houses support queries requiring long-term, summarised information integrated

from the data sources, and generally do not require the most up to date oper-

ational version of the data. Thus, updates to the primary data sources do not

have to be propagated to the data warehouse immediately.

The de�nition of a data warehouse given in [Inm02] is:

A data warehouse is asubject-oriented, integrated, nonvolatile and

time-variant collection of data in support of management's decisions.

The �rst feature, subject-oriented, means that a data warehouse only includes

the data that will be used for the organisation's Decision Support System (DSS)

processes. In contrast, other database applications contain data for satisfying

immediate functional or processing requirements, which may or may not have

any use for decision support. Thesubject in the above de�nition denotes the

aspect of the data used in DSS, such as the customers, products, services, prices

and sales of the enterprise.

The second feature in the above de�nition isintegrated. Data warehouses col-

lect data from multiple data sources, which may be distributed, heterogeneous

and autonomous. However, the warehouse data needs to be stored in a schema

that satis�es the users' analysis requirements. Normally,source data is trans-

formed and integrated before entering the data warehouse sothat the focus of

the warehouse users is on using the integrated data, rather than being concerned

with the correctness or consistency of the source data.

The third feature in the above de�nition is nonvolatilewhich means that ware-

house data are normally long-term, not updated in real-timeand just refreshed

periodically. In operational database systems, the data isnormally the most up

to date, and update operations such as inserting, deleting and changing data are
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frequently applied. In data warehouses, the data is used forDSS processes. Once

the data is loaded into the data warehouse, the focus is on querying it, rather

than inserting, deleting or changing it. However, a data warehouse also needs to

be periodically refreshed in order to reect updates in the primary data sources.

Usually, alternate bulk storage is used to store the old datain the data warehouse.

Purges of obsolete data are also carried out from time to time.

The last feature in the above de�nition is time-variant. Information from

one past time point (the time the data warehouse was deployed) to the present

may be contained in the data warehouse. Using this information, end users can

analyse and forecast the progress and future trends of the enterprise. In contrast,

operational database applications mainly consider only current data.

In summary, a data warehouse is built for DSS analysts or managers in an

enterprise, who may be non-technical users, to easily access in their business con-

text the widespread information across the enterprise. It is a single, complete,

consistent accumulation of data obtained from a variety of sources which may be

remote, distributed, heterogeneous and autonomous. In order to take advantage

of this data, the basic functionalities of a data warehouse are gathering, cleans-

ing, �ltering, transforming, integrating and reorganising the source data into a

repository with a single schema which satis�es the users' analysis requirements.

Thus, data warehousing is not a static solution but an evolving process.

2.2 Data Warehouse Architecture

A data warehouse system consists of several components: thedata sources, the

staging area, the data warehouse itself and end-user applications and interfaces,

as illustrated in Figure 2.1. Brief descriptions of each component are given below.
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Figure 2.1: Basic Components of a Data Warehouse System Using AutoMed

Data Sources The data sources provide the original data of the data ware-

house. A data warehouse may integrate data from multiple autonomous and

heterogeneous data sources, which could be either remote orlocal, and not un-

der the control of the data warehouse users and administrators. In addition,

the data sources may be structured (e.g., relational databases), semi-structured

(e.g., XML or RDF �les) or at �les. Such arbitrary data sourc es pose several

challenges to warehouse builder: to create a uniform repository integrating these

data; to design easily understandable data warehouse schemas; and to express

the transformations between the data source and data warehouse schemas.

Staging Area The staging area keeps whole copies of the data sources and

brings them under the control of the data warehouse administrator. The data

in the staging area may be heterogeneous and contain \dirty"(e:g: duplicate or
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inconsistent) data. No end-user query services are available in this area, that is,

the warehouse users cannot access the data in the staging area.

Data Warehouse The data warehouse contains the integrated data used to

support the DSS processes. In contrast to the staging area, data in the data

warehouse itself have a uniform schema and have been cleansed by removing

dirty data. The processes of data cleansing and data transformation happen

before loading data into the data warehouse.

The data warehouse typically consists of following components:

- Detailed Data: The detailed data is the lowest level of source informationnec-

essary for supporting the DSS processes. It is normally stored in a single

repository such as a relational or object-oriented database. The detailed

data includes current detailed data and older detailed data. From the stag-

ing area to the detail data, the data needs to be transformed,cleansed,

loaded and integrated. These processes compose a major partof building a

data warehouse.

- Summarised Data: The summarised data is derived from the detailed data, in

order to allow faster processing of speci�c DSS functionality. For exam-

ple, suppose the detailed data contains a relational tableSales(ProductID,

LocationID,TimeID,SalesAmount). The summarised data may contain tables

ProductSalesByLocation(ProductID,LocationID, SalesAmount) summarising

the total sales for products at locations;ProductSalesByTime(ProductID,

TimeID, SalesAmount) summarising the total sales for products over time pe-

riods; LocationSalesByTime(LocationID, TimeID, SalesAmount) summarising

the total sales for locations over time periods;TotalProductSales(ProductID,

SalesAmount) summarising the total sales for products;TotalLocationSales
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(LocationID, SalesAmount) summarising the total sales for locations;Total-

TimeSales(ProductID, SalesAmount) summarising the total sales over time

periods.

The summarised data are de�ned asviews over the detailed data or over

other summarising views. Views in the data warehouse can be virtual or

materialised. How to maintain these views, especially materialised ones, has

been one of the key issues of data warehousing research [GM99, Don99].

- Metadata: A data warehouse not only provides integrated data, but also pro-

vides information about the content and context of the data,i:e: metadata.

This metadata provides a directory of the structure of the warehouse con-

tents. It provides information about the warehouse schema,and also about

the mappings between the data in the data warehouse, such as from the

data sources to the detailed data and from the detailed data to the sum-

marised data. In Figure 2.1, we show the metadata being stored in an

AutoMed repository, where it can be accessed by the data warehouse users

and administrators.

End-User Applications and Interfaces The end-user applications and inter-

faces provide a way for warehouse users to access warehouse data. In particular,

data martscan be created over the data warehouse for di�erent categories of DSS

users. Data marts are de�ned from the warehouse data for speci�c DSS require-

ments of the enterprise. In contrast to the summarised data,data marts can

have di�erent data models and schemas from the ones of the detailed data of the

warehouse. In practice, the same tools used to load the data warehouse database

can be used to load the data marts, for example Oracle Warehouse Builder1, IBM

1Seehttp://www.oracle.com/technology/documentation/ware house.html
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Data Warehouse Manager2, or Microsoft Data Transformation Services3.

The problem ofquery rewriting, also known asanswering queries using views,

has also received much attention in database research [Lev00]. Query rewriting

aims to �nd e�cient methods of answering a query using a set ofpreviously ma-

terialised views over the database tables, rather than accessing the base tables

themselves. In data warehousing, it is relevant to problemssuch as query opti-

misation, materialised view maintenance and data warehouse design. We do not

address the problem of query rewriting in this thesis, but itmay be an important

area of future research in the AutoMed project.

2.3 Data Warehouse Modelling

Data warehouse modelling is the process of designing the schemas of the detailed

and summarised data of the data warehouse. The aim of data warehouse mod-

elling is to design a schema representing the reality, or at least a part of the

reality, which the data warehouse is required to support.

Data warehouse modelling is an important stage of building adata warehouse

for two main reasons. Firstly, through the schema, data warehouse users have

the ability to visualise the relationships among the warehouse data, so as to use

them with greater ease. Secondly, a well-designed schema allows an e�ective data

warehouse architecture to emerge, to help reduce the cost ofimplementing the

warehouse and improve the e�ciency of using it.

Data modelling in data warehouses is rather di�erent from data modelling in

operational database systems. The main functionality of data warehouses is to

support DSS processes. Thus, the aim of data warehouse modelling is to make

the data warehouse e�ciently support complex queries on long-term information.
2Seehttp://www-306.ibm.com/software/data/db2/datawareho use/
3Seehttp://www.microsoft.com/sql/evaluation/features/da tatran.asp
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In contrast, data modelling in operational database systems focusses on e�ciently

supporting simple transactions in the database such as retrieving, inserting, delet-

ing and changing data. Moreover, data warehouses are designed for users with

general information knowledge about the enterprise, whereas operational data-

base systems are more oriented toward use by software specialists for creating

speci�c applications.

Modelling warehouse data requires information about both the source data

and the target warehouse data. The source data can be treatedas inputs which

are transformed into the target warehouse data. How this transformation happens

is required to be reected in data warehouse modelling.

Multidimensional data modellingis a commonly-used technique to conceptu-

alise and visualise schemas by using the major components ofthe business, such

as customers, products, services, prices and sales. This data modelling technique

is especially used for summarising and rearranging data andpresenting views of

the data to support DSS. Particularly, multidimensional data modelling focuses

on numeric data such as sales, counts, balances and costs.

In multidimensional data modelling, the data warehouse is designed to collect

facts on one or moremeasures, each measure depending on a set ofdimensions.

For example, asalesmeasure may depend on three dimensions:products, times

and locations.

Factsare collections of related data items, which are stored within fact tablesin

the data warehouse.Dimensionsare collections of the items of one component of

the business, such as theproductsdimension, thetimesdimension and thelocations

dimension for sales. The items of a dimension are stored within a dimension table

in the data warehouse.

The primary key of a fact table is a concatenation of the primary keys of one

or more dimension tables. Thus, every row in the fact table isassociated with
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one and only one row from each dimension table.

Measuresare the non-key attributes of fact tables, and they represent infor-

mation relating to the dimensions key attributes of the facttable.

The non-key attributes of a dimension table may be organisedas adimension

hierarchy. For example, thetimesdimension may consist of thedates, monthsand

weeksattributes; the productsdimension may consist of thecategory, modeland

producerattributes; and the locationsdimension may consist of thecity, region

and countryattributes.

There are two kinds of schemas used in multidimensional datamodelling: star

schemasand snowake schemas. A star schema typically has one fact table, and

a set of smaller tables. Figure 2.2 (Left) below gives an example of a star schema.

The links between the primary keys of the fact table and the foreign keys in the

dimension tables can be visualised as a radial pattern with the fact table in the

middle.

The dimension tables may contain data redundancies. For example, in the

dimension tableLocations(LocationID,Address,City,Region,Country), the City and

Regioninformation may be repeatedly stored for the locations in the same cities.

This kind of data redundancy incurs storage overheads and may lead to update

anomalies and poor update performance.

If necessary, snowake schemas can be used to avoid such dataredundancies.

A snowake schema is the result of normalizing the dimensions of a star schema,

in which there are links between primary keys and foreign keys of tables in the

dimension hierarchy. Figure 2.2 (Right) is an example of a snowake schema.

However, fully normalizing the dimension tables may not be necessary in a

data warehouse environment. Since there are generally no updates occurring to

individual rows in the dimension tables, although new rows may be added when

the data warehouse is refreshed with new data, and existing rows may be deleted
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Figure 2.2: (Left) Star Schema (Right) Snowake Schema

when the data warehouse is purged of out-of-date data, the issue of update anom-

alies and poor update performance will generally not arise in the data warehouse.

In addition, the storage consumption of the data warehouse is dominated by the

fact tables and the space saved by normalizing the dimensiontables would gen-

erally be comparatively small. Moreover, un-normalized dimension tables can

reduce the time required to combine information in the fact table with dimension

information, which is a main performance criterion of a datawarehouse.

2.4 Data Warehouse Processes

The objective of supporting DSS queries over a data warehouse requires a set of

data warehouse processes that are far more complex than justcollecting data from

the remote data sources and then querying them. In this section, we discuss the

processes ofbuilding, maintaining and using the data warehouse. In particular,

building the data warehouse includesextracting, cleansing, transforming, loading,

summarisingdata and creatingdata marts; maintaining the data warehouse is the

process of refreshing materialised views in the warehouse and the data marts; and

using the data warehouse includes developing and using the end-user applications,
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as well as special functionalities of the data warehouse, such as data lineage

tracing.

2.4.1 Data Extraction

Data are extracted from the data sources into the staging area for integration into

the data warehouse. This is the �rst step of building the datawarehouse. Data

extraction does not involve complex algebraic database operations such asjoin

and aggregate functions. It focuses on determining which remote data is required

to be extracted, and bringing the data into the staging area.The data sources

may be very complex and poorly documented, so that data extraction design and

performance are often the time-consuming tasks in the building process [Lan02].

Data have to be extracted not only once, but several times in aperiodic

manner to supply the changes to the data warehouse and keep itup-to-date.

Thus, data extraction is not only used in building the data warehouse, but also

used in maintaining the data warehouse.

There are two kinds of strategies of data extraction:full extraction, where the

entire �les or tables of the data sources are extracted to thestaging area; and

incremental extraction, only the data that has been changed since a well-de�ned

event back in history will be extracted at a speci�c point of time. The event may

be the last time of successful extraction or a more complex business event like

the last sale day of a �scal period [Lan02].

Full extraction reects all data currently available in the data sources, and

there is no need to keep track of the changes to a data source since the last suc-

cessful extraction. The source data will be provided as a whole and no additional

information, such as time-stamps, is necessary regarding the source site.

Incremental extraction can make the data extraction process much more ef-

�cient, and is especially useful when incremental view maintenance (see Section
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2.4.5 below) has been selected as the maintenance strategy.However, for many

data sources, identifying the recently modi�ed data may be di�cult or intrusive

to the operations of the data sources, which is beyond the control of the data

warehouse builder.

Normally, the data sources cannot be modi�ed by the data warehouse builder,

nor can their performance or availability be a�ected by the data extraction

process. Because of the independence of the data sources, data warehouses nor-

mally do not use incremental extraction as the strategy for data extraction and

instead use full extraction. After full extraction, the entire extracted data from

the data sources can be compared with the previous extracteddata to identify

the changed data, so that delta changes can be captured for maintaining the

warehouse data (this happens in the staging area). This approach may not have

signi�cant impact on the data sources, but it clearly can place a considerable

burden on the data warehouse processes, particularly if thedata volumes are

large.

Data extraction incorporates the processes of datatransportation and data

loading, which move data from one data system to another. The most common

requirements of data transportation are moving data from the data sources to

the staging area, from the staging area to the data warehouse, and from the data

warehouse to the data marts. Data loading is data transportation speci�cally

relating to loading the detailed data into the data warehouse.

In practice, Load is a command in many commercial database systems. For

example, the OracleSQL*Loaderutility is used to move data from at �les into

Oracle tables, which is faster than using a series of SQL INSERT statements

because no locking or logging takes place. Similarly, Transact-SQL and thebcp

utility from Microsoft 4 can be used to load data into SQL Server databases. There

4Seehttp://msdn.microsoft.com/library/ .
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are also available many commercial tools for data extraction and loading in data

warehouses, such as Oracle Warehouse Builder5, IBM Data Warehouse Manager6,

and Microsoft Data Transformation Services7.

2.4.2 Data Transformation

The data sources of a data warehouse may conform to multiple schemas, while

the data warehouse has a single schema. Heterogeneous source data have to

be transformed into the data warehouse schema before loading into the data

warehouse.

Two kinds of data transformations are often used in data warehousing: mul-

tistage data transformationsand pipelined data transformations[Lan02]. Mul-

tistage transformations implement each di�erent transformation as a separate

operation and create separate, temporary staging tables tostore incremental re-

sults of each step. This is a common strategy and makes the transformation

process easily monitored and restarted. However, a disadvantage of multistage

data transformations is high space and time costs.

With pipelined data transformations, there are no temporary staging tables.

Instead data is transformed as it is loaded into the data warehouse. This con-

sequently increases the di�culty of monitoring and may require some similarity

between the source data and the target data,e:g: both of them have schemas

speci�ed within the same data model. For example, the commercial data man-

agement toolPgManager8 can be used to transform data in Excel tables, Access

databases or TXT �les and load them into PostgreSQL databases.

5Seehttp://www.oracle.com/technology/documentation/ware house.html
6Seehttp://www-306.ibm.com/software/data/db2/datawareho use/
7Seehttp://www.microsoft.com/sql/evaluation/features/da tatran.asp
8Seehttp://sqlmanager.net/products/postgresql/manager/
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2.4.3 Data Cleansing

Extracting data from remote data sources, especially from heterogeneous data

sources, can bring erroneous and inconsistent informationinto the data ware-

house. Data warehouses usually face this problem, in their role as repositories

for information derived from multiple data sources within and across enterprises.

Thus, before loading data from the staging area to the data warehouse,data

cleansingis normally required [RD00]. Data cleansing is a process which deals

with detecting and removing errors and inconsistencies from the source data in

order to improve the data quality of the data warehouse.

The problems of data cleansing includesingle-sourceproblems and multi-

sourceproblems [RD00]. Single-source cleansing cleans dirty data from one data

source. This process involves formatting and standardizing the source data, such

as adding a key to every source record and decomposing some dimensions into

sub-dimensions according the requirement of the warehouse, e:g:, decomposing an

Addressdimension into LocationID, Number, Street, City, Zipand Countrydimen-

sions. Multi-source cleansing considers several data sources when undertaking

the cleansing process. Multi-source cleansing may includemerging data from

multiple data sources.

Figure 2.3 illustrates an example of merging data from multiple data sources.

The Customerand Client databases are integrated into theCustomersdatabase.

Records existing in one data source,Customeror Client, remain in the Customers

database under the transformed schema. As to records existing in both data

sources, information from the more reliable source can be transformed into the

target database.

For each of these two data cleansing problems, there are two possible scenarios:

schema-leveland instance-level[RD00]. Schema-level problems can be addressed

by evolving the schema(s) as necessary. Instance-level problems, on the other
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Figure 2.3: Merging Data from Multiple Data Sources

hand, refer to errors and inconsistencies in the actual datacontents which are

not visible at the schema level. Below, we discuss data cleansing problems for

both single and multiple data sources, and for both schema-level and instance-

level problems:

Single-Source Cleansing Single-source, schema-level problems arise when the

source data model violates the schema used for the data warehouse. For example,

the source data may be XML �les while the schema used for the data warehouse

is relational, or relational databases with di�erent schemas are used to represent

the same information in a data source and in the data warehouse.

Single-source, instance-level problems includevalue, attribute and record

problems. Value problems occur within a single value and include problems such

as a missing value, a mis-spelled value, a mis-�elded value (e:g: putting a city

name in acountryattribute), embedded values (putting multiple values intoone

attribute value), using an abbreviation or a mis-expressedvalue (e:g: using the
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wrong order of �rst name and family name within anameattribute).

Attribute problems relate to multiple attributes in one record and include

problems such as dependence violation (e:g: between city and zip, or between

birth-dateand age).

Record problems relate to multiple records in the data source, and include

problems such as duplicate records or contradictory records.

Multi-Source Cleansing Multi-source, schema-level problems includeattrib-

ute and structure conicts. Attribute conicts arise when di�erent sources use

the same name for di�erent constructs (homonyms) or di�erent names for the

same construct (synonyms). Structure conicts arise when the same information

is modeled in di�erent ways in di�erent schemas. For example, information about

customers may be stored in relational databases and XML documents, or in rela-

tional databases with di�erent schemas (e:g:regionCustomer(name,location,service)

storing customer information according to their location and services they use;

and wholeSaleCustomer(name,address)and retailCustomer(name,address)storing

customer information in di�erent tables according to theirservice type.).

Multi-source, instance-level problems includeattribute, record, referenceand

data sourceproblems. Attribute problems include di�erent representations of the

same attribute in di�erent schemas (e:g:Yes/Novs True/Fasle in a maritalStatus

attribute) or a di�erent interpretations of the values of an attribute in di�erent

schemas (e:g:US Dollar vs Euro in acurrencyattribute).

Record problems include duplicate records or contradictory records among

di�erent data sources.

Reference problems occur when a referenced value does not exist in the target

schema construct and can be resolved by replacing the dangling references by

Null values.
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Data source problems relate to whole data sources, for example, aggregation

at di�erent levels of detail in di�erent data sources (e:g: sales may be recorded

per product in one data source and per product category in another data source).

In Chapter 3 below, we will discuss how AutoMed schema transformations can

be used to express the process of data cleansing, both single- and multi-source. A

large number of commercial tools of varying functionalities are available to sup-

port data cleansing9. These normally focus on speci�c data cleansing problems,

such as address correction (e:g:QuickAddress Batch10 and AddressAbilityTM 11) and

removal of duplicates (e:g: DoubleTake12). In the research arena, examples in-

clude theArktos tool for data cleansing and transformation by Vassiliadiset al:

[VVSK00], the IntelliCleantool for knowledge-based intelligent data cleansing by

Lee and Lowet al: [LLL00, LLL01], the interactive data cleansing systemPotter's

Wheelby Raman et al: [RH01], and the extensible data cleansing toolAJAX by

Galhardas et al: [GFSS00, GFS+ 01a]. All of these research tools consider the

problem of data cleansing more generally than the commercial tools.

2.4.4 Data Summarisation

Data summarisation is the process of creating the summarising data in the data

warehouse. As discussed before, the summarising data are views over the detailed

data and possibly other views, and they may or may not be materialised. The

main usage of materialised views is to increase the speed of queries over the

warehouse data and also to allow query rewriting.

However, a problem relating to materialised views isview maintenance. If the

9See http://web.tagus.ist.utl.pt/ helena.galhardas/cleani ng.html for a list of
commercial data cleansing tools.

10Seehttp://www.qas.com/address-correction-software.asp
11Seehttp://www.inforouteinc.com/prodA-1.html
12Seehttp://www.tech4t.co.uk/doubletake/
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detailed data in the data warehouse is updated, the materialised views have to

be refreshed also so as to keep them up-to-date [GM99, Don99].

2.4.5 Data Warehouse Maintenance

The issue of view maintenance in data warehouses has been widely discussed

in the literature [GM99, Don99, CW91, GMS93, CGL+ 96, Qua96, PSCP02,

ZGMHW95, ZGMW98, AASY97], and many view maintenance policies and al-

gorithms have been developed. Logically, there are two kinds of view main-

tenance approaches,fully recomputing and incrementally refreshing; while tem-

porally, three kinds of view maintenance approaches may be adopted, periodic

maintenance, on-commit maintenanceand on-demand maintenance[GM99].

Fully recomputing means that if a data source is updated, theview will be

refreshed by recomputing it from scratch. On the other hand,incrementally

refreshing computes the changes to the view rather than recomputing all the

view data. Incrementally refreshing a view can be signi�cantly cheaper than

fully recomputing the view, especially if the size of the materialised view is large

compared to the size of the change.

A periodically maintained view is called asnapshot, and is generally used

for integrating data from remote data sources, such as from the Internet. A

snapshot has a lower consistency level between the view and the data sources

than on-commit maintenance, but is easy to implement.

On-commit view maintenance is also referred to asimmediate view main-

tenance [GM99], which means that views are refreshed every time an update

transaction commits. Using an immediate view maintenance strategy, we can

ensure that the materialised views will always contain the latest committed data.

However, it increases the time overhead of committing update transactions.
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The on-demand view maintenance policy can control the time that view main-

tenance occurs | materialised views are refreshed when a refresh command is

explicitly issued. One kind of on-demand view maintenance is on-queried view

maintenance, which means the maintenance procedure is performed only when

the view is used or queried. This may reduce the overhead of the view mainte-

nance process in a data warehouse if some views are seldom used [Eng02].

Both the periodical and on-demand view maintenance policies are a kind

of deferred view maintenancestrategy [GM99, CGL+ 96]. Both policies use the

post-update data sources and their changes to maintain the views. In contrast,

the on-commit (immediate) view maintenance policy uses thepre-update data

sources and the changes to them to maintain the views. One disadvantage of

immediate view maintenance is that each update transactionincurs the overhead

of refreshing the views, and this overhead increases with the number of views and

their complexity.

In data warehousing environments, immediate view maintenance is generally

not possible, since administrators of data sources may not know what views exist

in the data warehouse, and data warehouse administrators may not be able to

access the changes to the data sources directly. Deferred view maintenance can

be performed periodically, or on-demand when certain conditions arise, and is

generally used as the view refreshment policy in data warehousing environments.

Combining the maintenance logic and maintenance time, there are therefore

six possible view maintenance strategies: immediate incremental, immediate re-

compute, periodic incremental, periodic recompute, deferred incremental and de-

ferred recompute maintenance [Eng02, ECL03].

The view maintenance approach discussed by Gupta and Quasset al: in

[GJM96, QGMW96] is to make viewsself-maintainable, which means that ma-

terialised views can be refreshed by only using the content of the views and

39



the updates to the data sources, and not requiring to access the data in any data

source. References [Huy97], [VM97] and [LLWO99] also discuss view maintenance

problems pertaining to self-maintenance for views in data warehousing environ-

ments, focusing on select-projection-join (SPJ) views. Such a view maintenance

approach usually needs auxiliary materialised views to store additional informa-

tion. Whether these auxiliary materialised views are also self-maintainable, with

the original views acting as the auxiliary data, is important to this research issue.

We are not considering self-maintainability of views in this thesis.

Materialised warehouse views need to be maintained either when the data of

a data source changes, or if there is an evolution of a data source schema. In

Chapter 4 of this thesis we discuss how AutoMed transformation pathways can

be used to express schema evolutions in a data warehouse. In Chapter 7 of this

thesis we discuss incrementally refreshing materialised warehouse views when the

data of a data source changes.

2.4.6 Data Lineage Tracing

Sometimes what is needed is not only to analyse the data in a data warehouse,

but also to investigate how certain warehouse information was derived from the

data sources. Given a data itemt in the data warehouse, �nding the set of source

data items from which t was derived is termed thedata lineage tracingproblem

[CWW00]. Supporting data lineage tracing in data warehousing environments

has a number of applications: in-depth data analysis, on-line analytical mining

(OLAM), scienti�c databases, authorization management, and schema evolution

of materialised views [BB99, WS97, CWW00, GFS+ 01b, FJS97].

In Chapter 3 of this thesis we discuss how AutoMed schema transforma-

tion pathways can be used to express the main processes of heterogeneous data

warehousing environments, including data transformation, cleansing, integration,
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summarisation and creating data marts. In Chapters 5 and 6 wethen address

the issues of data lineage tracing over AutoMed schema transformation pathways,

including: the de�nitions of data lineage in the context of AutoMed; the problem

of derivation ambiguity in data lineage tracing; formulae for data lineage tracing

based on a single transformation step; algorithms for data lineage tracing along a

sequence of transformation steps; and handling virtual transformation steps,i:e:

steps whose results are not materialised.

2.5 Discussion

This chapter has given an overview of the major issues in datawarehousing. We

�rst introduced the de�nition of a data warehouse, and indicated that data ware-

houses integrate data from distributed, autonomous, heterogeneous data sources

in order to support the DSS processes of an enterprise. The basic components

of a data warehouse system include the data sources, the staging area, the data

warehouse itself and the end-user applications and interfaces. We discussed mul-

tidimensional data modelling. The data warehouse processes described in this

chapter were: building a data warehouse, including data extraction, data trans-

formation, data cleansing, data loading and data summarisation; maintaining a

data warehouse; and data lineage tracing.

In the rest of this thesis, we will discuss how AutoMed metadata can be used

to represent the data models and schemas of a data warehouse and the semantic

relationships between them. We will also develop a set of algorithms which use

AutoMed transformation pathways for incremental view maintenance and data

lineage tracing in the data warehouse. Our algorithms consider in turn each

transformation step in a transformation pathway in order toapply incremental
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view maintenance and data lineage tracing in a stepwise fashion. Thus, our al-

gorithms are useful not only in data warehousing environments, but also in any

data transformation and integration framework based on sequences of schema

transformations, such as peer-to-peer and semi-structured data integration envi-

ronments.
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Chapter 3

Using AutoMed Metadata for

Data Warehousing

3.1 Motivation

In data warehouse environments, metadata is essential since it enables activities

such as data transformation, data integration, view maintenance, OLAP and

data mining. Due to the increasing complexity of data warehouses, metadata

management has received increasing research focus recently [MSR99, HMT00,

BTM01, CB02].

Typically, the metadata in a data warehouse includes information about both

the data and the data processing. Information about the dataincludes the

schemas of the data sources, warehouse and data marts, ownership of the data,

and time information such as the time when the data was created or last updated.

Information about the data processing includes rules for data extraction, cleans-

ing and transformation, data refresh and data purging policies, and the lineage

of migrated and transformed data.

Up to now, in order to transform and integrate data from heterogeneous data
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Figure 3.1: Frameworks of Data Integration

sources, a conceptual data model (CDM) has been used as thecommon data

model, i:e: as the data model to which the detailed and summarised data of

the data warehouse conform, and into which source data are translated. This

approach assumes a single CDM for the data transformation and integration

process | see Figure 3.1(a). Each data source1 has a wrapper for translating

its schema and data into the CDM of the detailed data. The schema of the

summarised data is then derived from these CDM schemas by means of view

de�nitions, and is expressed in the same modelling languageas them.

For example, [HA01] uses the relational data model as the CDM; [MK00,

CD97, TKS01] use a multidimensional model; [GR98] describes a framework for

data warehouse design based on its Dimensional Fact Model; [CGL+ 99, Bek99,

TBC99, HLV00] use an ER model or extensions of it; and [VSS02]presents its

own conceptual model and a set of abstract transformations for data extraction-

transformation-loading (ETL).

This traditional CDM framework has a number of drawbacks. Firstly, since

1For the rest of the thesis, by data sourcewe mean the copy of the remote data that has
been brought into the staging area (unless otherwise indicated).
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they are both high-level conceptual data models, semantic mismatches may exist

between the CDM and a source data model, and there may be a lossof information

between them. Secondly, if a source schema changes, it is notstraightforward to

evolve the view de�nitions of the integrated schema constructs in terms of source

schema constructs. Finally, the data transformation and integration metadata is

tightly coupled with the CDM of the particular data warehouse. If the warehouse

is to be redeployed on a platform with a di�erent CDM, it is not easy to reuse

the previous warehouse implementation.

AutoMed is an implementation of the BAV data integration approach which

adopts a low-level hypergraph-based data model (HDM) as itscommon data

model for heterogeneous data transformation and integration2. So far, research

has focused on using AutoMed for virtual data integration. This chapter describes

how AutoMed can also be used for materialised data integration, in particular

for expressing the data transformation and integration metadata, and using this

metadata to support warehouse processes such as data cleansing, populating the

warehouse, incrementally maintaining the warehouse data after data source up-

dates, and tracing the lineage of warehouse data.

Using AutoMed for materialised data integration, the data source wrappers

translate the source schemas into their equivalent speci�cation in terms of Au-

toMed's low-level HDM | see Figure 3.1(b). AutoMed's schema transformation

facilities can then be used to incrementally transform and integrate the source

schemas into an integrated schema. The integrated schema can be de�ned in

any modelling language which has been speci�ed in terms of AutoMed's HDM.

We will examine in this chapter the bene�ts of this alternative approach to data

transformation/integration in data warehousing environments.

2Seehttp://www.doc.ic.ac.uk/automed for a full list of technical reports and papers re-
lating to AutoMed.
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In the rest of this chapter, Section 3.2 gives an overview of the AutoMed

framework to the level of detail necessary for this thesis. This includes a dis-

cussion of the HDM data model, the query language supported by AutoMed,

the AutoMed transformation pathways and the AutoMed Repository API. Sec-

tion 3.3 shows how AutoMed metadata has enough expressiveness to describe

the data integration and transformation processes in a datawarehouse, including

expressing data transformation, data cleansing, data integration, data summari-

sation and creating data marts. Section 3.4 discusses how the AutoMed metadata

can be used for some key data warehousing processes, including populating the

data warehouse, incrementally maintaining the warehouse data, and tracing the

lineage of the warehouse data. Section 3.5 discusses the bene�ts of our approach.

An earlier paper [The02] proposed using the HDM as the commondata model

for both virtual and materialised integration, and a hypergraph-based query lan-

guage for de�ning views of derived constructs in terms of source constructs. How-

ever, that paper did not focus on expressing data warehouse metadata, or on

warehouse processes such as data cleansing or populating and maintaining the

warehouse.

3.2 The AutoMed Framework

3.2.1 HDM Data Model

The basis of AutoMed data integration system is the low-level hypergraph data

model (HDM) [PM98, MP99b]. Facilities are provided for de�ning higher-level

modelling languages in terms of this lower-level HDM. An HDMschema consists

of a set of nodes, edges and constraints, and so each modelling construct of a

higher-level modelling language is speci�ed as some combination of HDM nodes,
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edges and constraints.

One advantage of using a low-level common data model such as the HDM is

that semantic mismatches between high-level modelling constructs are avoided.

Another advantage is that the HDM provides a unifying semantics for higher-level

modelling constructs and hence a basis for automatically orsemi-automatically

generating the semantic links between them | this is ongoingwork being under-

taken by other members of the AutoMed project (see for example [ZP04, Riz04]).

A schema in the HDM is a triple hNodes; Edges; Constraintsi . A query over

a schema is an expression whose variables are members ofNodes[ Edges. In this

framework, the query language is not constrained to a particular one. However,

the AutoMed toolkit supports a functional query language asits intermediate

query language (IQL) | see Section 3.2.2 below.

Nodesand Edgesde�ne a labeled, directed, nested hypergraph. It is nested in

the sense that edges can link any number of both nodes and other edges. It is a

directed hypergraph because edges link sequences of nodes or edges.Constraints

is a set of boolean-valued queries over the schema which are satis�ed by all in-

stances of the schema. In AutoMed, constraints are expressed as IQL queries.

Nodes are uniquely identi�ed by their names. Edges and constraints have an

optional name associated with them.

The constructs of any higher-level modelling languageM are classi�ed as

either extensional constructs or constraint constructs , or both. Extensional

constructs represent sets of data values from some domain. Each such construct

in M is represented using a con�guration of the extensional constructs of the

HDM i:e: of nodes and edges. There are three kinds of extensional constructs:

� nodal constructs may exist independently of any other constructsin a

model. Such constructs are identi�ed by ascheme consisting of the name

of the HDM node used to represent that construct. For example, in the ER
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model, entities are nodal constructs since they may exist independently of

each other. An ER entity e is identi�ed by a schemehheii .

� link constructs associate other constructs with each other and can only

exist when these other constructs exist. The extent of a linkconstruct is a

subset of the cartesian product of the extents of the constructs it depends

on. A link construct is represented by an HDM edge. It is identi�ed by a

scheme that includes the name (and/or other identifying information) of

constructs it depends on. For example, in the ER model, relationships are

link constructs since they associate other entities. An ER relationship r

between two entitiese1 and e2 is identi�ed by a schemehhr; e1; e2ii .

� link-nodal constructs are nodal constructs that can only exist when certain

other constructs exist, and that are linked to these constructs. A link-nodal

construct has associated values, but may only exist when associated with

other constructs. It is represented by a combination of an HDM node and

an HDM edge and is identi�ed by ascheme including the name (and/or

other identifying information) of this node and edge. For example, in the

ER model, attributes are link-nodal constructs since they have an extent

and must always be linked to an entity. An ER attribute a of an entity e

is identi�ed by a schemehhe; aii .

Finally, a constraint construct has no associated extent but represents re-

strictions on the extents of the other kinds of constructs. It limits the extent of

the constructs it relates to. For example, in the ER model, generalisation hier-

archies are constraints since they have no extent but restrict the extent of each

subclass entity to be a subset of the extent of the superclassentity; similarly, ER

relationships and attributes have cardinality constraints.
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Previous work has shown how relational, ER, OO [MP99b], XML [MP01,

Zam04] and at-�le [BKL + 04] modelling languages can be de�ned in terms of the

HDM. After a modelling language has been de�ned in terms of the HDM (via

the API of AutoMed's Model De�nition Repository | see Sectio n 3.2.4 below), a

set of primitive transformations is automatically available for the transformation

of schemas de�ned in the language. Section 3.2.3 below will discuss AutoMed

transformations.

In this section, we next illustrate how a simple relational model, simple XML

data model and simple multidimensional data model can be represented in the

HDM.

Representing a Simple Relational Model

Relational Construct HDM Representation
construct: Rel
class:nodal node: hhRii
scheme:hhRii
construct: Att node: hhR : aii
class: link-nodal, constraint edge:hh; R; R : aii
scheme:hhR; a; nii if n = null

then constraint: hhh; R; R : aii ; f 0; 1g; f 1::N gi
else constraint: hhh; R; R : aii ; f 1g; f 1::N gi

Table 3.1: Representing Simple Relational Model Constructs

We show in Table 3.1 how a simple relational data model can be represented in

the HDM. In our simple relational model, there are two kinds of schema construct:

Rel and Att . A Rel construct is identi�ed by a schemehhRii where R is the

relation name, and aAtt construct is identi�ed by a schemehhR; a; nii wherea is

an attribute (key or non-key) which may benull or notnull (denoted by n). In

Table 3.1, we use some shorthand notation for expressing cardinality constraints

on HDM edges,hhhname; c1; :::; cmii ; s1; :::; sm i , wherenameis the edge name which
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can be anonymous (denoted by \"), each ci is a participating construct in the

edge, and eachsi is a set of integers representing the possible values for the

cardinality of eachci in the edge. Note thatN denotes in�nity in the table. The

extent of aRelconstruct hhRii in an AutoMed relational schema is the projection of

the relation R(k1; :::; kn ; a1; :::; am ) onto its primary key attributes k1; :::; kn . The

extent of eachAtt construct hhR; a; nii of R is the projection ofR onto k1; :::; kn ; a,

wherea 2 k1; :::; kn ; a1; :::; am .

For example, a relationstudent(id; sex; dname) would be modeled by aRelcon-

struct hhstudentii and threeAtt constructshhstudent; id; notnullii , hhstudent; sex; nullii

and hhstudent; dname; notnullii . Note that, for ease of exposition, in this thesis

we may omit the n notation in Att constructs and we do not consider the null

feature of attributes, so that the above threeAtt constructs are simpli�ed into

hhstudent; idii , hhstudent; sexii and hhstudent; dnameii . We also ignore primary keys

and foreign keys and refer the reader to [MP99b] for an encoding of a richer

relational data model, including the modelling of constraints.

Representing a Simple XML Model

Table 3.2 shows the representation of a simple XML model in terms of the HDM.

In this model, there are three kinds of schema construct:Element, Attribute and

NestSet. The extent of an Elementconstruct hheii consists of all the elements

with tag e in the XML document; the extent of eachAttribute construct hhe; aii

consists of all pairs of elements and attributesx; y such that elementx has tag

e and has an attribute a with value y; and the extent of eachNestSetconstruct

hhep; ecii consists of all pairs of elementsx; y such that elementx has tag p and

has a child elementy with tag c. We refer the reader to [Zam04] for an encod-

ing of a richer model for XML data sources, called XML DataSource Schemas
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(XMLDSS), which also captures the ordering of children elements under par-

ent elements. That paper gives an algorithm for generating the XMLDSS of an

XML document. That paper also discusses a unique naming scheme for Element

constructs and their instances. In particular,helementNamei $hcounti is used

for Elementconstructs, wherehcounti is a counter incremented every time the

same helementNamei is encountered in a depth-�rst traversal of the schema;

and helementNamei $hcounti hinstancei is used for instances of anElementcon-

struct wherehinstancei is a counter incremented every time a new instance of the

corresponding schema element is encountered in the document. If the $hcounti

is omitted from an element name, then $1 is assumed.

XML Construct Equivalent HDM Representation
Construct: Element
Classnodal node: hhxml : eii
Schemehheii
Construct: Attribute node: hhxml : e : aii
Class: link-nodal, edge:hh; xml : e; xml : e : aii
and constraint links: hhxml : eii
Scheme:hhe; aii constraint: hhh; xml : e; xml : e : aii ; f 0; 1g; f 1::N gi
Construct NestSet edge:hh; xml : ep; xml : ecii
Classlink, constraint links: hhxml : epii , hhxml : ecii
Schemehhep; ecii constraint: hhh; xml : ep; xml : ecii ; f 0::N g; f 1gi

Table 3.2: Representing Simple XML Model Constructs

To illustrate, Figure 3.2 shows a XML �le which is modeled by threeElement

constructs, fourAttribute constructs, and twoNestSetconstructs.

The Elementconstructs and their extents are as follows, where [: : :] denotes

a list in IQL, f : : : g denotes a tuple (in this case one-tuples), and0: : :0 denotes a

string in IQL:

hhrootii = [ 0root 10]

hhcourseii = [ 0course 10; 0course 20]

hhstudentii = [ 0student 10; 0student 20; 0student 30; 0student 40]
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< ?XML version='1.0'? >
< root>

< courseCID =\ISC01" cname=\Math" >
< student SID =\ISS01" mark =\76" = >
< student SID =\ISS02" mark =\78" = >

< =course>
< courseCID =\ISC02" cname=\Programming" >

< student SID =\ISS01" mark =\86" = >
< student SID =\ISS02" mark =\85" = >

< =course>
< =root>

Figure 3.2: A XML File

The Attribute constructs and their extents are as follows:
hhcourse; CIDii = [ f 0course 10; 0ISC010g; f 0course 20; 0ISC020g]

hhcourse; cnameii = [ f 0course 10; 0Math0g; f 0course 20; 0Programming0g]

hhstudent; SIDii = [ f 0student 10; 0ISS010g; f 0student 20; 0ISS020g;

f 0student 30; 0ISS010g; f 0student 40; 0ISS020g]

hhstudent; markii = [ f 0student 10; 76g; f 0student 20; 78g;

f 0student 30; 86g; f 0student 40; 85g]

The two NestSetconstructs and their extent are:
hhcourse; studentii = [ f 0course 10; 0student 10g; f 0course 10; 0student 20g;

f 0course 20; 0student 30g; f 0course 20; 0student 40g]

hhroot; studentii = [ f 0root 10; 0course 10g; f 0root 10; 0course 20g]

Representing a Simple Multidimensional Model

Our simple multidimensional data model has four kinds of schema construct:Fact,

Dim (dimension),Att (non-key attribute) and Hierarchy. For simplicity, we model

a measure as any other non-key attribute.Fact and Dim are nodal constructs,

Att is a link-nodal construct andHierarchyis a constraint. This speci�cation is

illustrated in Table 3.3.

A fact or dimension table R with primary attributes k1; : : : ; kn (n � 1) is
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uniquely identi�ed by the schemehhR; k1; : : : ; knii . This translates in the HDM

into a nodal construct hhRii the extent of which is the projection of the tableR

onto its primary key attributes k1; : : : ; kn. Each non-key attribute a of a fact or

dimension tableR is uniquely identi�ed by the schemehhR; aii . This translates in

the HDM into a link-nodal construct comprising a new nodehhR : aii and an edge

hh; R; R : aii . The extent of the edge is the projection of tableR onto k1; : : : ; kn; a.

Hierarchyconstructs reect the relationship between a primary key attribute

ki in a fact table R and its referenced foreign key attributek0
j in a dimension table

R0, or between a primary key attribute in a dimension tableR and its referenced

foreign key attribute in a sub-dimension tableR0. A hierarchy construct maps

to a constraint in the corresponding HDM schema, which asserts that the set of

values ofki in R are always contained in the set of values fork0
j in R0.

Dimensional Construct HDM Representation
construct: Fact
class:nodal node: hhRii
scheme:hhR; k1; : : : ; knii
construct: Dim
class:nodal node: hhRii
scheme:hhR; k1; : : : ; knii
construct: Att
class: link-nodal node: hhR : aii
scheme:hhR; aii edge:hh; R; R : aii
construct: Hierarchy constraint:
class:constraint [xijf x1; : : : ; xng  hh Rii ] �
scheme:hhR; R0; ki; k0

j ii [yj jf y1; : : : ; ymg  hh R0ii ]

Table 3.3: Representing Simple Multidimensional Model Constructs
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3.2.2 The IQL Query Language

AutoMed supports a functional query language as its intermediate query lan-

guage (IQL)3. IQL is a comprehensions-based functional query language.Such

languages subsume query languages such as SQL and OQL in expressiveness

[Bun94]. References [JPZ03, Pou04] give the details of IQL and references to

other work on comprehension-based functional query languages. Here, we give

an overview of IQL to the level of detail necessary for this thesis.

IQL supports several primitive operators for manipulatinglists. The list ap-

pend operator,++, concatenates two lists together. Thedistinct operator re-

moves duplicates from a list and thesort operator sorts a list. The monus

operator [Alb91], �� , takes two lists and subtracts each member of the second

list from the �rst e.g. [1,2,3,2,4]-- [4,4,2,1] = [3,2]. The fold operator applies

a given function f to each element of a list and then `folds' a binary operator

op into the resulting values. It is de�ned recursively as follows, where(x:xs)

denotes a list with headx and tail xs:

fold f op e [] = e

fold f op e (x:xs) = (f x) op (fold f op e xs)

Other IQL list manipulation operators can be speci�ed usingfold together

with IQL's support of lambda abstractions and set of built-in arithmetic and

boolean operators (such as +; � ; � ; =; >; <; = ; ! = ; > = ; < = ; and; or; not; member)4.

For example, the IQL functionssumand count are equivalent to SQL's SUM and

COUNT aggregation functions and can be speci�ed as

3IQL is an \intermediate" language because, in a virtual integration scenario, queries using
the high-level query language supported by a global schema are translated into IQL queries
over the schema constructs de�ned in AutoMed, and these IQL queries are then translated into
the queries using the high-level query languages supportedby the data sources so that they can
be evaluated in the data sources.

4Although they can be speci�ed in this way, for e�ciency purpo ses, they are actually built-
into the IQL Query Evaluator.
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sum xs = fold (id) (+) 0 xs

count xs = fold (lambda x.1) (+) 0 xs

We also have

min xs = fold (id) lesser maxNum xs

max xs = fold (id) greater minNum xs

avg xs = let {s,c} = fold (lambda x.{x,1}) combine {0,0} xs

in (s/c)

assuming constantsmaxNumand minNumand the following functions lesser ,

greater and combine:

greater = lambda x.lambda y.if (x > y) then x else y

lesser = lambda x.lambda y.if (x < y) then x else y

combine = lambda {s1,c1}.lambda {s2,c2}.{s1+s2,c1+c2}

The function flatmap applies a list-valued functionf to each member of a

list xs and is de�ned in terms offold :

flatmap f xs = fold f (++) [] xs

flatmap can in turn be used to specify selection, projection and joinoperators.

For example, themapfunction is a generalised projection operator and is de�ned

as

map f xs = flatmap (lambda x.[f x]) xs

flatmap can also be used to de�necomprehensions[Bun94]. For example,

the following comprehension iterates through a list of students and returns those

students who are not members of sta�:

[x | x <- <<student>>; not (member <<staff>> x)]

and it translates into:

flatmap (lambda x.if (not (member <<staff>> x))

then [x] else []) <<student>>
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[ejQ1; : : : ; Qn ] is the general syntax of a comprehension, in whiche is any well-

typed IQL expression, andQ1 to Qn are quali�ers, each quali�er being either a

�lter or a generator. A generator has syntaxp  E, where p is a pattern and

E is a collection-valued expression. A pattern is an expression involving tuples,

variables and constants only. A �lter is a boolean-valued expression.

Grouping operators are also de�nable in terms offold (see [PS97]). In par-

ticular, the operator group takes as an argument a list of pairsxs and groups

them on their �rst component, while gc aggFun xsgroups a list of pairsxs on

their �rst component and then applies the aggregation function aggFunto the

second component.

Although IQL is list-based, if the ordering of elements within lists is ignored

then its operators are faithful to the expected bag semantics, and in this thesis

henceforth we do assume bag semantics. Use of thedistinct operator can be used

to obtain set semantics if needed.

3.2.3 Transformation Pathways

As described in Section 3.2.1, each modelling construct of ahigher-level mod-

elling language can be speci�ed as some combination of HDM nodes, edges and

constraints. For any modelling languageM speci�ed in this way, AutoMed auto-

matically provides a set of primitive schema transformations that can be applied

to schema constructs expressed inM . In particular, for every extensional con-

struct of M there is anaddand a deleteprimitive transformation which add and

delete the construct into and from a schema. Such a transformation is accom-

panied by an IQL query specifying the extent of the added or deleted construct

in terms of the rest of the constructs in the schema. For thoseconstructs of

M which have textual names, there is also arenameprimitive transformation.

Also available arecontractand extendtransformations which behave in the same
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way asadd and deleteexcept that they indicate that their accompanying query

may only partially construct the extent of the new/removed schema construct.

The contract and extendtransformations can also take a pair of queries (lq; uq)

specifying a lower and upper bound on the extent of the new/removed construct,

instead of just one lower-bound query as described above. However, for the pur-

pose of data integration in a warehousing environment, we typically require just

the single-query versions of these transformations.

In more detail, the full set of primitive transformations for an extensional

construct T of a modelling languageM is as follows5:

� addT(c; q) applied to a schemaS produces a new schemaS0 that di�ers

from S in having a newT construct identi�ed by the schemec. The extent

of c is given by queryq on schemaS.

� extendT(c; ql ; qu) applied to a schemaS produces a new schemaS0 that

di�ers from S in having a newT construct identi�ed schemec. The mini-

mum extent of c is given by queryql , which may take the constant value

Void if no lower bound for this extent may be derived fromS. The maxi-

mum extent of c is given by queryqu, which may take the constant value

Any if no upper bound for this extent may be derived fromS.

� delT(c; q) applied to a schemaS produces a new schemaS0 that di�ers

from S in not having a T construct identi�ed by c. The extent of c may be

recovered by evaluating queryq on schemaS0.

Note that delT(c; q) applied to a schemaS producing schemaS0 is equiv-

alent to addT(c; q) applied to S0 producing S.
5For non-extensional constructs (i:e: constructs that map into HDM constraints) there are

add, delete and rename transformations if the construct is named. In this thesis we do not con-
sider constraint constructs because our major issues addressed, incremental view maintenance
and data lineage tracing, only relate to extensional constructs. We assume that any constraints
between the source data and the global data are satis�ed.
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� contractT (c; ql ; qu) applied to a schemaS produces a new schemaS0 that

di�ers from S in not having a T construct identi�ed by c. The minimum

extent of c is given by queryql , which may take the constant valueVoid

if no lower bound for this extent may be derived fromS0. The maximum

extent of c is given by queryqu, which may take the constant valueAny if

no upper bound for this extent may be derived fromS0.

Note that contractT (c; ql ; qu) applied to a schemaS producing schemaS0

is equivalent to extendT(c; ql ; qu) applied to S0 producing S.

� renameT(c; c' ) applied to a schemaS produces a new schemaS0 that di�ers

from S in not having a T construct identi�ed by schemec and instead aT

construct identi�ed by schemec' di�ering from c only in its name.

Note that renameT(c; c' ) applied to a schemaS producing schemaS0 is

equivalent to renameT(c' ; c) applied to S0 producing S.

For example, the set of primitive transformations for schemas expressed in the

simple relational data model we de�ned in Section 3.2.1 isaddRel, extendRel ,

delRel , contractRel , renameRel, addAtt , extendAtt , delAtt , contractAtt

and renameAtt; and for schemas expressed in the simple XML model isadd-

Element, extendElement, delElement , contractElement , renameElement, add-

Attribute , extendAttribute , delAttribute , contractAttribute , renameAtt-

ribute , addNestSet, extendNestset , delNestset and contractNestset .

The queries present within transformations mean that each primitive trans-

formation t has an automatically derivablereverse transformation, t � 1. In par-

ticular, each add/ extendtransformation is reversed by adelete/ contract transfor-

mation with the same arguments, while eachrenametransformation is reversed

by swapping its two arguments. Thus, AutoMed is aboth-as-view (BAV) data

integration system. As discussed in [MP03a], BAV subsumes the global-as-view
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(GAV) and local-as-view (LAV) approaches [Len02], since itis possible to extract

a de�nition of each global schema construct as a view over source schema con-

structs, and it is also possible to extract de�nitions of source schema constructs

as views over the global schema. We refer the reader to [JTMP04] for details of

AutoMed's GAV and LAV view generation algorithms.

In AutoMed, schemas are incrementally transformed by applying to them a

sequence of primitive transformationst1; : : : ; tr . Each primitive transformation

adds, deletes or renames just one schema construct. Thus, intermediate schemas

may contain constructs of more than one modelling language.

We term a sequence of primitive transformations from one schema S1 to an-

other schemaS2 a transformation pathway from S1 to S2, denotedS1 ! S2. All

source, intermediate and integrated schemas and the pathways between them are

stored in AutoMed's Schemas & Transformations Repository (see Section 3.2.4

below).

The queries within transformations are used by AutoMed's Global Query

Processor (GQP) [JPZ03] to evaluate an IQL query over a global schema in

the case of a virtual data integration scenario. The GAV viewde�nition for

each global schema construct (i:e: the view de�nition over the source schema

constructs) is derivable from the transformation pathwaysby using the view gen-

eration algorithm described in [JTMP04]. This algorithm traverses the trans-

formation pathways from the source schemas to the global schema backwards,

and unfolds any virtual schema construct using the query in the transformation

step which created the construct, until all constructs in the unfolded query are

materialised.

The process of evaluating a query over a virtual global schema includes:Query

Reformulation, replacing the virtual global schema constructs in the query by
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their GAV view de�nitions; Query Optimisation, optimising the query by elim-

inating redundant parts of the query, and reorganising the query by gathering

together the query parts which can be translated by the same data source so that

bigger sub-queries can be sent to each data source wrapper toevaluate; Query

Annotation, annotating the query by indicating which sub-queries haveto be sent

to which data sources; andQuery Evaluation, communicating with data source

wrappers by sending them sub-queries to evaluate, receiving the results, and un-

dertaking any further necessary evaluation to obtain the �nal query result6.

In the case that the global schema is materialised, the QueryEvaluator can

be used directly on the materialised data.

3.2.4 The AutoMed Metadata Repository

The AutoMed Metadata Repository forms a platform for other components of

the AutoMed Software Architecture (illustrated in Figure 3.3) to be implemented

upon. When a data source is wrapped, a de�nition of the schemafor that data

source is added to the repository. AutoMed's wrappers are implemented at two

levels. Ahigh level wrapperconverts between AutoMed queries and data and the

standard representation for a class of data sourcese:g:the SQL92Wrapperconverts

between IQL and SQL92. Alow level wrapperdeals with di�erences between the

class standard and a particular data sourcee:g:the PostgresSQLWrapperconverts

between SQL92 and Postgres databases.

The schema matching tool may be used to identify related objects in various

data sources (accessing the query processor to retrieve data from schema objects)

[Riz04]. After a schema matching phase, the schema restructuring tool can be

applied to generate a transformation pathway from a source schema to the global

6As well as working on the data warehousing aspects of AutoMed, I have also contributed
to the design and development of the query optimiser.
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schema [ZP04]. The global query processor undertakes the processing described

in the previous section, and includes the query reformulation, optimisation, an-

notation and evaluation processes. A GUI is supplied with AutoMed for these

components, and it is possible for a user application to be con�gured to run from

this GUI, and use the APIs of the various components. We focushere on using

the AutoMed Metadata Repository in a data warehousing environment.
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Figure 3.3: AutoMed Software Architecture

The repository has two logical components. The Model De�nitions Repository

(MDR) de�nes how each construct of a data modelling languageis represented as

a combination of nodes, edges and constraints in the HDM. TheMDR is used to

con�gure AutoMed so that it can handle a particular data modelling language.

The Schemas and Transformations Repository (STR) de�nes schemas in terms of

the data modelling constructs in the MDR, and transformations to be speci�ed

between such schemas. The MDR and STR may be held in the same orseparate

persistent storage. If the MDR and STR are stored in separatestorage, many
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AutoMed users can share a single MDR repository, which once con�gured, need

not be updated when integrating data sources that conform toa known set of

data modelling languages.

The API to these repositories uses JDBC to access an underlying relational

database. Thus, these repositories can be implemented using any DBMS sup-

porting JDBC. If the DBMS of the data warehouse supports JDBC, then the

AutoMed repositories can be part of the data warehouse itself.
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Object 0:N
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Transforma
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0:NAccess
Method

Figure 3.4: AutoMed Repository Schema

Figure 3.4 (taken from [BMT02]) gives an overview of the key objects in the

repository. The STR contains a set of descriptions ofSchemas, each of which con-

tains a set ofSchemaObjectinstances, each of which must be based on aConstruct

instance that exists in the MDR. ThisConstructdescribes how theSchemaObject

can be constructed in terms of strings and references to other schema objects,

and the relationship of the construct to the HDM. Schemas maybe related to

each other using instances ofTransformation.

The AutoMed repository API provides methods to create, query, alter and
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remove models, constructs, schemas, schema objects and transformations. The

repository API comprises of Java classes representing eachof these entities and

the methods for manipulating them7.

3.3 Expressing Data Warehouse Schemas and

Transformations
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Figure 3.5: Data Transformation and Integration at the Schema Level

Figure 3.5 illustrates at the schema level the data transformation and integra-

tion processes in a typical data warehouse. Generally, the extract-transform-load

(ETL) process of a data warehouse includes extracting data from the remote data

sources into the staging area, cleansing and transforming data in the staging area

and loading them into the data warehouse. In this section we assume that data

extraction has already happenedi:e: all the data sources are in the staging area.

The data source schemas (DSSi in Figure 3.5) may be expressed in any modelling

language that has been speci�ed in AutoMed. The transforming process trans-

lates eachDSSi into a transformed schemaTSi which is ready for single-source
7For details, seehttp://www.doc.ic.ac.uk/automed/resources/apidocs/i ndex.html
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data cleansing. EachTSi may be de�ned in the same, or a di�erent, modelling

language asDSSi and other TSs. The translation from aDSSi to a TSi is expressed

as an AutoMed transformation pathwayDSSi ! TSi . Such translation may not

be necessary if the data cleansing tools to be employed can beapplied directly to

DSSi , in which caseTSi and DSSi are identical.

The single-source data cleansing process transforms eachTSi into a single-

source-cleansed schemaSSi , which is de�ned in the same modelling language as

TSi but may be a di�erent from it. The single-source cleansing process is expressed

as an AutoMed transformation pathwayTSi ! SSi . Multi-source data cleansing

removes conicts between sets of single-source-cleansed schemas and creates a

multi-source-cleansed schemaMSi from them. Between the single-source-cleansed

schemas and the detailed schema (DS) of the data warehouse there may be several

stages ofMSs, possibly represented in di�erent modelling languages.

In general, if during multi-source data cleansingn schemasS1; : : : ; Sn need

to be transformed and integrated into one schemaS, we can �rst automatically

create a `union' schemaS1 [ : : : [ Sn (after �rst undertaking any renaming of con-

structs necessary to avoid any naming ambiguities between constructs from dif-

ferent schemas). We can then express the transformation andintegration process

as a pathwayS1 [ : : : [ Sn ! S8. (There are also other schema integration ap-

proaches possible with AutoMed. With this approach, and in adata warehousing

context, there is no need forextendtransformation steps).

After multi-source data cleansing, the resultingMSs are then transformed and

integrated into a single detailed schema,DS, expressed in the data model of the

data warehouse. First, a union schemaMS1 [ . . . [ MSn is automatically generated.

8Reference [AMGF05] is concerned with correlating data fromdi�erent databases and pro-
vides semantically rich materialisation rules handling schema heterogeneity among the data-
bases. The integrated schema can use one of the integration rules, such as union, merge and
intersection, to integrate the source databases. This functionality can also be obtained using
AutoMed, within the pathway S1 [ : : : [ Sn ! S.

64



The transformation and integration process is then expressed as a pathwayMS1

[ . . . [ MSn ! DS. The DScan then be enriched with summary views by means

of a transformation pathway fromDSto the �nal data warehouse schemaDWS.

Data mart schemas (DMS) can subsequently be derived from theDWSand these

may be expressed in the same, or a di�erent, modelling language as theDWS.

Again, the derivation is expressed as a transformation pathway DWS! DMS.

Using AutoMed, four steps are needed in order to create the metadata ex-

pressing the above schemas and transformation pathways:

1. Create AutoMed repositories: AutoMed metadata is stored in the

MDR and the STR. So we �rst need to create these repositories includ-

ing empty relations de�ned by the MDR and STR schemas illustrated in

Figure 3.4.

2. Specify data models: All the data models that will be required for ex-

pressing the various schemas of Figure 3.5 need to be speci�ed in terms of

AutoMed's HDM, via the API of the MDR (standard de�nitions of rela-

tional, ER and XML data models are available).

3. Extract data source schemas: Each data source schema is automatically

extracted and translated into its equivalent AutoMed representation using

the appropriate wrapper for that data source.

4. De�ne transformation pathways: The remaining schemas of Figure 3.5

and the pathways between them can now be de�ned, via the API ofthe

STR.

After any primitive transformation is applied to a schema, anew schema

results. By default, this will be anintentional schema within the STRi:e:

it is not stored but its de�nition can be derived by traversing the pathway
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from its nearest ancestorextensionalschema. The data source schemas are,

by de�nition, extensional schemasi:e: their full de�nition is stored within

the STR. It is also possible to request that any other schema becomes an

extensional one, for example the successive stages of schemas identi�ed in

Figure 3.5.

After any addT(c,q)transformation step, it is possible tomaterialisethe new

construct c by creating, externally to AutoMed, a new data source whose

schema includesc and populating this data source by the result of evaluating

the query q (we discuss this process in more detail in Section 3.4.1 below).

In general, a schema may be amaterialisedschema (all of its constructs are

materialised) or avirtual schema (none of its constructs are materialised)

or partially materialised (some of its constructs are materialised, some not).

In the following sections, we discuss in more detail how AutoMed transforma-

tion pathways can be used for describing the six stages of thedata transformation

and integration process illustrated in Figure 3.5. We �rst give a simple example

illustrating data transformation and integration, assuming that no data cleansing

is necessary.

3.3.1 An Example of Data Integration and Transforma-

tion

Figure 3.6 shows a multidimensional schema consisting of a fact table Salary

and two dimension tablesPersonand Job, which is represented by AutoMed

schema constructshhSalary; id; job idii , hhSalary; salaryii , hhSalary; dept idii , hhPer-

son; idii , hhPerson; nameii , hhJob; job idii , hhJob; job descrii , hhSalary; Person; id; idii

and hhSalary, Job; job id; job idii ; a XML schema consisting of elementsroot and

dept and two attributes id and name, which is represented by AutoMed schema
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Figure 3.6: An Example of Data Integration and Transformation

constructshhrootii , hhdeptii , hhdept; idii , hhdept; nameii and hhroot; deptii ; and a rela-

tional schema consisting of a single tableDept into which the other two schemas

need to be transformed and integrated, which is representedby AutoMed schema

constructs hhDeptii , hhDept; idii , hhDept; dept nameii and hhDept; total salaryii .

In order to integrate the two source schemas into the target schema we �rst

form their union schema. The following four primitive transformations are then

applied to this union schema in order to add theDept relation to it, de�ning the

extent of its id key attribute to be obtained by the XML id attribute, the extent

of its dept nameattribute to be obtained by the XML nameattribute, and the

extent of its total salaryattribute to be obtained by summing the salaries for each

department in the Salarytable:

addRel (hhDeptii , map (lambda {k,i}.i) hhdept; idii );

addAtt (hhDept; idii , map (lambda {k,i}.{i,i}) hhdept; idii );

addAtt (hhDept; dept nameii , [{i,n} j{k,i}  hh dept; idii ; {k',n}  hh dept; nameii ;

k=k' ]);

addAtt (hhDept; total salaryii , gc sum [{d,s}|{i,j,s}  hh Salary; salaryii ;

{i',j',d}  hh Salary; dept idii ;

i=i'; j=j' ]);

The following �ve transformations can then be applied to theresulting schema

to remove the XML constructs from it | note how the queries show how the
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extents of these constructs could be reconstructed from theremaining schema

constructs. In particular, IQL functions generateUID s xs and generateAtt

s xs are used to generate instances of XML elements and attributes, where the

input s is a string andxs is a list of n-tuples. The function generateUID gener-

ates a list of values of the forms_count in which count is a counter incremented

every time a new value is generated. The number of values generated is equal to

the number of items in the listxs. The function generateAtt generates a list of

tuples of the form{s_count,c1,...,cn} in which s and count are as above and

{c0,c1,...,cn} is a tuple in the list xs. For example, supposes is 'dept' andxs

is [{'D01','Sales'} ; {'D02','Accounts'} ; {'D03','Personnel'} ], the result

of generateUID s xs is the list ['dept_1' ; 'dept_2' ; 'dept_3' ], and the result

of generateAtt s xs is the list [{'dept_1','Sales'} ; {'dept_2','Accounts'} ;

{'dept_3','personnel'} ].

delNestSet (hhroot; deptii , [{'root_1',c}|c  generateUID 'dept' hhDeptii ]);

delAttribute (hhdept; nameii , generateAtt 'dept' hhDept; dept nameii );

delAttribute (hhdept; idii , generateAtt 'dept' hhDept; dept idii );

delElement (hhdeptii , generateUID 'dept' hhDeptii );

delElement (hhrootii , ['root_1' ]);

Finally, the following sequence of transformations removethe multidimen-

sional schema constructs | note that contractrather than deletetransformations

are used since their extents cannot be reconstructed from the remaining schema

constructs:

contractHierarchy (hhSalary; Person; id; idii );

contractHierarchy (hhSalary; Job; job id; job idii );

contractAtt (hhSalary; salaryii );

contractAtt (hhSalary; dept idii );

contractFact (hhSalary; id; job idii );
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contractAtt (hhJob; job descrii );

contractDim (hhJob; job idii );

contractAtt (hhPerson; nameii );

contractDim (hhPerson; idii );

The �nal schema consists of theDept relation and its attributes, as required.

This example illustrates how schemas expressed in one data model can be

transformed into a schema expressed in another. The generalapproach is to �rst

add the new schema constructs of the target data model (relational in the above

example) and then to delete or contract the schema constructs of the original

data model(s) (multidimensional and XML in the above example).

3.3.2 Expressing Data Cleansing

We recall from Chapter 2 that the problem of data cleansing includes single-source

problems and multi-source problems, and that both of them have two levels,

schema-level and instance-level. In this section, we investigate how AutoMed

metadata can be used for expressing data cleansing processes, for both single and

multiple data sources, and for both schema-level and instance-level problems.

Single-Source Cleansing

Schema-level single-source problems may arise within a transformed schemaTSi

in Figure 3.5 and they can be resolved by means of an AutoMed transformation

pathway that evolvesTSi as necessary.

Single-source instance-level problems include value, attribute and record prob-

lems. Value problems occur within a single value and includeproblems such

as missing values, misspelled values, mis-�elded values, embedded values, mis-

expressed values, or values using abbreviations. Attribute problems relate to
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multiple attributes in one record and include problems suchas dependence viola-

tion. Record problems relate to multiple records in the datasources and include

problems such as duplicate records or contradictory records.

Handling some instance-level problems does not require theschemas to be

evolved, only the extent of one or more schema constructs to be corrected. In

general, suppose that the extent of a schema constructc needs to be replaced by

a new, cleansed, extent. We can do this using an AutoMed pathway as follows:

1. Add a new temporary constructtemp to the schema, whose extent consists

of the `clean' data that is needed to generate the new extent of c. This clean

data is derived from the extents of the existing schema constructs. This

derivation may be expressed as an IQL query, or as a call to an `external'

function or, more generally, as an IQL query with embedded calls to external

functions.

(The IQL interpreter is easily extensible with new built-in functions, im-

plemented in Java, and these may themselves call out to otherexternal

functions. If the extent of a new schema construct depends oncalls to one

or more external functions, then the new construct must be materialised.

Otherwise, if the extent of a new construct is de�ned purely in terms of

IQL and its own built-in functions then the new construct need not be

materialised.)

2. Contract the construct c from the schema.

3. Add a new constructc whose extent is derived fromtemp.

4. Delete or contract thetemp construct.

To illustrate, suppose we have available a built-in function toolCallwhich al-

lows a speci�ed external data cleansing tool to be invoked with speci�ed input
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data. Then, we can invoke a data cleansing tool, for example \QuickAddress

Batch" 9 to correct the zip and addressattributes of a table Person(id, name, ad-

dress, zip, city, country, phoneAndFax, maritalStatus)by regenerating these at-

tributes given the combination of address, zip and city information:

addRel (hhTemp; id; address; zipii ,

toolCall 'QuickAddress Batch' ' hhPerson; addressii '

' hhPerson; zipii ' ' hhPerson; cityii ' );

contractAtt (hhPerson; zipii );

contractAtt (hhPerson; addressii );

addAtt (hhPerson; zipii , [{i,z}|{i,a,z}  hh Temp; id; address; zipii ]);

addAtt (hhPerson; addressii , [{i,a}|{i,a,z}  hh Temp; id; address; zipii ]);

delRel (hhTemp; id; address; zipii , [{i,a,z}|{i,a}  hh Person; addressii ;

{i',z}  hh Person; zipii ; i = i' ]);

Handling some instance-level problems may require the schemas to be evolved.

For example, if we have available a built-in functionsplit phonefax which slits a

string comprising a phone number followed by one or more spaces followed by a

fax number into a pair of numbers, then the following AutoMedpathway converts

the attribute phoneAndFaxof the Persontable above into two new attributesphone

and fax:

addRel (hhTemp; id; phone; faxii , [{i,p,f}|{i,pf}  hh Person; phoneAndFaxii ;

{p,f}  split_phone_fax pf ]);

addAtt (hhPerson; phoneii , [{i,p}|{i,p,f}  hh Temp; id; phone; faxii ]);

addAtt (hhPerson; faxii , [{i,f}|{i,p,f}  hh Temp; id; phone; faxii ]);

contractAtt (hhPerson; phoneAndFaxii );

delRel (hhTemp; id; phone; faxii , [{i,p,f}|{i,p}  hh Person; phoneii ;

{i',f}  hh Person; faxii ; i = i' ]);

9http://www.qas.com/address-correction-software.asp
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Multi-Source Cleansing

After single-source data cleansing, there may still exist conicts between di�erent

single-source cleansed schemas in Figure 3.5, leading to the process of multi-source

cleansing.

Schema-level problems in multi-source cleansing include attribute and struc-

ture conicts. Attribute conicts arise when di�erent sour ces use the same name

for di�erent constructs (homonyms) or di�erent names for the same construct

(synonyms), and they can be resolved by applying appropriate renametransfor-

mations to one of the schemas. Structure conicts arise whenthe same informa-

tion is modeled in di�erent ways in di�erent schemas, and they can be resolved by

evolving one or more of the schemas using appropriate AutoMed pathways. For

example, the transformation pathway in Section 3.3.1 showshow the department

information modeled in an XML schema can be transformed intothe equivalent

information modeled in a simple relational schema.

Instance-level problems in multi-source cleansing include attribute, record,

reference and data source problems. Attribute problems include di�erent repre-

sentations of the same attribute in di�erent schemas or di�erent interpretations

of the values of an attribute in di�erent schemas. Such problems can be resolved

by generating a new extent for the attribute in one of the schemas by applying an

appropriate conversion function to each of its values. In general, suppose we wish

to convert each of the values within the extent of a constructc in a schemaS by

applying a function f to it. First a new construct c_newis added to S, whose

extent is populated by iterating over the extent ofc and applying f to each of

its values. Then, the old constructc is deleted or contracted from the schema,

and �nally c_newis renamed toc. For example, the following pathway converts

a 'M'/'S' representation for the maritalStatusattribute in the above Personta-

ble into a 'Y'/'N' representation, assuming the availability of a built-in function
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convertMSwhich maps 'M' to 'Y' and 'S' to 'N':

addAtt (hhPerson; maritalStatusnewii ,

[{i,convertMS s}|{i,s}  hh Person; maritalStatusii ]);

contractAtt (hhPerson; maritalStatusii );

renameAtt (hhPerson; maritalStatusnewii , hhPerson; maritalStatusii );

Note that if there is also available an inverse functionconvertMSinvwhich

maps 'Y' to 'M' and 'N' to 'S', then a deletetransformation could have been used

in the second step above instead of acontract:

delAtt (hhPerson; maritalStatusii ,

[{i,convertMSinv s}| {i,s}  hh Person; maritalStatusnewii ]);

Record problems in multi-source cleansing include duplicate records or con-

tradictory records among di�erent data sources. For duplicate records, suppose

that constructs c and c' from di�erent schemas are to be integrated into a single

construct within some multi-source cleansed schema. Then,prior to the integra-

tion, we can create a new extent forc comprising only those values not present

in the extent of c' :

add (c_new, [v | v  c; not (member c' v)];

contract (c);

rename (c_new, c);

For contradictory records, we can similarly create a new extent for c com-

prising only those values which do not contradict values in the extent ofc' . For

example, suppose we have tablesPersonand Employeein di�erent schemas, both

with key id, and the attributes hhPerson; maritalStatusii and hhEmp; maritalStatusii

are going to be integrated into a single attribute of a singletable within some

multi-source cleansed schema. Then the following transformation removes val-

ues fromhhPerson; maritalStatusii which contradict values inhhEmp; maritalStatusii

(assuming that the latter is the more reliable source | the opposite choice would

73



also of course be possible10);

addAtt (hhPerson; maritalStatusnewii ,

hhPerson; maritalStatusii�� [{i,s}|{i,s}  hh Person; maritalStatusii ;

{i',s'}  hh Emp; maritalStatusii ;

i = i'; not (s = s')]);

contractAtt (hhPerson; maritalStatusii );

renameAtt (hhPerson; maritalStatusnewii , hhPerson; maritalStatusii );

Reference problems in multi-source cleansing occur when a referenced value

does not exist in the target schema construct and can be resolved by removing

the dangling references. For example, if an attributehhEmp; dept idii references

a table hhDeptii with key hhdept idii , then the following transformation removes

values fromhhEmp; dept idii for which there is no correspondinghhdept idii value

in hhDeptii :

addAtt (hhEmp; dept id newii , [{i,d}|{i,d}  hh Emp; dept idii ; memberhhDeptii d]);

contractAtt (hhEmp; dept idii );

renameAtt (hhEmp; dept id newii ; hhPerson; dept idii );

Finally, data source problems relate to whole data sources,for example, ag-

gregation at di�erent levels of detail in di�erent data sources (e:g: sales may be

recorded per product in one data source and per product category in another data

source). Such conicts can be resolved either by retaining both sets of source data

within the target multi-source schemaMSi (with appropriate renaming of schema

constructs as necessary) or by selecting the `coarser' aggregation and creating a

view over the more detailed data which summarises this data at the coarser level,

ready for integration with the more coarsely aggregated data from the other data

source.
10We could also use the taxonomy of quality de�ned in [BGF02] to decide which is the more

reliable source.
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3.3.3 Expressing Data Integration

After data cleansing, the resulting multi-source-cleansed schemasMS1, . . . , MSn

are ready to be transformed and integrated into the detailedschema,DS, via

the automatically generated union schemaMS1 [ . . . [ MSn . Section 3.3.1 above

illustrated this process.

3.3.4 Expressing Data Summarisation

Data summarisation de�nes views over the detailed data. These are expressed by

means of a transformation pathway fromDSto the �nal data warehouse schema

DWS, consisting of a series ofaddsteps de�ning the new summarised constructs as

views over the constructs ofDS. The example in Section 3.3.1 illustrates a process

of de�ning a summarised view over heterogeneous data sources.

3.3.5 Creating Data Marts

Data mart schemas (DMS) can subsequently be derived from theDWS, again by

means of a transformation pathwayDWS! DMS. Unlike the previous, summarising,

step the target schema may be expressed in a di�erent modelling language to the

DWS. In fact, this step can be regarded as a separate instance of Figure 3.5 where

the DWSnow plays the role of the (single) data source and theDMSplays the role

of the target warehouse schema. The scenario is a simpli�cation of Figure 3.5

since there is only one data source, and there are no single-source or multi-source

cleansed schemas.
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3.4 Using the Transformation Pathways

In the previous section we showed how AutoMed metadata can beused for ex-

pressing the processes of data transformation, cleansing,integration, summari-

sation and creating data marts in a data warehouse. In this section, we discuss

how the resulting transformation pathways can be used for some key data ware-

housing processes: populating the data warehouse, incrementally maintaining the

warehouse data after data source updates, and tracing the lineage of warehouse

data.

3.4.1 Populating the Data Warehouse

In order to use the AutoMed transformation pathways for populating the data

warehouse, an AutoMed wrapper is required for each kind of data store from

which data will be extracted or into which data will be stored. In order to popu-

late a constructc of the data warehouse schemaDWS, we need to generate a view

de�nition for each construct of DWSin terms of its nearest ancestor materialised

constructs within the pathways from the data source schemasDSS1, . . . , DSSn to

DWS. This can be done using a modi�cation of the GAV view generation algorithm

described in [JTMP04]. This algorithm traverses the pathway from DWSto each

DSSi backwards, all the way toDSSi . The modi�ed algorithm stops whenever a

materialised construct is encountered in a pathway. The result is a view de�n-

ition of the construct c in terms of already materialised constructs. This view

de�nition is an IQL query which can be evaluated, and the resulting data can be

inserted into the data store linked withc, via a series of update requests to that

data store's wrapper.
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3.4.2 Incrementally Maintaining the Warehouse Data

In order to incrementally maintain materialised warehousedata, we need to use

incremental view maintenance techniques. If a materialised construct c in the

data warehouse schemaDWSis de�ned by an IQL query q over other materialised

constructs, we give in Chapter 7 formulae for incrementallymaintaining c if

one its ancestor materialised constructscanc has new data inserted into it (an

increment) or data deleted from it (a decrement). We actually do not use the

whole view de�nition q generated forc, but instead track the changes fromcanc

through each step of the pathway toDWS. At each add or renamestep we use

the set of increments and decrements computed so far to compute the increment

and decrement for the schema constructed being generated bythis step of the

pathway. Chapter 7 discusses this in detail.

3.4.3 Tracing the Lineage of the Warehouse Data

The lineageof a data item t in the extent of a materialised constructc of the

warehouse schemaDWSis a set of source data items from whicht was derived.

In Chapter 5, we develop de�nitions for data lineage in the context of AutoMed

transformation pathways and give formulae for deriving thelineage of a data

item t in the extent of a materialised constructc created by a transformation

step of the formaddT(c,q). We then give an algorithm for tracing the lineage of

t all the way back to the data sources by using the AutoMed pathways from the

data source schemasDSS1, . . . , DSSn to the warehouse schema. This algorithm

traverses a pathway backwards, and incrementally computesnew lineage data

whenever anadd or renamestep is encountered, �nally ending with the required

lineage fort from within DSS1, . . . , DSSn .

Chapter 6 generalises these algorithms to use arbitrary AutoMed schema
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transformations for tracing data lineagei:e: where intermediate schema constructs

may or may not be materialised.

3.5 Discussion

In this chapter we have shown how AutoMed metadata can be usedto express

the processes of data transformation, cleansing, integration, summarisation and

creating data marts in a heterogeneous data warehouse. In particular, for all cat-

egories of data cleansing problems, the general approach isto add new constructs

to the current schema and to populate them by `clean' data generated from the

extents of the existing schema constructs by means of IQL queries and/or or calls

to external functions. The old, `dirty', schema constructsare then contracted

from the schema. Compared with the commercial tools and general research

tools for data cleansing discussed in Section 2:4:3 of Chapter 2, we express the

process of data cleansing using a sequence of transformations which readily sup-

ports schema evolution (see points 2 and 3 below). Other datacleansing tools

can be called from our data cleansing process via built-in functions within IQL

queries. Furthermore, we consider data cleansing both at the schema level and at

the instance level, while only one of these aspects is typically considered in other

data cleansing tools.

We have also discussed how the resulting transformation pathways can be used

for populating the data warehouse, incrementally maintaining the data warehouse

data after data source updates, and tracing the lineage of data warehouse data.

More detail about the latter two will be given in Chapters 5� 7 of the thesis. In

this thesis we assume that the data warehouse is not updated directly but only

based on periodic changes to the data sources in the staging area.

There are three main di�erences between our approach and thetraditional
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data warehousing approach based on a single conceptual datamodel (CDM):

1. In the CDM approach, each data source wrapper translates the data source

model into the CDM. Since both are likely to be high-level conceptual mod-

els, semantic mismatches may exist between the CDM and the source data

model, and there may be a loss of information between them. Incontrast,

with our approach, the data source wrappers translate each data source

schema into its equivalent AutoMed representation. Any necessary inter-

model translation then happens explicitly within the AutoMed transforma-

tion pathways, under the control of the data warehouse designer.

2. In the CDM approach, the data transformation and integration metadata is

tightly coupled with the CDM of the particular data warehouse. If the data

warehouse is to be redeployed on a platform with a di�erent CDM, it is not

easy to reuse the previous data transformation and implementation e�ort.

In contrast, with our approach it is possible to extend the existing pathways

from the data source schemasDSS1, . . . , DSSn to the current detailed data

warehouse schema,DS, with extra transformation steps that evolveDSinto a

new schemaDSnew , expressed in the data model of the new data warehouse

implementation. Chapter 4 discusses how in greater detail.

3. In the CDM approach, if a data source schema changes it is not straightfor-

ward to evolve the view de�nitions of the data warehouse constructs. With

our approach, a change of a data source schemaDSSi into a new schema

DSSnew
i can be expressed as a transformation pathwayDSSi ! DSSnew

i . The

(automatically derivable) reverse pathwayDSSnew
i ! DSSi can then be pre-

�xed to the original pathway DSSi ! TSi to give a pathwayDSSnew
i ! TSi ,

thus extending the transformation network of Figure 3.5 to encompass the
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new schema. Chapter 4 discusses in greater detail the modi�cations to the

transformation network and the change propagation process.
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Chapter 4

Using AutoMed Transformation

Pathways for Handling Schema

Evolution

4.1 Motivation

The heterogeneity of the data sources of data warehouses hastwo aspects, het-

erogeneous data expressed in di�erent data models, calledmodel heterogeneity

[KR02], and heterogeneous data within di�erent data schemas expressed in the

same data model, calledschema heterogeneity[KR02, Mil98].

As we discussed in Chapter 3, the common approach to handlingmodel het-

erogeneity is to use a single conceptual data model (CDM) forthe data trans-

formation and integration. Each data source has a wrapper for translating its

schema and data into the CDM. The warehouse schema is derivedfrom these

CDM schemas by means of view de�nitions, and is expressed in the same mod-

elling language as them. With this approach, since they are both high-level
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conceptual data models, semantic mismatches may occur between the CDM and

a source data model, and there may be a loss of information between them. More-

over, if a data source schema changes, it is not straightforward to evolve the view

de�nitions of the warehouse schema.

Lakshmananet al [LSS93, LSS99, LSS01] argue that a uniform framework for

schema integration and schema evolution is both desirable and possible, and this is

possible with AutoMed also as we discuss in this chapter. They de�ne a higher-

order logic language, SchemaSQL, which handles data integration and schema

evolution in relational multi-database systems. In contrast, our approach uses

a simple set of schema transformation primitives, augmented with a functional

query language, both of which are uniformly applicable to multiple data models.

Other previous work on schema evolution [ALP91, Bel96, Ben99, BSH99] has also

presented approaches in terms of just one data model.

In contrast to the CDM approach, AutoMed's data source wrappers translate

each data source schema into its equivalent AutoMed representation, without loss

of information. In Chapter 3 we discussed how AutoMed metadata can be used to

express the schemas and the cleansing, transformation and integration processes

in heterogeneous data warehouse environments, supportingboth schema hetero-

geneity and model heterogeneity. It is clearly advantageous to be able to reuse

this kind of metadata if a schema evolves. In this chapter we show how this can

be achieved.

Earlier work [MP02] has shown how the AutoMed framework readily supports

schema evolution invirtual data integration scenarios. This chapter addresses the

problem of schema evolution inmaterialiseddata integration scenarios, including

both evolution of a source schema and of the warehouse schema, and also the

impact on any data marts derived from the warehouse. This scenario is more

complex than with virtual data integration, since both schemas and materialised
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data may be a�ected by an evolution.

4.2 A Data Integration Scenario and Example

Figure 4.1 shows a data integration scenario in AutoMed.

S1

DB1

S2

DB2

Sn

DBn

DS1 DS2 DSn

SS
SD

T1 T2 Tn

Data Source
Schemas and

Databases

Union
Schemas

The Summarised
Data Schema
and Database

Detailed Data
Schemas and

Databases

..... .....

US1 US2 USi USn
id id id

Si

DBi

DSi

T i
DD1 DD2 DDi DDn

Figure 4.1: Data Integration Scenario

In this data integration scenario, each data sourceDBi is described by a data

source schemaSi . Each Si is �rst conformed into a detailed data schemaDSi

(which may or may not be expressed in the same modelling language asSi ) by

means of a transformation pathwayTi . The process of single-source data cleansing

can be encapsulated in this transformation pathway. There may be information

within the summarised data schema which is not semanticallyderivable fromSi ,

and this is asserted by the pathway fromDSi to the `union-schema'USi which

consists of the necessaryextendtransformations1.

All the union schemasUS1, . . . , USn are syntactically identical and this is as-

serted by creating a sequence ofid transformations between each pairUSi and

1If there are none, then this pathway is empty andCSi and DSi are the same schema

83



USi +1 , of the form id USi : c USi +1 : c for each schema constructc. An id transfor-

mation signi�es the semantic equivalence of syntacticallyidentical constructs in

di�erent schemas. The transformation pathways containingtheseid transforma-

tions can be automatically generated by the AutoMed software. An arbitrary one

of the USi can then be selected for further transformation into the summarised

schemaSS. The extent of each constructc in a union schemaUSi is equal to the

bag-union of the extent ofc in all union schemasUS1, . . . , USn . That is, id is inter-

preted as bag-union by AutoMed's view generation functionality. The processes

of multi-source data cleansing, integrating and summarising can be handled over

the pathway from USi to SS.

We assume that all the source, detailed and summarised schemas are materi-

alised in the databasesDBi , DDi and SDwhile all union schemasUSi are virtual.

Figure 4.2 gives a concrete example of this data integrationscenario.

The transformation pathway T1 below transforms the schemaS1 into DS1 by

�rst creating Relconstruct hhMAtabii and its attributes hhMAtab; Deptii , hhMAtab;

CIDii , hhMAtab; SIDii and hhMAtab; Markii using add transformations, and then

using deletetransformations to delete the schema constructs ofS1.

T1 : S1 ! DS1

addRel hhMAtabii [{'MA','MAC01',x}|x  hh MAC01ii ]

++ [{'MA','MAC02',x}|x  hh MAC02ii ]

++ [{'MA','MAC03',x}|x  hh MAC03ii ];

addAtt hhMAtab; Deptii [{k1,k2,k3,k1}|{k1,k2,k3}  hh MAtabii ];

addAtt hhMAtab; CIDii [{k1,k2,k3,k2}|{k1,k2,k3}  hh MAtabii ];

addAtt hhMAtab; SIDii [{k1,k2,k3,k3}|{k1,k2,k3}  hh MAtabii ];

addAtt hhMAtab; Markii [{'MA','MAC01',k,x}|{k,x}  hh MAC01; Markii ]

++ [{'MA','MAC02',k,x}|{k,x}  hh MAC02; Markii ]

++ [{'MA','MAC03',k,x}|{k,x}  hh MAC03; Markii ];
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Dept CID Max Avg

MA MAC01 95 81

MA MAC02 93 85

... ... ...

CS CSC03 96 78

SS and SD:
CourseSum

Sid SName CSC01 CSC02 CSC03

CSS01 Jack 95 82 75

CSS02 Tom 88 94 81

... ... ... ... ...

S2 and DB2 :
CSMarks

S1 and DB1 :
MAC02

SID Mark

MAS01 82

MAS03 88

... ...

SID Mark

MAS01 77
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... ...

MAC01 MAC03
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... ...
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US: Details(Dept ,CID,SID,SName,Mark)

Tu
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MA MAC01 MAS01 77

... ... ... ...
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... ... ... ... ...
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CStab(Dept ,CID,SID,SName,Mark)

id

Figure 4.2: Example of Data Integration

delAtt hhMAC01; Markii [{k3,x}|{k1,k2,k3,x}  hh MAtab; Markii ; k2='MAC01'];

delAtt hhMAC01; SIDii [{k3,x}|{k1,k2,k3,x}  hh MAtab; SIDii ; k2='MAC01'];

delRel hhMAC01ii [{k3}|{k1,k2,k3}  hh MAtabii ; k2='MAC01'];

delAtt hhMAC02; Markii [{k3,x}|{k1,k2,k3,x}  hh MAtab; Markii ; k2='MAC02'];

delAtt hhMAC02; SIDii [{k3,x}|{k1,k2,k3,x}  hh MAtab; SIDii ; k2='MAC02'];

delRel hhMAC02ii [{k3}|{k1,k2,k3}  hh MAtabii ; k2='MAC02'];

delAtt hhMAC03; Markii [{k3,x}|{k1,k2,k3,x}  hh MAtab; Markii ; k2='MAC03'];

delAtt hhMAC03; SIDii [{k3,x}|{k1,k2,k3,x}  hh MAtab; SIDii ; k2='MAC03'];

delRel hhMAC03ii [{k3}|{k1,k2,k3}  hh MAtabii ; k2='MAC03'];

The transformation pathway T2 below transforms schemaS2 into DS2:
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T2 : S2 ! DS2

addRel hhCStabii [{'CS',x,y}|x  ['CSC01','CSC02','CSC03'] ;

y  hh CSMarksii ];

addAtt hhCStab; Deptii [{k1,k2,k3,k1}|{k1,k2,k3}  hh CStabii ];

addAtt hhCStab; CIDii [{k1,k2,k3,k2}|{k1,k2,k3}  hh CStabii ];

addAtt hhCStab; SIDii [{k1,k2,k3,k3}|{k1,k2,k3}  hh CStabii ];

addAtt hhCStab; SNameii [{'CS',x,k,s}|x  ['CSC01','CSC02','CSC03'] ;

{k,s}  hh CSMarks; SNameii ];

addAtt hhCStab; Markii [{'CS','CSC01',k,x}|{k,x}  hh CSMarks; CSC01ii ]

++ [{'CS','CSC02',k,x}|{k,x}  hh CSMarks; CSC02ii ]

++ [{'CS','CSC03',k,x}|{k,x}  hh CSMarks; CSC03ii ];

delAtt hhCSMarks; CSC03ii [{s,m}|{d,c,s,m}  hh CStab; Markii ; c='CSC03'];

delAtt hhCSMarks; CSC02ii [{s,m}|{d,c,s,m}  hh CStab; Markii ; c='CSC02'];

delAtt hhCSMarks; CSC01ii [{s,m}|{d,c,s,m}  hh CStab; Markii ; c='CSC01'];

delAtt hhCSMarks; SNameii distinct [{s,n}|{d,c,s,n}  hh CStab; SNameii ];

delAtt hhCSMarks; Sidii distinct [{s,i}|{d,c,s,i}  hh CStab; SIDii ];

delRel hhCSMarksii distinct [s|{d,c,s}  hh CStabii ];

SinceUS1 contains schema constructs of relationCStab which do not appear

in DS1, the transformation pathway DS1 ! US1 contains extendtransformations

extending these constructs intoDS1:

extendAtt hhCStab; Markii Void;

extendAtt hhCStab; SNameii Void;

extendAtt hhCStab; SIDii Void;

extendAtt hhCStab; CIDii Void;

extendAtt hhCStab; Deptii Void;

extendRel hhCStabii Void;
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Similarly, the transformation pathway DS2 ! US2 containsextendtransforma-

tions extending the schema constructs of relationMAtabinto DS2.

A sequence ofid transformations is created betweenUS1 and US2, and US2

is selected for further transformation. In this example, wetransform US2 into

US, which integrates the two relationsMAtaband CStab into a relation Details ,

using the following transformation pathwayTu (note that US1, US2 and USare all

virtual schemas):

Tu : US2 ! US

addRel hhDetailsii hhMAtabii ++ hhCStabii ;

addAtt hhDetails; Deptii hhMAtab; Deptii ++ hhCStab; Deptii ;

addAtt hhDetails; CIDii hhMAtab; CIDii ++ hhCStab; CIDii ;

addAtt hhDetails; SIDii hhMAtab; SIDii ++ hhCStab; SIDii ;

addAtt hhDetails; SNameii hhMAtab; SNameii ++ hhCStab; SNameii ;

addAtt hhDetails; Markii hhMAtab; Markii ++ hhCStab; Markii ;

delAtt hhMAtab; Markii [{d,c,s,m}|{d,c,s,m}  hh Details; Markii ; d='MA' ];

delAtt hhMAtab; SNameii [{d,c,s,n}|{d,c,s,n}  hh Details; SNameii ; d='MA' ];

delAtt hhMAtab; SIDii [{d,c,s,i}|{d,c,s,i}  hh Details; SIDii ; d='MA' ];

delAtt hhMAtab; CIDii [{d,c,s,i}|{d,c,s,i}  hh Details; CIDii ; d='MA' ];

delAtt hhMAtab; Deptii [{d,c,s,i}|{d,c,s,i}  hh Details; Deptii ; d='MA' ];

delRel hhMAtabii [{d,c,s}|{d,c,s}  hh Details; Markii ; d='MA' ];

delAtt hhCStab; Markii [{d,c,s,m}|{d,c,s,m}  hh Details; Markii ; d='CS' ];

delAtt hhCStab; SNameii [{d,c,s,n}|{d,c,s,n}  hh Details; SNameii ; d='CS' ];

delAtt hhMAtab; SIDii [{d,c,s,i}|{d,c,s,i}  hh Details; SIDii ; d='CS' ];

delAtt hhCStab; CIDii [{d,c,s,i}|{d,c,s,i}  hh Details; CIDii ; d='CS' ];

delAtt hhCStab; Deptii [{d,c,s,i}|{d,c,s,i}  hh Details; Deptii ; d='CS' ];

delRel hhCStabii [{d,c,s}|{d,c,s}  hh Details; Markii ; d='CS' ];

The transformation pathway Ts �nally transforms schema USinto SS, where

contract transformations are used to contract the schema constructsin USthat
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cannot be recovered fromSS.
Ts : US! SS

addRel hhCourseSumii distinct [{k1,k2}|{k1,k2,k3}  hh Detailsii ];

addAtt hhCourseSum; Deptii [{k1,k2,k1}|{k1,k2}  hh CourseSumii ];

addAtt hhCourseSum; CIDii [{k1,k2,k2}|{k1,k2}  hh CourseSumii ];

addAtt hhCourseSum; Maxii [{x,y,z} j{{x,y},z}  (gc max[{{k1,k2},x}|

{k1,k2,k3,x}  hh Details; Markii ])];

addAtt hhCourseSum; Avgii [{x,y,z} j{{x,y},z}  (gc avg [{{k1,k2},x}|

{k1,k2,k3,x}  hh Details; Markii ])];

contractAtt hhDetails; Markii ;

contractAtt hhDetails; SNameii ;

contractAtt hhDetails; CNameii ;

contractAtt hhDetails; SIDii ;

contractAtt hhDetails; CIDii ;

contractAtt hhDetails; Deptii ;

contractRel hhDetailsii ;

4.3 Expressing Schema and Data Model Evolu-

tion

In a heterogeneous data warehousing environment, it is possible for either a data

source schema or the integrated database schema to evolve. This schema evolution

may be a change in the schema, or a change in the data model in which the

schema is expressed, or both. AutoMed transformations can be used to express

the schema evolution in all three cases:

(a) Consider �rst a schemaS expressed in a modelling languageM . We can

express the evolution ofS to Snew , also expressed inM , as a series of prim-

itive transformations that rename, add, extend, deleteor contractconstructs
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of M . For example, suppose that the relational schemaS1 in the above

example evolves so its three tables become a single table with an extra col-

umn for the course ID. This evolution is captured by a pathwaywhich is

identical to the pathway S1 ! DS1 given above.

This kind of transformation that captures well-known equivalences between

schemas [LNE89, MP98] can be de�ned in AutoMed by means of a para-

metrised transformationtemplatewhich is both schema- and data-independent.

When invoked with speci�c schema constructs and their extents, a template

generates the appropriate sequence of primitive transformations within the

Schemas & Transformations Repository.

(b) Consider now a schemaS expressed in a modelling languageM which

evolves into an equivalent schemaSnew expressed in a modelling language

M new . We can express this translation by a series ofaddsteps that de�ne

the constructs ofSnew in M new in terms of the constructs ofS in M . At

this stage, we have an intermediate schema that contains theconstructs

of both S and Snew . We then specify a series ofdeletesteps that remove

the constructs ofM (the queries within these transformations indicate that

these are now redundant constructs since they can be derivedfrom the new

constructs).

The example in Section 3:3:1 shows how evolutions between schemas ex-

pressed in di�erent modelling languages can be captured by transformation

pathways. Again, generic inter-model translations between one data model

and another can be de�ned in AutoMed by means of transformation tem-

plates.

(c) Considering �nally to an evolution which is both a changein the schema

and in the data model, this can be expressed by a combination of (a) and
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(b) above: either (a) followed by (b), or (b) followed by (a),or indeed by

interleaving the two processes.

4.4 Handling Schema Evolution

We now consider how the integration network illustrated in Figure 4.1 is evolvable

in the face of evolution of a data source schema or the summarised data schema.

We have seen in the previous section how AutoMed transformations can be used

to express the schema evolution if either the schema or the data model changes,

or both. We can therefore treat schema and data model change in a uniform

way for the purposes of handling schema evolution: both are expressed as a

sequence of AutoMed primitive transformations, in the �rstcase staying within

the original data model, and in the second case transformingthe original schema

in the original data model into a new schema in a new data model.

In this section we describe the actions that are taken in order to evolve the

integration network of Figure 4.1 if the summarised data schemaSSevolves (Sec-

tion 4.4.1) or if a data source schemaSi evolves (Section 4.4.2). Given an evolution

pathway from a schemaS to a schemaSnew , in both cases each successive primi-

tive transformation within the pathway S ! Snew is treated one at a time. Thus,

we describe in sections 4.4.1 and 4.4.2 the actions that are taken if S ! Snew

consists of just one primitive transformation. IfS ! Snew is a composite trans-

formation, then it is handled as a sequence of primitive transformations.

Our discussion below assumes that the primitive transformation being handled

is adding, removing or renaming a construct ofS that has an underlying data

extent.
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4.4.1 Evolution of the Summarised Data Schema

Suppose the summarised data schemaSSevolves by means of a primitive trans-

formation t into SSnew . This is expressed by the stept being appended to the

pathway Tu of Figure 4.1. The new summarised data schema isSSnew and its

associated extension isSDnew . SSis now an intermediate schema in the extended

pathway Tu; t and it no longer has an extension associated with it.t may be a

rename, add, extend, deleteor contract transformation. The following actions are

taken in each case:

1. If t is renameT(c,c'), then there is nothing further to do. SSis semantically

equivalent to SSnew and SDnew is identical to SDexcept that the extent of c

in SDis now the extent ofc' in SDnew .

2. If t is addT(c,q), then there is nothing further to do at the schema level.SS

is semantically equivalent toSSnew . However, the new constructc in SDnew

must now be populated, and this is achieved by evaluating thequery q over

SD.

3. If t is extendT(c)2 then the new constructc in SDnew is populated by an

empty extent. This new construct may subsequently be populated by an

expansion in a data source (see Section 4.4.2).

4. If t is deleteT(c,q)or contractT(c), then the extent of c must be removed

from SD in order to create SDnew (it is assumed that this a legal dele-

tion/contraction, e.g if we wanted to delete/contract a table from a re-

lational schema, then �rst the constraints and then the columns would be

2For this chapter, we assume that extend and contract transformations have lower-bound
queriesVoid and upper-bound queriesAny, and we denote them asextendT(c)and contractT(c).
We leave as further work handling schema evolution for more general extend and contract
transformations.
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deleted/contracted and lastly the table itself; such syntactic correctness of

transformation pathways is automatically veri�ed by AutoMed). It may

now be possible to simplify the transformation network, in that if Tu con-

tains a matching transformationaddT(c,q)or extendT(c), then both this and

the new transformation t can be removed from the pathwayUS! SSnew .

This is purely an optimization | it does not change the meaning of a path-

way, nor its e�ect on view generation and query/data translation. We refer

the reader to [Ton03] for details of the algorithms that simplify AutoMed

transformation pathways.

In cases 2 and 3 above, the new constructc will automatically be propagated

into the schemaDMSof any data mart derived fromSS. To prevent this, a trans-

formation contractT(c) can be pre�xed to the pathway SS! DMS. Alternatively,

the new construct c can be propagated toDMSif so desired, and materialised

there. In cases 1 and 4 above, the change inSSand SDmay impact on the data

marts derived fromSS, and we discuss this in Section 4.4.3.

4.4.2 Evolution of a Data Source Schema

Suppose a data source schemaSi evolves by means of a primitive transformation

t into Snew
i . As discussed in Chapter 3, there is automatically available a reverse

transformation t � 1 from Snew
i to Si and hence a pathwayt � 1; Ti from Snew

i to DSi .

The new data source schema isSnew
i and its associated extension isDBnew

i . Si is

now just an intermediate schema in the extended pathwayt � 1; Ti and it no longer

has an associated extension.

t may be arename, add, delete, extendor contracttransformation. In 1{5 below

we see what further actions are taken in each case for evolving the integration

network and the downstream materialised data as necessary.
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We �rst introduce some necessary terminology: Ifp is a pathwayS ! S0 and

c is a construct in S, we denote bydescendants(c; p) the constructs ofS0 which

are directly or indirectly dependent onc, either becausec itself appears inS0 or

because a constructc' of S0 is created by a transformationaddT(c0; q) within p

where the queryq directly or indirectly referencesc. The set descendants(c; p)

can be straight-forwardly computed by traversingp and inspecting the query

associated with eachadd transformation within in.

1. If t is renameT(c,c'), then schemaSnew
i is semantically equivalent toSi . The

new transformation pathwayTnew
i :Snew

i ! DSi is t � 1; Ti = renameT(c',c); Ti .

The new source databaseDBnew
i is identical to DBi except that the extent of

c in DBi is now the extent ofc' in DBnew
i .

2. If t is addT(c,q), then Si has evolved to contain a new constructc whose

extent is equivalent to the expressionq over the other constructs ofSi . The

new transformation pathwayTnew
i :Snew

i ! DSi is t � 1; Ti = deleteT(c,q); Ti .

3. If t is deleteT(c,q), this means thatSi has evolved to not include a construct

c whose extent is derivable from the expressionq over the other constructs

of Si , and the new source databaseDBnew
i no longer contains an extent forc.

The new transformation pathwayTnew
i :Snew

i ! DSi is t � 1; Ti = addT(c,q); Ti .

In the above three cases, schemaSnew
i is semantically equivalent toSi , and

nothing further needs to be done to any of the transformationpathways, schemas

or databasesDD1, . . . , DDn and SD. This may not be the case ift is a contract or

extendtransformation, which we consider next.

4. If t is extendT(c), then there will be a new construct available fromSnew
i

that was not available before. That is,Si has evolved to contain the new

construct c whose extent is not derivable from the other constructs ofSi .
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If we left the transformation pathway Ti as it is, this would result in a

pathway Tnew
i = contractT(c); Ti from Snew

i to DSi , which would immediately

drop the new constructc from the integration network. That is, Tnew
i is

consistent but it does not utilize the new data.

However, recall that we said earlier that we assume nocontract steps in the

pathways from the data schemas to their union schemas, and that all the data in

Si should be available to the integration network. In order to achieve this, there

are four cases to consider ift is extendT(c):

(4.a) c appears inUSi and has the same semantics as the newly addedc in Snew
i .

Sincec cannot be derived from the originalSi , there must be a transforma-

tion extendT(c) , in DSi ! USi .

We remove fromTnew
i the newcontractT(c)step and this matchingextendT(c)

step. This propagatesc into DSi , and we populate its extent in the materi-

alised databaseDDi by replicating its extent from DBnew
i .

(4.b) c does not appear inUSi but it can be derived fromUSi by means of some

transformation T.

In this case, we remove fromTnew
i the �rst contractT(c) step, so that c

is now present inDSi and in USi . We populate the extent ofc in DDi by

replicating its extent from DBnew
i .

To repair the other pathways Tj : Sj ! DSj and schemasUSj for j 6= i ,

we appendT to the end of eachTj . As a result, the new constructc now

appears in all the union schemas. To add the extent of this newconstruct

to each materialised databaseDDj for j 6= i , we compute it from the extents

of the other constructs inDSj using the queries within successiveaddsteps

in T.
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We �nally append the necessary newid steps between pairs of union schemas

to assert the semantic equivalence of the constructc within them.

(4.c) c does not appear inUSi and cannot be derived fromUSi .

In this case, we again remove fromTnew
i the �rst contractT(c) step so that

c is now present in schemaDSi .

To repair the other pathways Tj : Sj ! DSj and schemasUSj for j 6= i ,

we append anextendT(c)step to the end of eachTj . As a result, the new

construct c now appears in all the conformed schemasDS1, . . . , DSn .

The construct c may need further translation into the data model of the

union schemas and this is done by appending the necessary sequence,T, of

add/delete/renamesteps to all the pathwaysS1 ! DS1, . . . , Sn ! DSn .

We compute the extent ofc within the databaseDDi from its extent within

DBnew
i using the queries within successiveaddsteps inT.

We �nally append the necessary newid steps between pairs of union schemas

to assert the semantic equivalence of the new construct(s) within them.

(4.d) c appears inUSi but has di�erent semantics to the newly addedc in Snew
i .

In this case, we renamec in Snew
i to a new construct c' . The situation

reverts to adding a new constructc' to Snew
i , and one of (4.a)-(4.c) above

applies.

We note that determining whetherc can or cannot be derived from the existing

constructs of the union schemas in (4.a){(4.d) above requires domain or expert

human knowledge. Thereafter, the remaining actions are fully automatic.

In cases (4.a) and (4.b), there is new data added to one or moreof the con-

formed databases which needs to be propagated toSD. This is done by comput-

ing descendants(c; Tu) and using the algebraic equivalences of IQL syntax given
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in Chapter 3 to propagate changes in the extent ofc to each of its descendant

constructs dc in SS. Using these equivalences, we can in most cases incremen-

tally recompute the extent ofdc. If at any stage in Tu there is a transformation

addT(c0; q) where no equivalence can be applied, then we have to recompute the

whole extent ofc' .

In cases (4.b) and (4.c), there is a new schema constructc appearing in the

USi . This construct will automatically appear in the schemaSS. If this is not

desired, a transformationcontractT(c) can be pre�xed to Tu.

5. If t is contractT(c), then the construct c in Si will no longer be available

from Snew
i . That is, Si has evolved so as to not include a constructc whose

extent is not derivable from the other constructs ofSi . The new source

databaseDBnew
i no longer contains an extent forc.

The new transformation pathwayTnew
i : Snew

i ! DSi is t � 1; Ti = extendT(c);

Ti . Since the extent ofc is now Void, the materialised data inDDi and SD

must be modi�ed so as to remove any data derived from the old extent of

c.

In order to repair DDi , we computedescendants(c; Si ! DSi ). For each con-

struct uc in descendants(c; Si! DSi ), we compute its new extent and replace

its old extent in DDi by the new extent. Again, the algebraic properties of

IQL queries discussed in Chapter 3 can be used to propagate the newVoid

extent of construct c in Snew
i to each of its descendant constructsuc in DSi .

Using these equivalences, we can in most cases incrementally recompute the

extent of uc as we traverse the pathwayTi .

In order to repair SD, we similarly propagate changes in the extent of each

uc along the pathwayTu.

Finally, it may also be necessary to amend the transformation pathways
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if there are one or more constructs inSDwhich now will always have an

empty extent as a result of this contraction ofSi . For any construct uc in

USwhose extent has become empty, we examine all pathwaysT1, . . . , Tn .

If all these pathways contain anextendT(uc) transformation, or if using the

equivalences of IQL syntax in Chapter 3 we can deduce from them that

the extent of uc will always be empty, then we can su�x a contractT(dc)

step to Tu for every dc in descendants(uc; Tu), and then handle this case as

paragraph 4 in Section 4.4.1.

4.4.3 Evolution of Downstream Data Marts

We have discussed how evolutions to the summarised data schema or to a source

schema are handled. One remaining question is how to handle the impact of a

change to the data warehouse schema, and possibly its data, on any data marts

that have been derived from it.

In Chapter 3 we discuss how it is possible to express the derivation of a data

marts from a data warehouse by means of an AutoMed transformation pathway.

Such a pathwayDWS! DMSexpresses the relationship of a data mart schemaDMS

to the warehouse schemaDWS. As such, this scenario can be regarded as a special

case of the general integration scenario of Figure 4.1, where SSnow plays the

role of the single source schema, databasesDD1; : : : ; DDn and SDcollectively play

the role of the data associated with this source schema andDMSplays the role

of the summarised data schema. Therefore, the same techniques as discussed in

sections 4.4.1 and 4.4.2 can be applied.
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4.5 Discussion

In this chapter we have described how the AutoMed heterogeneous data inte-

gration toolkit can be used to handle the problem of schema evolution in het-

erogeneous data warehousing environments so that the previous transformation,

integration and data materialisation e�ort can be reused. We have discussed

handling evolution of a source schema or the warehouse schema, and also the

impact on any downstream data marts derived from the data warehouse. Our

techniques are mainly automatic, except for the aspects that require domain or

expert human knowledge regarding the semantics of new schema constructs.

We have shown how AutoMed transformations can be used to express schema

evolution within the same data model, or a change in the data model, or both,

whereas other schema evolution literature has focussed on just one data model.

Schema evolution within the relational data model has been discussed in previous

work such as [LSS93, LSS99, Mil98]. The approach in [Mil98] uses a �rst-order

schema in which all values in a schema of interest to a user aremodelled as data,

and other schemas can be expressed as a query over this �rst-order schema. The

approach in [LSS99] uses the notation of aat scheme, and gives four operators

Unite , Fold , Unfold and Split to perform relational schema evolution using

the SchemaSQL language. In contrast, with AutoMed the process of schema

evolution is expressed using a simple set of primitive schema transformations

augmented with a functional query language, both of which are applicable to

multiple data models.

Our approach is complementary to work on mapping composition, e.g. [VMP03,

MH03, FKP04], in that in our case the new mappings are a composition of the

original transformation pathway and the transformation pathway which expresses

the schema evolution. Thus, the new mappings are, by de�nition, correct. There
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are two aspects to our approach:

(i) handling the transformation pathways and

(ii) handling the queries within them.

In this chapter we have in particular assumed that the queries are expressed in

IQL. However, the AutoMed toolkit allows any query languagesyntax to be used

within primitive transformations, and therefore this aspect of our approach could

be extended to other query languages.

Materialised data warehouse views need to be maintained when the data

sources change, and much previous work has addressed this problem at the data

level. However, as we have discussed in this chapter, materialised data ware-

house views may also need to be modi�ed if there is an evolution of a data source

schema. Incremental maintenance of schema-restructuringviews within the rela-

tional data model is discussed in [KR02], whereas our approach can handle this

problem in a heterogeneous data warehousing environment with multiple data

models and changes in data models. In chapter 7, we will discuss how AutoMed

transformation pathways can also be used for incrementallymaintaining materi-

alised views at the data level.
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Chapter 5

Using Materialised AutoMed

Transformation Pathways for

Data Lineage Tracing

The data lineage tracing problem is to �nd thederivation of the given tracing

data in the global database. The derivation, called thelineage data, is a collection

of data items in the data sources which produces the given tracing data. The

tracing data consists of data item(s) in the global database, which may be a single

tuple, called the tracing tuple, or a set of tuples, called thetracing tuples.

In this chapter, we will give the de�nitions of data lineage in the context

of AutoMed, and develop a set of algorithms which use materialised AutoMed

schema transformation pathways for tracing data lineage. By materialised, we

mean that all intermediate schema constructs created in theschema transforma-

tions are materialised,i:e: have an extent associated with them.

We consider a subset of the full IQL query language which incorporates the

major relational and aggregation operators on collections. We call this subset

IQL c and its syntax is as follows, whereE, E1 . . . , En denote collection-valued IQLc
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queries; e1; :::; en are constants, variables or IQLc queries; f is an aggregation

function (max, min, count , sum, avg); p, p1, p2 denote patterns; andQ1:::Qn

are quali�ers which may be generators or �lters. Filters in IQLc are limited to

boolean-valued expressions containing only variables, constants and comparison

operators and expressions of the formmember E xand not (member E x).

1: [e1; e2; :::; en ]

2: group E

3: sort E

4: distinct E

5: f E

6: gc f E

7: E1 ++ E2 ++ : : : ++ En

8: E1 �� E2

9: [pjQ1; : : : ; Qn ]

10: map (lambda p1.p2) E

This subset of IQL can express the common algebraic operations on col-

lections. In particular, let us considerselect(� ), projection(� ), join (./ ) and

aggregation(� ) (union and di�erence are directly supported in IQLc via the ++

and �� operators). The general form of a select-project-join (SPJ) expression

is � A(� C(E1 ./ ::: ./ En)) and this can be expressed in IQLc as a comprehension

of the form [Ajx1  E1; : : : ; xn  En ; C]. The algebraic operator� applies an

aggregation function to a collection and this functionality is captured in IQLc

by the gc operator. For example, supposingD is a collection of three-tuples and

has schemeD(A1,A2,A3), the expression� A2;f (A3)(D) is expressed in IQLc as

gc f (map (lambda {x1,x2,x3}.{x2,x3}) D )

Section 5.1 below discusses related work on data lineage tracing. Section 5.2

introduces a subset of IQLc, simple IQL (SIQL), for developing our data lineage
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tracing formulae, and presents the rules of decomposing IQLc queries into SIQL

queries. Any IQLc query can be encoded as a series of transformations with SIQL

queries on intermediate schema constructs. Section 5.3 presents the de�nitions

of data lineage in the context of AutoMed. Sections 5.4 and 5.5 present our

approach to data lineage tracing using materialised AutoMed schema transfor-

mation pathways, including formulae and algorithms. Section 5.6 discusses how

the order of traversing an IQLc query tree to decompose it into a series of SIQL

queries does not a�ect the result of our DLT process. Section5.7 discusses the

problem of derivation ambiguity in data lineage tracing, and how this problem

may happen and may be avoided in our context. Finally, Section 5.8 presents a

summary and discussion of this chapter.

5.1 Related Work

The problem of data lineage tracing (DLT) in data warehousing environments

has been studied by Cuiet al: in [CWW00, CW00a, CW00b, CW01, Cui01].

In particular, the fundamental de�nitions regarding data lineage, includingtu-

ple derivation for an operatorand tuple derivation for a view, were developed in

[CWW00], as were methods for derivation tracing with bothset and bagseman-

tics. Their work has addressed the derivation tracing problem and has provided

the concept ofderivation setand derivation pool for DLT with duplicate elements.

The derivation set is the set of the tuples in the tracing data's derivation exclud-

ing any duplicate elements. The derivation pool contains all tuples in the tracing

data's derivation. References [CW00a, CW00b] also introduce a way to perform

data lineage tracing for data warehouse views. Several DLT algorithms are pro-

vided by selecting a set of auxiliary views to materialise inthe data warehouse.

However, the approach is limited to the relational data model only.
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Another fundamental concept of data lineage is discussed byBunemanet al:,

in [BKT00, BKT01], namely the di�erence between \why" provenance and \where"

provenance. Why-provenance refers to the source data that had some inuence

on the existence of the integrated data. Where-provenance refers to the actual

data in the sources from which the integrated data was extracted.

In our approach, both why- and where-provenance are considered, using bag

semantics. We use Cui's notion of derivation-pool to de�ne thea�ect-pool and the

origin-pool for data lineage tracing in AutoMed | the former derives all of the

source data that had some inuence on the tracing data, whilethe latter derives

the speci�c data in the sources from which the tracing data was extracted. In

contrast, Cui's de�nitions and methods are limited to why-provenance.

We develop formulae for deriving the a�ect-pool and origin-pool of a data

item in the extent of a materialised schema construct created by a single schema

transformation step. Our DLT approach is to apply these formulae on each

transformation step in a transformation pathway in turn, soas to obtain the

lineage data in stepwise fashion. The queries within transformation steps are

assumed to be IQLc queries.

Reference [KLM+ 97] also introduces a notion ofderivation setsfor a tuple in

a materialised view de�ned by a single-block SQL query. Thisrepresents the set

of all tuples whose insertion, deletion or modi�cation could potentially a�ect the

tuple in the view. But this work does not focus on how to trace the derivation

sets.

Cui and Widom in [CW01] discuss the problem of tracing data lineage for

general data warehousing transformations, that is, the considered operators and

algebraic properties are no longer limited to relational views. However, without

a framework for expressing general transformations in heterogeneous database

environments, most of the algorithms in [CW01] are recalling the view de�nition
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and examining each item in the data source to decide if the item is in the data

lineage of the data being traced. This can be expensive if theview de�nition is a

complex one and enumerating all items in the data source is impractical for large

data sets.

Reference [WS97] proposes a general framework for computing �ne-grained

data lineage,i:e: a speci�c derivation in the data sources, using a limited amount

of information, weak and veri�ed inversion, about the processing steps. Based

on weak and veri�ed inversion functions, which must be speci�ed by the transfor-

mation de�ner, the paper de�nes and traces data lineage for each transformation

step. However, the system cannot obtain the exact lineage data, only a num-

ber of guarantees about the lineage is provided. Further, specifying weak and

veri�ed inversion functions for each transformation step is onerous work for the

data warehouse de�ner. Moreover, the DLT process cannot straightforwardly be

reused when the data warehouse evolves. Our approach considers the problem

of data lineage tracing at the tuple level and computes the exact lineage data.

Moreover, AutoMed's ready support for schema evolution means that our DLT

algorithms can be reapplied if schema transformation pathways evolve.

There are also other previous works relating to data lineagetracing, such

as [BB99, HQGW93, FJS97], which considercoarse-grained lineage based on

annotations on each data transformation step, and provide estimated lineage

information rather than the exact data items in the data sources. Reference

[BB99] presents a schema whereby each data warehouse row generated by the data

warehousing transformations is tagged by an identi�er for the transformation, so

that the user can trace which transformation generated eachdata warehouse row.

Reference [HQGW93] uses Petri Nets to model and capture dataderivations in

scienti�c databases, which record the derivation relationships among classes of

data. Reference [FJS97] discusses an approach to reconstruct base data from
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summary data and certain constraints, and does not considerthe problem of

data lineage at the tuple level.

Cui and Buneman in [Cui01], [BKT01] discuss the problem of ambiguity of

lineage data. This problem is known asderivation inequivalenceand arises when

equivalent queries have di�erent data lineages for identical tracing data. Cui and

Buneman discuss this problem in two scenarios: (a) when aggregation functions

are used and (b) when where-provenance is traced. In Section5.7 of this chapter,

we investigate when ambiguity of lineage data may happen in our context and we

describe how our DLT approach for tracing why-provenance can also be used for

tracing where-provenance, so as to reduce the chance of derivation inequivalence

occurring.

5.2 Simple IQL

Our data lineage tracing algorithms assume a subset of IQLc, simple IQL (SIQL),

as the query language in transformation pathways. More complex IQLc queries

can be encoded as a series of transformations with SIQL queries on intermedi-

ate schema constructs. Although illustrated within this particular query language

syntax, our DLT algorithms could also be applied to schema transformation path-

ways involving queries expressed in other query languages supporting operations

on set and bag collections.

5.2.1 The SIQL Syntax

SIQL queries have the following syntax where each collection-valued expression,

D, D1 . . . , Dn below must be a base collection or a variable de�ned by another

SIQL query, and eachcv1; :::; cvn is either a constant (i:e: string or number) or a

variable de�ned by another SIQL query:
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1: [cv1; cv2; :::; cvn ]

2: group D

3: sort D

4: distinct D

5: f D

6: gc f D

7: D1 ++ D2 ++ : : : ++ Dn

8: D1 �� D2

9: [xjx1  D1; : : : ; xn  Dn ; C1; :::; Ck ]

10: [xjx  D1; member D2 y]

11: [xjx  D1; not (member D2 y)]

12: map(lambda p1:p2) D

SIQL comprehensions are of three forms: [xjx1  D1; : : : ; xn  Dn ; C1; :::; Ck ],

[xjx  D1; member D2 y], and [xjx  D1; not (member D2 y)]. Here, eachx1, ...,

xn is either a single variable or a pattern consisting only of variables. x is either

a single variable or value, or a pattern of variables or values, and must include all

the variables appearing inx1, ..., xn . EachC1, ..., Ck is a condition not referring to

any base collection. Each variable appearing inx and C1, ..., Ck must also appear

in somexi , and the variables iny must appear inx.

For example, we can use following transformation steps to express a general

SPJ operation, � A (� C (D1 ./ ::: ./ Dn )), in SIQL, where x contains all variables

appearing inx1 : : : xn :

v1 = [ xjx1  D1; : : : ; xn  Dn ; C]

v = map(lambda x:A) v1

Similarly, an aggregate expression� A2;f (A3)(D) over a collectionD(A1,A2,A3) is

expressed in SIQL as:

v1 = map(lambda {x1,x2,x3}.{x2,x3}) D

v = gc f v1
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5.2.2 Decomposing IQL c into SIQL Queries

The syntax of IQLc and SIQL queries are similar except that the collection-

valued expressions in IQLc queries may be sub-IQLc queries, while the collection-

valued expressions in SIQL queries must be a base collectionor a variable de�ned

by another SIQL query. In order to trace data lineage along transformation

pathways including general IQLc queries, we decompose each IQLc query into a

sequence of SIQL queries by means of a depth-�rst traversal of the IQL c query

tree. This section presents the rules of decomposing IQLc queries. The algorithms

implementing these rules will be discussed in AppendixC. Here, we �rstly give

an example to show how a general IQLc query can be decomposed.

Suppose that a viewv is de�ned by an IQLc query D1++ [{x,z} j{x,y}  

(D2�� D3); z  [p|p  D4; member D5 p]; z < y]. After decomposing the query,

the view de�nition is expressed by a sequence of SIQL queriesas follows:

v1 = D2�� D3

v2 = [ p|p  D4, member D5 p]

v3 = [ {x,y,z}|{x,y}  v1;z  v2; z < y]

v4 = map (lambda {x,y,z}.{x,z}) v3

v = D1++ v4
For decomposing IQLc queries into SIQL queries, we classify IQLc queries

into following four types: 1-argument queries, 2-argument queries, n-argument

queries, and list queries. The decomposition rules for each type of IQLc query

are as follows:

Decomposition rules for 1-argument queries If an IQL c query is a 1-

argument query, i:e:, group E, sort E , distinct E , aggFun E, gc aggFun E

and map (lambda p1.p2) E, we decompose the query using following steps:

(1) If E is a base collection or a variable, then the query is already aSIQL query
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and not required to be decomposed;

(2) If E is a sub-query1, then a new variable is created to replaceE, and a new

transformation step is created to express that the new variable is de�ned by

the replaced sub-query. For example, ifE is a sub-query, viewv = group E

is decomposed as:

v1 = E

v = group v1

Decomposition rules for 2-argument queries If an IQL c query is a 2-

argument query, i:e: E1�� E2, similar decomposition steps as above are used

to decompose the query. However, in this case, we need consider separately the

two collection-valued expressions,E1 and E2. For example, if E1 and E2 are

sub-queries, queryv = E1�� E2 is decomposed as:

v1 = E1

v2 = E2

v = v1 �� v2

Decomposition rules for n-argument queries If an IQL c query is a n-

argument query, i:e: an ++ expression or a comprehension, the decomposition

rules are as follows:

(1) If the query is an expression of the formE1++ E2++ ::: ++ En, the de-

composition steps are similar to decomposing 1- and 2-argument queries

above, except that each collection-valued expressionEi (1 � i � n) has to

be considered separately.

(2) If the query is a comprehension of the form [pjQ1; : : : ; Qn], we can re�ne

1Without loss of generality, we assume that a sub-query of an IQLc query is a SIQL query,
since we can recursively decompose the sub-query if it is a general IQLc query.
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this syntax as [pjG1; : : : ; Gr; M1; :::; Ms; C1; :::; Ct], in which G1: : : Gr are gen-

erators, M1: : : Msare �lters involving the memberfunction (which we term

member�lters ) and C1: : : Ct are �lters involving variables, constants and

comparison operators (which we termsimple �lters). We recall that each

generatorGi has syntaxxi  Ei (1 � i � r ) where xi is a pattern andEi is

a collection-valued expression.

We �rst check if the head expressionp is a pattern containing all the vari-

ables appearing in the generator patternsxi (1 � i � r ) of the comprehen-

sion (we term such comprehensionsselect-join comprehensions). If not, the

following intermediate view de�nitions can be used to transform the com-

prehension into this form, wherex is a pattern containing all the variables

appearing in all the generator patterns:

v1 = [ xjG1; : : : ; Gr; M1; :::; Ms; C1; :::; Ct]

v = map(lambda x:p) v1

In order to decompose the comprehension de�ningv1, we consider each

generator and �lter.

A generator has the syntaxxi  Ei whereEi is a collection-valued expression

which may be a sub-query. IfEi is a base collection or a variable, the

generator satis�es the SIQL syntax. IfEi is a sub-query, we rede�ne the

generator in the same way as for decomposing an 1-argument query.

Member�lters contain a collection-valued expressionEwhich may be a sub-

query. Such �lters can be rede�ned in the same way as for decomposing an

1-argument query if the collection-valued expressionE is a sub-query rather

than a base collection or variable.

Furthermore, in the SIQL syntax, there can only be one generator in a com-

prehension if it contains amember�lter, i:e: [xjx  E1; member E2 y] and
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[xjx  E1; not (member E2 y)]. If a general comprehension contains multi-

ple generators andmember�lters, we use following decomposition steps to

decompose a viewv de�ned by a comprehension [xjG1; : : : ; Gr; M1; :::; Ms; C1;

:::; Ct] into a sequence of SIQL comprehensions:

v1 = [ xjG1; : : : ; Gr; C1; :::; Ct]

v2 = [ pjp  v1; M1]

v3 = [ pjp  v2; M2]

: : :

v = [ pjp  vs; Ms]

To illustrate the whole decomposition process for a comprehension, suppose

that the view v is de�ned by the comprehension [{x,z}| {x,y}  D1;z  

(D2 ++ D3);member(D4�� D5) z; not (member D6 {y,z}) ; x>z]. This view

de�nition is decomposed into following SIQL queries:

v1 = D2++ D3

v2 = [ {x,y,z}|{x,y}  D1; z  v1; x>z]

v3 = D4�� D5

v4 = [ {x,y,z}|{x,y,z}  v2; member v3 z]

v5 = [ {x,y,z}|{x,y,z}  v4; not (member D6 {y,z}) ]

v = map (lambda {x,y,z}.{x,z}) v5

Decomposition rules for list expressions In IQL c, there may be list ex-

pressions which contain IQLc sub-queries. If the query is a list expression,

[e1; e2; :::; en ], this may be a list containing only constants, such as[1,2,3,4] , or

a list containing sub-queries as its items, such as[1,2,max [2,3,4] ; sum [3,4,5]] .

In the former case, there is no need to decompose it. In the latter case, without

loss of generality, the general form of such a query is

[c1; :::; cr ; e1; :::; es]
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in which c1; :::; cr are constants ande1; :::; es are sub-queries. Note that, we do

not consider the order of items in a list in IQLc, i:e: lists here have the semantics

of bags. The above query can be expressed by the following++ expression:

[c1; :::; cr ] ++ [e1] ++ : : : ++ [es]

and eachei (1 � i � s) can then be further decomposed. For example, suppose

that the view v is de�ned by the query[1,2,max [2,3,4],sum [3,4,5]] . Then

v can be expressed by following SIQL queries:

v1 = max [2,3,4]

v2 = sum [3,4,5]

v3 = [1,2]

v4 = [v1]

v5 = [v2]

v = v3 ++ v4 ++ v5

Suppose a viewv is de�ned by a list expression. If the list expression can be

transformed as above into a++ expression, the problem of tracingv's lineage or

of incrementally maintaining v is subsumed by considering the++ expression. If

the list expression cannot be transformed into a++ expression, then the list is

a list of constants; the lineage data will be the tracing dataitself, and the view

cannot be updated. Thus, in the rest of this thesis, we do not consider the case

of list expressions for data lineage tracing or for incremental view maintenance.

5.2.3 An Example of Schema Transformations

Consider two relational schemasSSand GS. SSis a source schema containing two

relations mathematician(empid; salary ) and compScientist(emp id; salary ). GS

is the target schema containing two relationsperson(empid; salary ; dept) and
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department(deptName; avgDeptSalary ).

By the de�nition of our simple relational model, SShas a set ofRelconstructs

Rel1 and a set ofAtt constructs Att 1, while GShas a set ofRel constructs Rel2

and a set ofAtt constructs Att 2, where:

Rel1 = fhhmathematicianii ; hhcompScientistiig

Att 1 = fhhmathematician; emp idii ; hhmathematician; salaryii

hhcompScientist; emp idii ; hhcompScientist; salaryiig

Rel2 = fhhpersonii ; hhdepartmentiig

Att 2 = fhhperson; emp idii ; hhperson; salaryii ; hhperson; deptii

hhdepartment; deptNameii ; hhdepartment; avgDeptSalaryiig

SchemaSS can be transformed toGSby the sequence of primitive schema

transformations given below. The �rst seven transformation steps create the

constructs of GSwhich do not exist in SS. The query in each step gives the

extension of the new schema construct in terms of the extentsof the existing

schema constructs. The last six steps then delete the redundant constructs of

SS. The query in each of these steps shows how the extension of each deleted

construct can be reconstructed from the remaining schema constructs:

(1) addRel (hhpersonii ; hhmathematicianii ++ hhcompScientistii );

(2) addAtt (hhperson; emp idii ; hhmathematician; emp idii ++ hhcompScientist; emp idii );

(3) addAtt (hhperson; salaryii ; hhmathematician; salaryii ++ hhcompScientist; salaryii );

(4) addAtt (hhperson; deptii ; [f x; 0Maths0gjx  hh mathematicianii ]++

[f x; 0CompSci0gjx  hh compScientistii ]);

(5) addRel (hhdepartmentii ; [0Maths0;0CompSci0]);

(6) addAtt (hhdepartment; deptNameii ; [f 0Maths0;0Maths0g; f 0CompSci0;0CompSci0g]);

(7) addAtt (hhdepartment; avgDeptSalaryii ;

gc avg [f 0Maths0; sgjf x; sg  hh mathematician; salaryii ]++

gc avg [f 0Maths0; sgjf x; sg  hh mathematician; salaryii ]);
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(8) delAtt (hhmathematician; salaryii ; [f x; sgjf x; sg  hh person; salaryii ;

f x0; dg  hh person; deptii ; d = 0Maths0; x = x0]);

(9) delAtt (hhmathematician; emp idii ; [f x; id gjf x; id g  hh person; emp idii ;

f x0; dg  hh person; deptii ; d = 0Maths0; x = x0]);

(10) delRel (hhmathematicianii ; [xjf x; dg  hh person; deptii ; d = 0Maths0]);

(11) delAtt (hhcompScientist; salaryii ; [f x; sgjf x; sg  hh person; salaryii ;

f x0; dg  hh person; deptii ; d = 0CompSci0; x = x0]);

(12) delAtt (hhcompScientist; emp idii ; [f x; id gjf x; id g  hh person; emp idii ;

f x0; dg  hh person; deptii ; d = 0CompSci0; x = x0]);

(13) delRel (hhcompScientistii ; [xjf x; dg  hh person; deptii ; d = 0CompSci0]);

IQL c queries are automatically broken down by our data lineage tracing soft-

ware into a sequence ofadd or deletetransformations with SIQL queries within

them. The decomposition procedure undertakes a depth-�rstsearch of the query

tree and generates the sequence of transformations from thebottom up. For

example, the following decompositions would be equivalentto steps (4) and (7)

above, with (4:1) � (4:5) replacing step (4) and (7:1) � (7:9) replacing step2:

(4:1) addAtt ($Query_4_1; [f x; 0Maths0gjx  hh mathematicianii ]);

(4:2) addAtt ($Query_4_2; [f x; 0CompSci0gjx  hh compScientistii ]);

(4:3) addAtt (hhperson; deptii ; $Query_4_1++ $Query_4_2);

(4:4) delAtt ($Query_4_2; [f x; 0CompSci0gjx  hh compScientistii ]);

(4:5) delAtt ($Query_4_1; [f x; 0Maths0gjx  hh mathematicianii ]);

2Note that, the intermediate construct names $Query i j are automatically generated by
our IQL c decomposition algorithms
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(7:1) addRel ($Query_7_1;

map(lambda f x; sg:f 0Maths0; sg) hhmathematician; salaryii );

(7:2) addRel ($Query_7_2; gc avg $Query_7_1);

(7:3) addRel ($Query_7_3;

map(lambda f x; sg:f 0CompSci0; sg) hhcompScientist; salaryii );

(7:4) addRel ($Query_7_4; gc avg $Query_7_3);

(7:5) addAtt (hhdepartment; avgDeptSalaryii ; $Query_7_2++ $Query_7_4);

(7:6) delRel ($Query_7_4; gc avg $Query_7_3);

(7:7) delRel ($Query_7_3;

map(lambda f x; sg:f 0CompSci0; sg) hhcompScientist; salaryii );

(7:8) delRel ($Query_7_2; gc avg $Query_7_1);

(7:9) delRel ($Query_7_1;

map(lambda f x; sg:f 0Maths0; sg) hhmathematician; salaryii );

5.3 Data Lineage De�nitions

We consider botha�ect-provenanceand origin-provenancein our treatment of the

data lineage tracing problem. What we regard as a�ect-provenance includes all of

the source data that had some inuence on the tracing data. Origin-provenance

is simpler because here we are only interested in the speci�cdata in the sources

from which the tracing data is extracted. In particular, we use the notions of

maximal witness and minimal witness from [BKT01] to de�ne the notions of

a�ect-pool and origin-pool, respectively, in De�nitions 1 and 2 below, and we use

a condition from [CWW00] to guarantee that there are no redundant elements in

the computed lineage data.

In both these de�nitions, v = q(D) is a view over a set of bagsD de�ned by

the query q and t 2 v is a tracing tuple. Condition (a) states that the result of
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applying query q to the lineage data must be the bag consisting of all copies oft

in the view v. Condition (b) is used to enforce the maximizing and minimizing

properties, respectively. Thus, the a�ect-pool includes all elements in the data

sources which could generatet by applying q to them; conversely, if any element

and all of its copies in the origin-pool was deleted, thent or all of t's copies inv

could not be generated by applying the queryq to the lineage data. Condition (c)

guarantees that there are no redundant elements in the computed lineage data.

Condition (d) in De�nition 2 ensures that if the origin-pool of the tracing tuple t

in the source bagDi is Top
i , then for any tuple in Di , either all of the copies of the

tuple are in Top
i or none of them are inTop

i .

Note that, both the de�nitions apply to tracing data lineage for a single SIQL

query. For a view created by a sequence of SIQL queries, we have additional data

lineage de�nitions which we give in Section 5.5.1 below.

De�nition 1 (A�ect-pool for a SIQL query) Let q be any SIQL query over

bagsD1, . . . , Dm , and let v = q(D1, . . . , Dm ) be the bag that results from applying

q to D1, . . . , Dm . Given a tracing tuple t 2 v, we de�ne t's a�ect-pool in D1, . . . ,

Dm according to q, qAP
hD1 ;:::;Dm i

(t), to be the sequence of bagshTap
1 , . . . , Tap

m i , where

Tap
1 , . . . , Tap

m are maximal sub-bags ofD1, . . . , Dm such that:

(a) q(Tap
1 , . . . , Tap

m ) = [ xjx  v; x = t]

(b) 8T0
1 � D1; :::; T0

m � Dm : q(T0
1, . . . , T0

m ) = [ xjx  v; x = t ]

) T0
1 � Tap

1 ; :::; T0
m � Tap

m

(c) 8Tap
i : 8t � 2 Tap

i : q(Tap
1 , . . . , [xjx  Tap

i ; x = t � ], . . . , Tap
m ) 6= �

We say that qAP
Di

(t) = Tap
i is t's a�ect-pool in Di .
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De�nition 2 (Origin-pool for a SIQL query) Let q, D1, . . . , Dm , t, v and q

be as above. We de�net's origin-pool in D1, . . . , Dm according toq, qOP
hD1 ;:::;Dm i

(t),

to be the sequence of bagshTop
1 , . . . , Top

m i , whereTop
1 , . . . , Top

m areminimal sub-bags

of D1, . . . , Dm such that:

(a) q(Top
1 , . . . , Top

m ) = [ xjx  v; x = t]

(b) 8Top
i : 8t � 2 Top

i : q(Top
1 , . . . , [xjx  Top

i ; x 6= t � ], . . . , Top
m ) 6= [ xjx  v; x = t]

(c) 8Top
i : 8t � 2 Top

i : q(Top
1 , . . . , [xjx  Top

i ; x = t � ], . . . , Top
m ) 6= �

(d) 8Top
i : 8t � 2 Top

i : t � =2 (Di �� Top
i )

We say that qOP
Di

(t) = Top
i is t's origin-pool in Di .

Proposition 1. Suppose that the a�ect-pool and origin-pool of a tracing tuple

t is the sequence of bagshTap
1 , . . . , Tap

m i and the sequence of bagshTop
1 , . . . , Top

m i ,

respectively, then each bagTop
i is a sub-bag ofTap

i .

The condition (b) in De�nition 1 ensures that, for any sequence of bagshT0
1,

. . . , T0
m i , if q(Top

1 , . . . , Top
m ) = [ xjx  v; x = t], then each bagT0

i is a sub-bag of

Tap
i . Thus, from condition (a) in De�nition 2, each bagTop

i is a sub-bag ofTap
i .

5.4 Data Lineage Tracing Formulae

Following on from the above de�nitions of data lineage and the de�nition of SIQL

queries in Section 5.2, we now specify the a�ect-pool and origin-pool for SIQL

queries. As in [CWW00], we usederivation tracing queriesto evaluate the lineage

of a tuple t or a set of tuplesT with respect to a set of bagsD. That is, we apply

a query to D and the result is the derivation oft (or T) in D. We call such a

query the tracing query for t (or T) on D, denoted asTQD(t) (or TQD(T)).
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Theorem 1 ( A�ect-pool and Origin-pool for a tuple with SIQL queries).

Let v = q(D) be the bag that results from applying a SIQL queryq to a sequence

of bagsD. Then, for any tuple t 2 v, the tracing queriesTQAP
D (t) below give the

a�ect-pool of t in D, and the tracing queriesTQOP
D (t) give the origin-pool oft in

D:
t1: q = D1 ++ : : : ++ Dn (D = hD1; : : : ; Dn i )

TQAP
D (t) = TQOP

D (t) = h[xjx  D1; x = t]; : : : ; [xjx  Dn ; x = t]i

t2: q = D1 �� D2 (D = hD1; D2i )

TQAP
D (t) = h[xjx  D1; x = t]; D2i

TQOP
D (t) = h[xjx  D1; x = t]; [xjx  D2; x = t]i

t3: q = group D (D = hDi )

TQAP
D (t) = TQOP

D (t) = [ xjx  D; (first x ) = ( first t)]

t4: q = sort D = distinct D (D = hDi )

TQAP
D (t) = TQOP

D (t) = [ xjx  D; x = t]

t5: q = max D= min D (D = hDi )

TQAP
D (t) = D

TQOP
D (t) = [ xjx  D; x = t]

t6: q = sum D (D = hDi )

TQAP
D (t) = D

TQOP
D (t) = [ xjx  D; x 6= 0]

t7: q = count D = avg D (D = hDi )

TQAP
D (t) = TQOP

D (t) = D

t8: q = gc max D= gc min D (D = hDi )

TQAP
D (t) = [ xjx  D; (first x ) = ( first t)]

TQOP
D (t) = [ xjx  D; x = t]

t9: q = gc sum D (D = hDi )

TQAP
D (t) = [ xjx  D; (first x ) = ( first t)]

TQOP
D (t) = [ xjx  D; (first x ) = ( first t); (second x) 6= 0]
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t10: q = gc count D = gc avg D (D = hDi )

TQAP
D (t) = TQOP

D (t) = [ xjx  D; (first x ) = ( first t)]

t11: q = [ xjx1  D1; : : : ; xn  Dn ; C1; :::; Ck ] (D = hD1; : : : ; Dn i )

TQAP
D (t) = TQOP

D (t) = h[x1jx1  D1; x1 = (( lambda x:x1) t)]; : : : ;

[xn jxn  Dn ; xn = (( lambda x:xn ) t)]i

t12: q = [ xjx  D1; member D2 y] (D = hD1; D2i )

TQAP
D (t) = TQOP

D (t) = h[xjx  D1; x = t]; [yjy  D2; y = (( lambda x:y) t)]i

t13: q = [ xjx  D1; not (member D2 y)] (D = hD1; D2i )

TQAP
D (t) = h[xjx  D1; x = t]; D2i

TQOP
D (t) = h[xjx  D1; x = t]; � i

t14: q = map(lambda p1:p2) D (D = hDi )

TQAP
D (t) = TQOP

D (t) = [ p1jp1  D; p2 = t]

We note that general IQLc queries are allowed in the tracing queries. Appendix

A gives the proof that the results of queriesTQAP
D (t) and TQOP

D (t) in Theorem 1

satisfy De�nition 1 and 2 respectively.

Theorem 2 ( A�ect-pool and Origin-pool for a set of tuples with SIQL

queries). Let v = q(D) be the bag that results from applying a SIQL queryq

to a sequence of bagsD. Then, for a set of tuplesT � v (T 6= �), the tracing

queriesTQAP
D (T) below give the a�ect-pool of T in D, and the tracing queries

TQOP
D (T) give the origin-pool ofT in D:

T1: q = D1 ++ : : : ++ Dn (D = hD1; : : : ; Dn i )

TQAP
D (T) = TQOP

D (T) = h[xjx  D1; memberT x]; : : : ;

[xjx  Dn ; memberT x]i

T2: q = D1 �� D2 (D = hD1; D2i )

TQAP
D (T) = h[xjx  D1; memberT x]; D2i

TQOP
D (T) = h[xjx  D1; memberT x]; [xjx  D2; memberT x]i
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T3: q = group D (D = hDi )

TQAP
D (T) = TQOP

D (T)

= [ xjx  D; member[(first y )jy  T ] (first x )]

T4: q = sort D = distinct D (D = hDi )

TQAP
D (T) = TQOP

D (T) = [ xjx  D; memberT x]

T5: q = f D (D = hDi )

N=A /* The tracing data cannot be a set of tuples */

T6: q = gc max D= gc min D (D = hDi )

TQAP
D (T) = [ xjx  D; member[(first y )jy  T ] (first x )]

TQOP
D (T) = [ xjx  D; memberT x]

T7: q = gc sum D (D = hDi )

TQAP
D (T) = [ xjx  D; member[(first y )jy  T ] (first x )]

TQOP
D (T) = [ xjx  D; member[(first y )jy  T ] (first x );

(second x) 6= 0]

T8: q = gc count D = gc avg D (D = hDi )

TQAP
D (T) = TQOP

D (T)

= [ xjx  D; member[(first y)|y  T ] (first x )]

T9: q = [ xjx1  D1; : : : ; xn  Dn ; C1; :::; Ck ] (D = hD1; : : : ; Dn i )

TQAP
D (T) = TQOP

D (T) =

h[x1jx1  D1; member(map(lambda x:x1) T) x1]; : : : ;

[xn jxn  Dn ; member(map(lambda x:xn ) T) xn ]i

T10: q = [ xjx  D1; member D2 y] (D = hD1; D2i )

TQAP
D (T) = TQOP

D (T) = h[xjx  D1; memberT x];

[yjy  D2; member(map(lambda x:y) T) y]i

T11: q = [ xjx  D1; not (member D2 y)] (D = hD1; D2i )

TQAP
D (T) = h[xjx  D1; memberT x]; D2i

TQOP
D (T) = h[xjx  D1; memberT x]; � i
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T12: q = map(lambda p1:p2) D (D = hDi )

TQAP
D (T) = TQOP

D (T) = [ p1jp1  D; memberT p2]

The proof of Theorem 2 is similar to Theorem 1. Note that, if the tracing set

T is empty, we assume thatT's lineage data is empty as well.

5.5 Data Lineage Tracing Algorithm

Section 5.4 presented formulae for obtaining tracing queries from SIQL queries.

This section gives an algorithm for tracing the lineage dataof data in a ma-

terialised view that has been de�ned by a transformation pathway from a data

source schema. For simplicity of exposition, we assume thatall of the data source

schemas have �rst been integrated into a single schemaS consisting of the union

of the constructs of the individual source schemas, with appropriate renaming of

schema constructs to avoid duplicate names.

The DLT algorithm described in this section assumes that allintermediate

transformation steps are materialised,i:e: the constructs created byaddtransfor-

mation steps are materialised. DLT algorithms for more general transformation

pathways will be discussed in Chapter 6.

In general, intermediate constructs created during the IQLc to SIQL decompo-

sition by an addtransformation do not remain in the materialised global schema

as they are removed by adeletetransformation in the transformation steps after

the addtransformation. In order to materialise these intermediate constructs, we

remove the transformations which delete these intermediate constructs so as to

leave them in the materialised global schema.
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5.5.1 Tracing Data Lineage through Transformation Path-

ways

Suppose an integrated schemaGShas been derived from a source schemaSthough

a transformation pathwayTP = tp1, . . . , tpr . Regarding each transformation step

as a function applied toS, GScan be obtained asGS= tp1 � tp2 � : : : � tpr (S) =

tpr (: : : (tp2(tp1(S))) : : :). Thus, tracing the lineage of data inGSrequires tracing

data lineage via aquery-sequence, de�ned as follows:

De�nition 3 (A�ect-pool for a query-sequence) Let Q= q1, q2, . . . , qr be

a query-sequence over a sequence of bagsD, and let v = Q(D) = q1 � q2 � : : :� qr (D)

be the bag that results from applyingQto D. Given a tracing tuple t 2 v, we

de�ne t's a�ect-pool in D according toQ, QAP
D (t), to be Dap, whereDap

i = qAP
i (Dap

i +1 )

(1 � i � r ), Dap
i +1 = f tg and Dap = Dap

1 .

De�nition 4 (Origin-pool for query-sequence) Let Q, D, v and t be as

above. We de�ne t's origin-pool in D according to Q, QOP
D (t), to be Dop, where

Dop
i = qOP

i (Dop
i +1 ) (1 � i � r ), Dop

i +1 = f tg and Dop = Dop
1 .

De�nitions 3 and 4 state that the derivations of data in an integrated schema

GScan be derived by examining the transformation pathways from the source

schemaS to GSin reverse, step by step.

An AutoMed transformation pathway consists of a sequence ofprimitive trans-

formations which generate the integrated schema from the given source schemas.

The schema constructs are generally di�erent for di�erent modelling languages.

When considering data lineage tracing, we are only concerned with structural con-

structs associated with a data extent e.g.Nodeand Edgeconstructs in the HDM,

Reland Att constructs in the simple relational data model, andElement, Attribute
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and NestSetconstructs in the simple XML data model. Thus, for data lineage

tracing, we ignore primitive schema transformation steps which are adding, delet-

ing or renaming only constraints. Moreover, we treat any primitive transforma-

tion which is adding a construct to a schema as a genericaddT transformation,

any primitive transformation which is deleting a constructfrom a schema as a

genericdelT transformation, and any primitive transformation which isrenaming

a schema construct as a genericrenameTtransformation. We can summarise the

problem of data lineage for each of these transformations asfollows3:

(a) For an addT(c; q) transformation, the lineage of data in the extent of schema

construct c is located in the extents of the schema constructs appearingin

the query q.

(b) For a renameT(c' ; c) transformation, the lineage of data in the extent of

schema constructc is located in the extent of schema constructc' .

(c) All delT(c; q) transformations can be ignored since they create no schema

constructs.

5.5.2 Algorithms for Tracing Data Lineage

In our algorithms below, we assume that each schema construct, c, in any schema

along the pathwayS! GShas two attributes: relateTPis the transformation step

that createdc, andextent is the current extent ofc. If a schema construct remains

in the global schemaGSdirectly from the source schemaS, its relateTP value is

empty.

In our algorithms, each transformation steptp has four attributes:

� action, which is \add" , \ren" or \del" ;

3The cases ofextendand contract transformations will be considered later in Chapter 6.
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� query, which is the query used in this transformation step (if any);

� source, which for a renameT(c' ; c) returns just c' , and for an addT(c; q)

returns a sequence of all the schema constructs appearing inq; and

� result which is c for both renameT(c' ; c) and addT(c; q).

In case (b) discussed above, where the constructc was de�ned by a transfor-

mation step renameT(c',c) , the lineage data inc' of a bag of tracing tuplesT

in the extent of c is just T itself, and we de�ne this to be both the a�ect-pool

and the origin-pool ofT in c' .

In case (a), where the constructc was created by a transformation step

addT(c; q), the key point is how to trace the lineage using the queryq. We

can use the formulae of Theorem 1 to obtain the lineage of datacreated in this

case. The proceduresa�ectPoolOfTuple(t; c) and originPoolOfTuple(t; c) in Figure

5.1 below can be applied to trace the a�ect pool and origin pool of a tuple t in the

extent of schema constructc. The result of these procedures,DL, is a sequence

of pairs

hfdl 1; c1g; : : : ; f dl n ; cngi

in which each dl i is a bag which containst's derivation within the extent of

schema constructci . Note that in these procedures, the sequenceD� returned

by the tracing queriesTQAP and TQOP may consist of bags from di�erent schema

constructs. For any such bag,B, B:constructdenotes the schema construct from

whose extentB originates.

Similarly, by Theorem 2, two proceduresa�ectPoolOfSet(T;c) and origin-

PoolOfSet(T; c) can then be used to compute the derivations of a set of tracing

tuples T. Since duplicate tuples have an identical derivation, we eliminate any

duplicate items and convert the tracing bag to a tracing set �rst. The procedure
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proc a�ectPoolOfTuple(t; c)

input : a tracing tuple t in the extent of construct c

output : t 's a�ect-pool, DL

begin

D = [ f O:extent; Og j O c:relateTP.source]

D� = TQAP
D (t);

DL = [ f B; B:constructg j B  D� ]

return DL;

end

proc originPoolOfTuple(t; c)

input : a tracing tuple t in the extent of construct c

output : t 's origin-pool, DL

begin

D = [ f O:extent; Og j O c:relateTP.source]

D� = TQOP
D (t);

DL = [ f B; B:constructg j B  D� ]

return DL;

end

Figure 5.1: Proceduresa�ectPoolOfTupleand originPoolOfTuple

124



a�ectPoolOfSet(T;c) is illustrated in Figure 5.2. The procedureoriginPoolOf-

Set(T;c) is identical, with TQAP
D (T) replacing TQOP

D (T).

proc a�ectPoolOfSet(T; c)

input : a tracing tuple set T contained in construct c

output : T 's a�ect-pool, DL

begin

D = [ f O:extent; Og j O c:relateTP.source]

D� = TQAP
D (T);

DL = [ f B; B:constructg j B  D� ]

return DL;

end

Figure 5.2: Procedurea�ectPoolOfSet

The algorithms a�ectPoolOfTupleand a�ectPoolOfSet, as well asoriginPoolOf-

Tupleand originPoolOfSet, are correct in the sense that the a�ect-pool and origin-

pool obtained by them conform to the de�nitions of a�ect-pool and origin-pool

for a SIQL query in Section 5.3. This is because they use the DLT formulae in

Section 5.4 to compute the lineage data.

Finally, we give below our algorithmtraceA�ectPool(B, c) in Figure 5.3 for

tracing a�ect lineage using entire transformation pathways given the integrated

schemaGS, the source schemaS, and a transformation pathwaytp1, . . . , tpr from

S to GS. Here,B is a bag of tuples contained in the extent of a schema construct

c 2 GS. We recall that each schema construct has attributesrelateTPand extent,

and that each transformation step has attributesaction, query, sourceand result.

The algorithm examines each transformation step fromtpr down to tp1. If it

is a delete step, we ignore it. Otherwise we determine if theresult of this step is

contained in the current DL. If so, we then trace the data lineage of the current
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data of c in DL, merge the result intoDL, and deletec from DL. Because a tuple

t � can be the lineage of botht i and t j (i 6= j ), if t � and all of its copies in a data

source have already been added toDLas the lineage oft i , we do not add them

again into DLas the lineage oft j . This is accomplished by the proceduremerge

given in Figure 5.4 below, where the operator00� 00removes an element from a

sequence and the operator00+ 00appends an element to a sequence. At the end of

this processing the resultingDLis the lineage ofB in the data sources.

The proceduretraceA�ectPool is correct in the sense that the a�ect-pool ob-

tained by it conforms to the de�nitions of a�ect-pool for a query-sequence in

Section 5.5.1. This is because this procedure callsa�ectPoolOfSetto compute the

lineage data based on oneadd transformation step, and obtains the �nal lineage

data after checking alladd transformations along a transformation pathway in

reverse.

The exact complexity of the overall DLT process isO(n � m) where n is the

number ofaddtransformations relevant to the tracing data in the transformation

pathway and m is the number of di�erent schema constructs in the computed

lineage data. By relevant to the tracing data, we mean those transformation

steps from the data sources which directly or indirectly create the global schema

construct containing the tracing data. The complexity isO(n � m) because

for eachadd transformation step relevant to the tracing data, the DLT process

is performed once for each di�erent schema construct present in the computed

lineage data.

We illustrate the use of thetraceA�ectPool procedure above by means of a

simple example. Referring back to the example schema transformation in Sec-

tion 5.2.3, suppose we have a tracing tuplet = f 0Maths0; 2500g in the extent of

hhdepartment; avgDeptSalaryii in GS. The a�ect-pool, DL, of this tuple is traced as

follows.
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proc traceA�ectPool(B; c)

input : tracing tuple bag B contained in construct c;

transformation pathway tp1; : : : ; tpr

output : B 's a�ect-pool ; DL

begin

DL = hfB; cgi ;

for j = r downto 1 do f

case (tpj :action = \del" )

continue ;

case (tpj :action = \ren" )

if (tpj :result= ci for some ci in DL) then

DL= ( DL � f dl i ; ci g) + f dl i ; tpj :sourceg;

case (t j :action = \add" )

if (tpj :result= ci for some ci in DL) then f

DL = DL � f dl i ; ci g;

dl i = distinct dl i ;

DL = merge(DL; a�ectPoolOfSet(dl i ; ci )); g

g

return DL;

end

Figure 5.3: ProceduretraceA�ectPool

Initially, DL = hff 0Maths0; 2500g; hhdepartment; avgDeptSalaryiigi . traceA�ectPool

ignores all thedeletesteps, and �nds theadd transformation step whoseresult is

00hhdepartment; avgDeptSalaryii 00. This is step (7:5), tp(7:5) , and:

tp(7:5) :query= hhavgMathsSalaryii ++ hhavgCompSciSalaryii and

tp(7:5) :source= [ hhavgMathsSalaryii ; hhavgCompSciSalaryii ]

Using algorithm a�ectPoolOfSet, t's lineage attp(7:5) is as follows:
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proc merge(DL; DLnew )

input : data lineage sequenceDL = hfdl 1; c1g; : : : ; f dl n ; cngi ;

new data lineage sequenceDLnew

output : merged data lineage sequenceDL

begin

for each f dl new ; cnewg 2 DLnew do f

if (cnew = ci for some ci in DL) then f

oldData = dl i ;

newData = oldData ++

[x j x  dl new ; not (member oldData x)];

DL = ( DL � f oldData ; ci g) + f newData; ci g;

g

else

DL = DL + f dl new ; cnewg;

g

return DL;

end

Figure 5.4: Proceduremerge

DL(7:5) = hf[xjx  hh avgMathsSalaryii ; x = f 0Maths0; 2500g]; hhavgMathsSalaryiig ;

f [xjx  hh avgCompSciSalaryii ; x = f 0Maths0; 2500g]; hhavgCompSciSalaryiigi

= hff 0Maths0; 2500g; hhavgMathsSalaryiig ; f � ; hhavgCompSciSalaryiigi

= hff 0Maths0; 2500g; hhavgMathsSalaryiigi

After removing ff 0Maths0; 2500g; hhdepartment; avgDeptSalaryiig , the original tu-

ple, and merging its lineageDL(7:5) , we obtain the updated lineage data ashff 0Maths0;

2500g; hhavgMathsSalaryiigi . Similarly, we obtain the data lineage relating to this
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DL. Thus, DL(7:2) is all of the tuples in hhmathsSalaryii and DL(7:1) is all of the tu-

ples inhhmathematician; salaryii , where constructhhmathematician; salaryii is a base

collection in SS.

We conclude that the a�ect-pool of tuple f 0Maths0; 2500g in the extent of

hhdepartment; avgDeptSalaryii in GSconsists of all of the tuples in the extent of

hhmathematician; salaryii in SS.

ProceduretraceOriginPool(B, c) is similar, obtained by replacinga�ectPoolOf-

Set by originPoolOfSet.

Note that we have not implemented these DLT algorithms whichassume fully

materialised transformation pathways. In Chapter 6, we develop a generalised

DLT algorithm for general transformation pathways where intermediate schema

constructs may or may not be materialised. The implementation of this gener-

alised DLT algorithm is discussed in AppendixC.

5.6 IQL c to SIQL Decomposition Order

With the decomposition rules described in 5.2.2, we decompose a general IQLc

query into a sequence of SIQL queries by means of a depth-�rsttraversal of the

IQL c query tree. However, does the traversal order a�ect the process of tracing

data lineage, i:e: would we get the same lineage data irrespective of the order

of decomposition? In this section, we investigate the problem of decomposition

order and conclude that the order of traversing an IQLc query tree does not a�ect

the result of our DLT process.

Firstly, if an IQL c query is a list of constants,i:e: [c1; c2; : : : ; cn ], there is

no traversal order problem. We next discuss the situation ofa query having

arguments.

If a query is an 1-argument IQLc query, just one order of traversing the query
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is available. If the one sub-query has no traversal order problem, the main query

will not have the traversal order problem.

If a query is a 2-argument IQLc query, i:e: E1�� E2, there may be two sub-

queries in the main query and two orders of traversing the query, e:g:

v1 = E1

v2 = E2

v = v1 �� v2
and

v1 = E2

v2 = E1

v = v2 �� v1
However, there is no traversal order problem since the DLT formulae for each

data source in the�� expression are independent of each other.

If a query is a n-argument IQLc query, such as an++ expression, since the

places of its arguments are exchangeable, there are variousorders of traversing the

query. However, again the DLT formulae for each data source in a ++ expression

are independent of each other. Thus, the order of traversal does not a�ect the

result of tracing lineage data in the data sources.

Otherwise, if then-argument IQLc query is a comprehension, we consider the

following three cases.

- One, the comprehension is not a select-join comprehension and has to be trans-

formed into a select-join comprehension. There is no traversal order prob-

lem in this transformation since we use amap expression to achieve this

transformation.

- Two, the select-join comprehension does not containmember�lters. In this

case, similar to the situation of++ expressions, the DLT formulae for each

data source in the comprehension are independent of each other and there

is no traversal order problem;
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- Three, the select-join comprehension containsmember�lters. On the one hand,

if the select-join comprehension contains just one generator and member

�lter, similar to the situation of �� expressions, the DLT formulae for each

data source are independent of each other and there is no traversal problem.

On the other hand, if the select-join comprehension contains multiple gener-

ators andmember�lters, [ pjG1; G2; :::; Gr; M1; :::; Ms; C1; : : : ; Ct], according to

the decomposition rules in Section 5.2.2, this comprehension is decomposed

into following SIQL comprehensions:

v1 = [ pjG1; : : : ; Gr; C1; :::; Ct]

v2 = [ pjp  v1; M1]

v3 = [ pjp  v2; M2]

: : :

vs = [ pjp  vs� 1; Ms� 1]

v = [ pjp  vs; Ms]

Although the order of traversing themember�lters such as M1; :::; Mscould

be changed, according to the DLT formulae in Section 5.4, theobtained

lineage data in all the intermediate viewsv1; :::; vs is the tracing tuple t

itself while the obtained lineage data for eachmember�lter Mi is a lambda

expression over the tracing tuplet. Both of these cannot be a�ected by the

traversal order. Furthermore, each individual viewv; v1; :::; vs is a select-join

comprehension either with only one generator andmember�lter, or without

any member�lters, and which therefore has no traversal order problem.

In summary, the order of traversing an IQLc query tree does not a�ect the

result of our DLT process.
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5.7 Ambiguity of Lineage Data

The ambiguity of lineage data, also calledderivation inequivalence[CWW00],

relates to the fact that for queries which are equivalent butdi�erent syntactically

DLT processes may obtain di�erent lineage data for identical tracing data. This

section investigates how this problem may happen in our context. Two queries

are equivalent if they give identical results for all possible values of their base

collections. That is, given two queriesq1 and q2 both referring to base collections

b1; :::; bn , q1 and q2 are equivalent if q1[b1=I 1; :::; bn=I n ] = q2[b1=I 1; :::; bn=I n ] is

true for all instancesI 1; :::; I n of b1; :::; bn respectively. We usev1 � v2 to denote

that views v1 and v2 are de�ned by equivalent queries.

5.7.1 Derivation for di�erence and not memberOperations

Ambiguity of lineage data may happen whendi�erence(i:e: �� in IQL c) and not

memberoperations are involved in the view de�nitions.

For example, consider two bagsR= [0; 1; 1; 2; 3], S= [ � 1; 1; 2; 3; 3]. Two pairs

of equivalent views,v1 � v2 and v3 � v4, are de�ned as follows.

v1 = R�� (R�� S) = [1 ; 2; 3]

v2 = S�� (S�� R) = [1 ; 2; 3]

v3 = [ xjx  R; member S x] = [1 ; 1; 2; 3]

v4 = [ xjx  R; not (member[yjy  R; not (member S y)] x)] = [1 ; 1; 2; 3]

The lineage of data in an IQLc view can be traced by decomposing the view

into a sequence of intermediate SIQL views. In order to tracethe lineage of data

in the above four views, intermediate views are required as follows:
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For v1; v1' = ( R�� S) = [0 ; 1]:

For v2; v2' = ( S�� R) = [ � 1; 3]:

For v3; no intermediate view needed:

For v4; v4' = [ y|y  R; not (member S y)] = [0] :

With the above intermediate views, we can now trace the lineage of the views'

data. For example, the a�ect-pool of the data itemt = 1 2 v1 and t = 1 2 v2 are

as follows. Here, we denote byD|dl the lineage datadl in the collection D, i:e: all

instances of the tupledl in the bag D(the result of the query [xjx  D; x = dl ]).

APv1(t) t2= hRj[x|x  R; x = 1] ; R�� Si

= hRj[1; 1]; v1' i
T 2= hRj[1; 1]; Rj[x|x  R; member v1' x]; Si

= hRj[1; 1]; Rj[x|x  R; member[0; 1] x]; Si

= hRj[1; 1]; Rj[0; 1; 1]; Sj[� 1; 1; 2; 3; 3]i

= hRj[0; 1; 1]; Sj[� 1; 1; 2; 3; 3]i

APv2(t) t2= hSj[x|x  S; x = 1] ; S�� Ri

= hSj[1]; v2' i
T 2= hSj[1]; Sj[x|x  S; member v2' x]; Ri

= hSj[1]; Sj[x|x  S; member[� 1; 3] x]; Ri

= hSj[1]; Sj[� 1; 3; 3]; Rj[0; 1; 1; 2; 3]i

= hRj[0; 1; 1; 2; 3]; Sj[� 1; 1; 3; 3]i

We can see that the a�ect-pool of identical tracing data inv1 and v2 are inequiv-

alent. The a�ect-pool of tuple t = 1 2 v3 and t = 1 2 v4 are:
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APv3(t) t12= hRj[x|x  R; x = 1] ; Sj[x|x  S; x = 1] i

= hRj[1; 1]; Sj[1]i

APv4(t) t13= hRj[x|x  R; x = 1] ; v4' i
T 13= hRj[1; 1]; Rj[y|y  R; member v4' y]; Si

= hRj[1; 1]; Rj[y|y  R; member[0] y]; Si

= hRj[1; 1]; Rj[0]; Sj[� 1; 1; 2; 3; 3]i

= hRj[0; 1; 1]; Sj[� 1; 1; 2; 3; 3]i

We can see that the a�ect-pool of above identical tracing data in v3 and v4 are

also inequivalent.

The reason for the inequivalent a�ect-pool of the data in views de�ned by

equivalent queries involving the�� and not memberoperators is the de�nition

of a�ect-pool. As described in Section 5.4, the a�ect-pool in a data sourceD2in

queries of the formD1�� D2or [xjx  D1; not (member D2x)], includes all data

in D2. So the computed a�ect-pool inD2 may contain some \irrelevant" data

which does not a�ect the existence of the tracing data in the view.

For example, if the tracing data ist = 1 in the view R�� S, the irrelevant

data in S are [� 1; 2; 3; 3], which are also included int's a�ect-pool.

Although origin-pool is de�ned to contain the minimal essential lineage data

in a data source, ambiguity of lineage data may also occur fortracing origin-pool.

For example, in the case of the above four views, the origin-pool of the tracing

data item t = 1 are also inequivalent (we useDj� to denote no lineage data in D):

OPv1(t) t2= hRj[x|x  R; x = 1] ; (R�� S)j[x|x  (R�� S); x = 1] i

= hRj[1; 1]; v1' j[x|x  [0; 1];x = 1] i

= hRj[1; 1]; v1' j[1]i
t2= hRj[1; 1]; Rj[x|x  R; x = 1] ; Sj[x|x  S; x = 1] i

= hRj[1; 1]; Rj[1; 1]; Sj[1]i

= hRj[1; 1]; Sj[1]i
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OPv2(t) t2= hSj[x|x  S; x = 1] ; (R�� S)j[x|x  (S�� R); x = 1] i

= hSj[1]; v2' j[x|x  [� 1; 3];x = 1] i

= hSj[1]; v2' j� i

= hSj[1]i

and
OPv3(t) t12= hRj[x|x  R; x = 1] ; Sj[x|x  S; x = 1] i

= hRj[1; 1]; Sj[1]i

OPv4(t) t13= hRj[x|x  R; x = 1] ; v4' j� i

= hRj[1; 1]i

5.7.2 Derivation for Aggregate Functions

Ambiguity of lineage data may also happen when queries involve aggregate func-

tions. Suppose that bagsRand Sare the same as in Section 5.7.1. Consider DLT

processes over the following two pairs of equivalent views,v5 � v6 and v7 � v8:

v5 = sum R= 7

v6 = sum[x|x  R; x 6= 0] = 7

v7 = max S= [3 ; 3]

v8 = max[x|x  S; x > (min S)] = [3 ; 3]

The a�ect-pool of t = 7 2 v5 and t = 7 2 v6 are:

APv5(t) t6= hRi = hRj[0; 1; 1; 2; 3]i

APv6(t) t6= hRj[x|x  R; x 6= 0] i = hRj[1; 1; 2; 3]i

and the a�ect-pool of t = 3 2 v7 and t = 3 2 v8 are:

APv7(t) t6= hSi = hSj[� 1; 1; 2; 3; 3]i

APv8(t) t6= hSj[x|x  S; x > (min S)]i = hSj[1; 2; 3; 3]i

We can see that the a�ect-pool of identical tracing data for these equivalent views

are inequivalent.
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The reason for this ambiguity of a�ect-pool is that, according to the DLT

formulae of a�ect-pool in Section 5.4, the a�ect-pool of data in an aggregate view

includes all the data in the data source, which can bring irrelevant data into the

derivation. In above example, viewsv6 and v8 �lter o� some irrelevant data by

using predicate expressions, so that the computed a�ect-pool over the two views

does not contain this irrelevant data.

Such problems may be avoided in tracing the origin-pool, since the origin-pool

is de�ned to contain the minimal essential lineage data in the data sources, and

any data item and its duplicates in the origin-pool are non-redundant.

For example, the origin-pool oft = 7 2 v5 and t = 7 2 v6 are identical:

OPv5(t) t6= hRj[x|x  R; x 6= 0] i = hRj[1; 1; 2; 3]i

OPv6(t) t6= hRj[x|x  [y|y  R; y 6= 0]; x 6= 0] i = hRj[1; 1; 2; 3]i

and the origin-pool oft = 3 2 v7 and t = 3 2 v8 are also identical:

OPv7(t) t5= hSj[x|x  S; x = 3] i = hSj[3; 3]i

OPv8(t) t5= hSj[x|x  [y|y  S; y > (min S)]; x = 3] i = hSj[3; 3]i

However, the derivation inequivalence problem cannot always be avoided in

tracing the origin-pool. For example, suppose two equivalent views v9 � v10 are

de�ned as follows:
v9 = sum S= 8

v10 = sum[x|x  S; not (member[x1jx1  S; x2  S; x1 = ( � x2)] x)] = 8

In order to trace the origin-pool ofv10's data, the intermediate views forv10

are de�ned as follows:
v10' = [ x1jx1  S; x2  S; x1 = ( � x2)] = [ � 1; 1]

v10'' = [ x|x  S; not (member v10' x)] = [2 ; 3; 3]

v10 = sum v10'' = 8
Then, the origin-pool oft = 8 2 v9 and t = 8 2 v10 are:
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OPv9(t) t6= hSj[x|x  S; x 6= 0] i

= hSj[� 1; 1; 2; 3; 3]i

OPv10(t) t6= hv10'' j[x|x  v10'' ; x 6= 0] i = hv10'' j[2; 3; 3]i

= h[x|x  S; not (member v10' x)]j[2; 3; 3]i
T 11= hSj[2; 3; 3]; v10' j� i

= hSj[2; 3; 3]i

We can see thatOPv9(t) 6= OPv10(t). This is because the viewv10 is �rstly

applying a select operation over the data sourceS, to eliminate data item d in S

and its inversed� 1, i:e: d + d� 1 = 0.

5.7.3 Derivation for Where-Provenance

The problem of where-provenance is introduced in Bunemanet al:'s work [BKT01].

In that paper, tracing the where-provenance of a tracing tuple consists of �nding

the lineage of one component of the tuple, rather than the whole tuple. Also, the

where-provenance is not exact data, but rather a path for describing where the

lineage is. That paper describes that derivation inequivalence may happen when

tracing where-provenance.

Examples of where-provenance inequivalence 4

Suppose thatw1is a view over a relational tablehhEmployeeii , where the extent

of hhEmployeeii table is a list of 3-item tuples containingname, salary and bonus

information of employees. The de�nition ofw1is as follows:

w1= [ {name,salary} j{name,salary,bonus}  hh Employeeii ; salary = 1200]

If f 0Tom0; 1200g is a tuple in w1and the data 1200 in the tuple only comes from the

tuple f 0Tom0; 1200; 1000g in the extent of hhEmployeeii , then the where-provenance

of 1200 is the path00hhEmployeeii :f name: 0Tom0g:salary 00, which means that 1200

4The examples illustrated in this section are derived from [BKT01].

137



comes from the attributesalary in the relation hhEmployeeii where the value of

the attribute nameis 0Tom0.

However, if we consider the following vieww2 over construct hhEmployeeii ,

which is an equivalent view tow1,

w2 = [ f name; 1200gj{name,salary,bonus}  hh Employeeii ; salary = 1200]

the where-provenance of 1200 inf 0Tom0; 1200g is the query (view de�nition) itself,

since the value is directly appearing in the query expression.

Another example illustrating inequivalent where-provenance is as follows. Sup-

pose thatw3� w4where

w3 = [ {id,ns} j{id,s,b,ns}  hh Dii ; s = b;s = ns ]

w4 = [ {id,ns} j{id,s,b,ns}  hh Dii ;

member[{id1,ns1} j{id1,s1,b1,ns1}  hh Dii ; s1 = b1] {id,ns} ;

s = ns]

In the case ofw3, the attribute ns in the result view depends on attributes:

s, b and ns, in relational table hhDii . While in the case ofw4, the attribute ns in

the result view depends on attributes:id , s, b and ns, in hhDii .

In our DLT approach, we only consider tracing the lineage data of an entire

tuple, which is termed why-provenance in [BKT01]. However,in AutoMed, each

extensional modelling construct of a high-level modellinglanguage is speci�ed as

an HDM node or edge and cannot be broken down further. For example, each

attribute in a relational table is a construct in the AutoMed relational schema.

In other words, in our DLT approach, not only the why-provenance but also

the where-provenance has been considered, when the AutoMeddata modelling

technique is used for modelling data,e:g:, using the simple relational data model.

In this sense, we deal with the problem of tracing where-provenance and why-

provenance simultaneously, so that the problem of inequivalent where-provenance
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is avoided.

For example, by using the simple relational data model and SIQL queries, the

above four view de�nitions can be rewritten (denoted as; ) as follows. In the sim-

ple relational data model, constructs of the relational table hhEmployeeii include:

hhEmployeeii , hhEmployee; nameii , hhEmployee; salaryii and hhEmployee; bonusii ; con-

structs of the table hhDii include: hhDii , hhD; idii , hhD; s;ii , hhD; bii and hhD; nsii .

w1; w1' = [ {name,salary}|{name,salary}  hh Employee; salaryii ;

salary = 1200]

w2; w2' = [ {name,salary}|{name,salary}  hh Employee; salaryii ;

salary = 1200]

w2'' = map(lambda {name,salary} :f name; 1200g) w2'

Obviously, w1' and w2' are identical, and w2'' uses alambda expression

replacing by the constant 1200 thesalaryvalues in the result ofw2'. Here, we

cannot trace the lineage data of 1200 separately. If it is required to do that,

de�nitions of w1and w2can be rewritten as:
w1; w1a' = [ {name,salary}|{name,salary}  hh Employee; salaryii ;

salary = 1200]

w1a'' = map(lambda {name,salary}.{salary} ) w1a'

w2; w2a' = [ {name,salary}|{name,salary}  hh Employee; salaryii ;

salary = 1200]

w2a'' = map(lambda {name,salary} :f 1200g) w2a'

We can see that, although intermediate viewsw1a'' and w2a'' have the

same result in the current speci�c situation, they have di�erent de�nitions. In

this sense, viewsw1and w2can be regarded as inequivalent and the problem of

derivation inequivalence does not arise for these two views. However, even we

admit that these two views are equivalent in the current situation, according to

the DLT formula t15 in Theorem 1, the lineage data of 1200 inw1a'' and w2a''
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are obtained as follows:
w1a'j[{name,salary}|{name,salary}  w1a'; salary = 1200]

w2a'j[{name,salary}|{name,salary}  w2a'; 1200 = 1200]
Since viewsw1a' and w2a' are identical, 1200 over the two views have the same

lineage.

As to views w3and w4, their de�nitions can be rewritten as follows:

w3; w3' = [ {id,s}|{id,s}  hh D; sii ; memberhhD; bii {id,s} ]

w3'' = [ {id,ns}|{id,ns}  hh D; nsii ; member w3' {id,ns} ]

w4; w4' = [ {id,ns}|{id,ns}  hh D; nsii ; memberhhD; sii {id,ns} ]

w4'' = [ {id,s} |{id,s}  hh D; sii ; memberhhD; bii {id,s} ]

w4''' = [ {id,ns}|{id,ns}  w4' ; member w4'' {id,ns} ]
We can see that tuple{id,ns} in the two views have the same lineage coming

from hhD; nsii , hhD; sii and hhD; bii constructs.

5.7.4 Summary

This section has investigated when ambiguity of lineage data may happen in

our context | the problem may happen when tracing the lineageof the data in

views de�ned by IQLc queries involving�� , not member�lters and aggregation

operations. In Cui et al's work [CWW00], the de�nition of data lineage results

in the same problem of derivation inequivalence.

Ambiguity of lineage may also happen when tracing where-provenance. This

section has described how our DLT approach for tracing why-provenance can

also be used for tracing where-provenance, so as to reduce the chance of where-

provenance inequivalence occurring.
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5.8 Discussion

This chapter has given the de�nitions of data lineage in the context of AutoMed,

which we have termeda�ect-pool and origin-pool. The a�ect-pool includes all of

the source data that had some inuence on the tracing data, while the origin-pool

is the speci�c data in the data sources from which the tracingdata is extracted.

We have introduced a subset of the full IQL query language, IQLc, which

incorporates the major relational and aggregation operators on collections; and

have used a subset of IQLc, SIQL, for our data lineage tracing algorithms. Any

IQL c query can be decomposed into a series of transformations with SIQL queries

on intermediate schema constructs. We have also discussed that the order of

traversing and decomposing an IQLc query does not a�ect the result of our DLT

process.

DLT formulae for SIQL queries and an algorithm for tracing data lineage

over AutoMed transformation pathways have also been presented in this chapter.

A limitation of this algorithm is that transformation pathw ays need to be fully

materialised, i:e: all the constructs de�ned by add transformations need to be

materialised. In the next chapter, we will present a method for tracing data lin-

eage over general AutoMed transformation pathways where intermediate schema

constructs may or may not be materialised.

In Section 5.7, we have discussed the ambiguity of lineage data. For identi-

cal tracing data based on equivalent queries, inequivalentlineage data may be

obtained if the queries involve�� , not memberor aggregation operations. In-

equivalent lineage data may also be obtained when tracing where-provenance.

We observed that the process of tracing where-provenance can be handled by the

process of tracing why-provenance when AutoMed is used for modelling data, so

that the problem of inequivalent where-provenance can be reduced.
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Chapter 6

Generalising the Data Lineage

Tracing Algorithm

6.1 Motivation

In Chapter 5 we discussed how to trace the lineage of data in the global database

by applying the DLT formulae for SIQL queries to each transformation step in

the transformation pathway from the data source schemas to the global schema

in reverse, �nally ending up with the lineage data in the original data sources.

However, in general transformation pathways not all schemaconstructs cre-

ated by add transformations will be materialised, and the above simpleDLT

approach is no longer applicable. In practice, transformation pathways may be

virtual or partially materialised, in which intermediate schema constructs may or

may not be materialised. Moreover, as described as in Section 4:2:2, a general

IQL c query is decomposed into a sequence of SIQL queries with somenew inter-

mediate constructs, and it should not be necessary to materialise these constructs

in order to apply DLT.
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In this chapter, we assume that a schema transformation pathway may con-

tain virtual intermediate constructs, but that all queries appearing within it are

SIQL queries. The DLT algorithm described in Chapter 5 cannot handle virtual

intermediate views and so cannot be applied in this situation.

One approach to solving the problem of virtual schema constructs would be

to use AutoMed's Global Query Processor to evaluate the query creating the

virtual construct and compute its extent, so that the DLT approach of Chapter

5 could be applied. However, this approach is impractical due to the space and

time overheads it incurs.

Instead, our approach for handling the problem of virtual schema constructs is

that we use a data structure described in Section 6.2,Lineage, to denote lineage

data in a schema construct. If the construct is materialised, Lineagecontains

the actual lineage data. If the construct is virtual, Lineagecontains relevant

information for deriving the lineage data from the virtual construct. Rather

than materialising the virtual construct, we use such virtual lineage data as the

tracing data for earlier transformation steps. Repeating this process, �nally if

the data sources of a transformation step are all materialised, we can obtain the

materialised lineage data from these data sources.

In the rest of this chapter, Section 6.2 describes the data structures used by

our DLT algorithm. Section 6.3 presents our DLT procedure for a single trans-

formation step. DLT formulae for handling virtual intermediate constructs and

lineage data are developed in Section 6.4. Section 6.5 presents DLT algorithms

for tracing data lineage along a general transformation pathway. Section 6.6

discusses the usage of queries beyond IQLc, and of delete, contract and extend

transformation steps for DLT. Section 6.7 discusses the implementation of our

DLT algorithms described in this chapter. Finally, Section6.8 summarises and

discusses our DLT approach.
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6.2 Data Structures for Data Lineage Tracing

In order to handle virtual intermediate lineage data and schema constructs, we

use a data structure,Lineage, to denote lineage data in a schema construct. Each

Lineageobject has six attributes:

1. data, which can be a collection storing materialised lineage data, or, if the lineage

data is virtual, it will be the value null denoting virtual data;

2. construct, which is the name of the schema construct containing the lineage data;

3. isVirtualData, stating if the lineage data is virtual or not;

4. isVirtualConstruct, stating if the construct is virtual or not;

5. elemStruct, describing the structure of the data in the extent of the schema con-

struct, e:g:; a 2-item tuple {x1,x2} , or a 3-item tuple {x1,x2,x3} ; this will be

null if the lineage data is materialised.

6. constraint, expressing a constraint which derives the lineage data from the schema

construct if the construct is virtual; this will be null if the lineage data is mate-

rialised.

For example, supposing lineage data in a schema constructD is derived from

the query [{x,y}|{x,y}  D; x=5], and lp is a Lineageobject which expresses

this lineage data. IfD=[{1,2},{5,1},{5,2},{3,1}] is materialised, thenlp will

be:
lp:data = [{5,1},{5,2}]

lp:construct = 00D00

lp:isVirtualData = false

lp:isVirtualConstruct = false

lp:elemStruct = null

lp:constraint = null
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On the other hand, If D is a virtual schema construct, thenlp will be:

lp:data = null

lp:construct = 00D00

lp:isVirtualData = true

lp:isVirtualConstruct = true

lp:elemStruct = 00{x,y} 00

lp:constraint = 00x=500

For ease of exposition, we denote byOjdl a Lineageobject in which Ois the

name of the schema construct anddl is the lineage data. If the lineage data is

materialised,dl will be the data itself. Otherwisedl will be the form of (S; C),

whereS denotes theelemStructand C the constraint. For example, the above two

Lineageobjects are denoted byDj[{5,1},{5,2}] andDj({x,y},x=5 ), respectively.

In order to express a transformation step with a virtual result or virtual data

sources, we use a data structure,TransfStep, to express transformation steps.

Each TransfStepobject has six attributes:

1. action, which can be00add00, 00del00, 00rename00, 00extend00and 00contract00;

2. query, showing the query used in this transformation step;

3. result, which is the name of the schema construct created by this transformation

step (if the action is 00add00, 00rename00or 00extend00), or the name of the construct

deleted by this step (if the action is 00del00or 00contract00);

4. vResult, stating if the result construct is virtual or not;

5. sources, containing all schema construct schemes appearing in the query;

6. vSources, a Boolean array, showing which source constructs in thesourcescollec-

tion are virtual.

For example, supposingts is a TransfStepobject, where
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ts:action = 00add00

ts:query = 00hhsta� ; nameii ++ hhstudent; nameii ++ hhvisitor; nameii 00

ts:result = 00hhfaculty; nameii 00

ts:vResult = true

ts:sources = [ hhsta� ; nameii ; hhstudent; nameii ; hhvisitor; nameii ]

ts:vSources = [ false; true; false ]

This meansts is an addtransformation creating a new virtual constructhhfaculty,

nameii de�ned by the query \hhsta� ; nameii ++ hhstudent; nameii ++ hhvisitor; nameii ".

The data sources ofts are hhsta� ; nameii , hhstudent; nameii and hhvisitor; nameii , in

which hhstudent; nameii is virtual and the other two are materialised.

6.3 DLT for a Single Transformation Step

We now investigate how to obtain the lineage of the tracing data along a single

transformation step which may involve virtual data sources. We only consider

add transformations here andextend transformations are discussed in Section

6.6.3. We assume all queries appearing in transformation steps are SIQL queries.

Figure 6.1 gives our DLT procedure for a single transformation step,DLT4AStep,

where either the tracing data or the data sources may be virtual. The output

of DLT4AStep(td,ts) is the lineage data of tracing datatd in the data sources

of transformation step ts, which is a list of Lineageobjects that may contain

materialised or virtual lineage data.

We see from Figure 6.1 that our DLT formulae need to handle four cases:

MtMs | both the tracing data and the source data are materialised;MtVs | the

tracing data is materialised and the source data is virtual;VtMs | the tracing

data is virtual and the source data is materialised; andVtVs | both the tracing

data and the source data are virtual.
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Proc DLT4AStep(td; ts)
f

lpList = �;
case MtMs:

lpList  DTL formulae for MtMs;
case MtVs:

lpList  DTL formulae for MtVs;
case VtMs:

if (ts:result is required)
mv  evaluate(ts:query); /*recovering ts:result
td:data  mvjtd:data; /*recovering td
lpList  DTL formulae for MtMs;

else
lpList  DTL formulae for VtMs;

case VtVs:
if (td must be materialised)

mv  GQP(ts:result); /*recovering ts:result
td:data  mvjtd:data; /*recovering td
lpList  DTL formulae for MtVs;

else
lpList  DTL formulae for VtVs;

return lpList ;
g

Figure 6.1: TheDLT4AStepAlgorithm

In some cases lineage data are untraceable if the tracing data is virtual (see

Section 6.4 below for details). In such cases, expressed as conditions \( ts:result is

required)" and \( td must be materialised)" in Figure 6.1, we have to recover the

tracing data by materialising the result of the transformation step. In the case

of VtMs, we use the procedureevaluateto evaluate the query of the transforma-

tion step since all data sources are available, while in the case ofVtVs, we use

AutoMed's global query processor, GQP, to compute the result from the original

data sources.
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6.4 DLT Formulae

This section gives our DLT formulae for tracing data lineagefor the four cases

discussed above:MtMs, MtVs, VtMs and VtVs. The DLT formulae for the case of

MtMs are given in Table 6.1 which is a summary of the DLT formulae described

in Chapter 5. The DLT formulae in Table 6.1 either provide a derivation tracing

query specifying the lineage data of a tracing tuplet or, in some cases, give the

lineage data itself directly. If the DLT formula returns a derivation tracing query,

we need to evaluate the query to obtain the lineage data. If the formula returns

the lineage data directly, no such evaluation is needed.

Since the results of queries of the formgroup D and gc f D are a collection

of pairs, in the DLT formulae for these two queries we assume that the tracing

tuple t is of the form f a;bg, wherea and b are patterns. In the last but one line,

the notation D2j� denotes no lineage in the data sourceD2.

v DL AP (t) DL OP (t)
group D [f x; ygjf x; yg  D; x = a]

sort/distinct D Djt
max/min D D Djt

sum D D [xjx  D; x 6= 0]
count/avg D D

gc max/min D [f x; ygjf x; yg  D; x = a] Djt
gc sum D [f x; ygjf x; yg  D; x = a] [f x; ygjf x; yg  D;

x = a; y 6= 0]
gc count/avg D [f x; ygjf x; yg  D; x = a]

D1 ++ D2 ++ : : : ++ Dn 8i:Di jt
D1 �� D2 D1jt , D2 D1jt , D2jt

[xjx1  D1; : : : ; xn  Dn ; C] 8i: [x i jx i  Di ; x i = (( lambda x:x i ) t)]
[xjx  D1; member D2 y] D1jt , [yjy  D2; y = (( lambda x:y) t)]

[xjx  D1; not (member D2 y)] D1jt , D2 D1jt , D2j�
map(lambda p1:p2) D [p1jp1  D; p2 = t]

Table 6.1: DLT Formulae for MtMs

From the formulae forMtMs we have derived the DLT formulae for the other
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three cases below.

6.4.1 Case MtVs

Recall that there two kinds of DLT formulae in Table 6.1: tracing queries and

real lineage data. With MtVs the source data is virtual, so we cannot evaluate

tracing queries andLineageobjects are required to store the information about

these queries. For example, the tracing query[{x,y}|{x,y}  D;x=a] is expressed

asD|({x,y},x= a) , and the correspondingLineageobject, lp, is

lp:data = null

lp:construct = 00D00

lp:isVirtualData = true

lp:isVirtualConstruct = true

lp:elemStruct = 00{x,y} 00

lp:constraint = 00x=a00

In the case of real lineage data, the lineage data may be the tracing data, t,

itself or all the items in a source collectionD. If the lineage data ist, it is available

no matter whether D is materialised or not. If the lineage data is all items in

a virtual collection D, it is expressed byD|(any,true) , and the corresponding

Lineageobject, lp, is:

lp:data = null

lp:construct = 00D00

lp:isVirtualData = true

lp:isVirtualConstruct = true

lp:elemStruct = null

lp:constraint = null

Table 6.2 gives the DLT formulae for the case ofMtVs.
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v DL AP (t) DL OP (t)
group D Dj(f x; yg; x = a)

sort/distinct D Djt
max/min D Dj(any; true ) Djt

sum D Dj(any; true ) Dj(x; x 6= 0)
count/avg D Dj(any; true )

gc max/min D Dj(f x; yg; x = a) Djt
gc sum D Dj(f x; yg; x = a) Dj(f x; yg; x = a; y 6= 0)

gc count/avg D Dj(f x; yg; x = a)
D1 ++ D2 ++ : : : ++ Dn 8i:Di jt

D1 �� D2 D1jt , D2j(any; true ) D1jt , D2jt
[xjx1  D1; : : : ; xn  Dn ; C] 8i:Di j(x i ; x i = (( lambda x:x i ) t))

[xjx  D1; member D2 y] D1jt , D2j(y; y = (( lambda x:y) t))
[xjx  D1; not (member D2 y)] D1jt , D2j(any; true ) D1jt , D2j�

map(lambda p1:p2) D Dj(p1; p2 = t)

Table 6.2: DLT Formulae for MtVs

We can see that, in Table 6.2, although data sources are virtual, the lin-

eage data is materialised, and so not all computed lineage data is virtual. For

example, the a�ect-pool for aggregate functions are all thetuples in the source

collection, i:e: D|(any,true) (virtual lineage data); the a�ect-pool for group and

gc aggFunare all the tuples in the source collection whose �rst component is a,

i:e: D|({x,y},x= a) (again virtual lineage data); while the a�ect-pool for sort ,

distinct and ++ is the tracing data itself, i:e: Djt (materialised lineage data).

We note that, in the case ofD1++ D2++ : : :++ Dn , if a data sourceDi is virtual,

we need to computeDi to determine if it contains the tracing data t or not. We

may materialise all data sources of++ queries, so as to change the case into

MtMs and solve the problem. However, in some cases, tracing data lineage of++

queries is possible with virtual data sources. For example,supposev = v1 ++ D1

and v1 = distinct D 2, in which v1 is a virtual schema construct andD1 and D2

are materialised. In order to trace the lineage of the data inv, we actually have

no need to materialisev1. In particular, we can obtain v1jt's lineage inD2 as
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[x|x  D2; x = t] .

In our approach, we retain the data source of++ as virtual and assume that

the lineage data in the virtual data source ist. Then, we use a DLT check process,

which is described below, to determine whether the virtual data source needs to

be computed1.

SupposingS is a virtual data source of a++ query, then we �rstly �nd the

transformation step, ts, that createsS. Suppose the query ints is q.

If q is a ++ query, then the virtual data sourceS can remain virtual, and we

have to further check if any of the data sources ofq are virtual ones.

If q is map, sort or distinct with a materialised data source, thenS can

remain virtual. The materialised data source can �lter the lineage created in the

virtual construct Sand remove extra lineage data, as shown in the above example.

If q is �� , aggFun, group, gc group, comprehension,memberor not member,

then S must be computed.

Otherwise, if q is map, sort or distinct with a virtual data source S' , then

we cannot determine the situation ofS based on the current step. We have to

�nd the transformation step ts' which creates virtual construct S' , and repeat

the above check steps to examine the query ints'. If S' is able to be virtual,

then S can also be virtual; ifS' is not, that means we actually have to compute

construct S, rather than S' itself. Recursively, the �nal situation of construct S

can be determined.

The same problem as for++ may occur for �� . In particular, the situation

of tracing the origin-pool in the second argument of the query D1 �� D2, i:e: in

D2, is similar to the above and we use the same DLT check process to determine

whether D2 can be virtual or not.

1The computed data source may or may not be materialised. For the purpose DLT, we
use the computed data source once and have no need to materialise it in persistent storage.
However, for the purpose of future use, we may materialise itto avoid repeated computations.
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6.4.2 Case VtMs

Virtual tracing data can be created by the DLT formulae if data sources are

virtual. In particular, there are three kinds of virtual lineage data created in

Table 6.2: (any,true) , ({x,y},x= a), and (p1; p2=t). Note that, the lineage

data (xi ; xi = (( lambda x:xi ) t )) and (y; y = (( lambda x:y) t )) in the cases of

a comprehension (11th line) and a comprehension withmember�lter (12th line)

are not virtual. Since t is materialised data and tuplex contains all variables

appearing inxi , the expression (lambda x:xi ) t returns materialised data too.

Tables 6.3, 6.4 and 6.5 illustrate the DLT formulae forVtMs. These can

be derived by applying the above three kinds of virtual tracing data, Vt1 =

(any,true) , Vt2 = ( {x,y} ; x=a) and Vt3 = ( p1; p2=t), to the DLT formulae for

MtMs given in Table 6.1. In particular, Table 6.3 gives the DLT formulae for

tracing the a�ect-pool and Tables 6.4 and 6.5 give the DLT formulae for tracing

the origin-pool. In this case ofVtMs, since all source data is materialised, there

is no virtual intermediate lineage data created.

For example, supposev is de�ned by the querygroup D. If the virtual tracing

tuple t is Vt1, the a�ect-pool of t is all data in D. If t is Vt2, the a�ect-pool of

t is all tuples in D with �rst component equal to a. If t is Vt3, the a�ect-pool

of t is all tuples in D with �rst component equal to the �rst component of the

tracing data t. We can see that the virtual view,v, is used in this query. Since

the source data is materialised, we can easily computev and evaluate the tracing

query. However, once the virtual view is computed, the virtual tracing data t can

also be materialised. In practice, this situation reverts to the case ofMtMs which

we discussed earlier.

Although all computed lineage data can be materialised in the case ofVtMs,

we may leave it as virtual lineage data. For example, if the obtained lineage data

is all data in a collectionD, rather than bring all D's data items into memory to
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v t DL AP (t)
Vt1 D

group D Vt2 [f x; ygjf x; yg  D; x = a]
Vt3 [f x; ygjf x; yg  D; member[first p1jp1  v; p2 = t] x]
Vt1 D

sort/dinstinct D Vt2 [f x; ygjf x; yg  D; x = a]
Vt3 [p1jp1  D; p2 = t]
Vt1 D

aggFun D Vt2 n/a ( t cannot be a tuple)
Vt3 D
Vt1 D

gc aggFun D Vt2 [f x; ygjf x; yg  D; x = a]
Vt3 [f x; ygjf x; yg  D; member[first p1jp1  v; p2 = t] x]

D1 ++ D2 Vt1 8i:Di

++ : : : ++ Dn Vt2 8i: [f x; ygjf x; yg  Di ; x = a]
Vt3 8i: [p1jp1  Di ; p2 = t]
Vt1 D1jv, D2

D1 �� D2 Vt2 D1j[f x; ygjf x; yg  v; x = a], D2

Vt3 D1j[p1jp1  v; p2 = t], D2

Vt1 8i: [x i jx i  Di ; member(map(lambda x:x i ) v) x i ]
[xjx1  D1; Vt2 8i: [x i jx i  Di ; member(map(lambda x:x i )

: : : ; xn  Dn ; C] [xjx  v; first x = a]) x i ]
(C6= �) Vt3 8i: [x i jx i  Di ;

member(map(lambda x:x i ) [p1jp1  v; p2 = t]) x i ]
Vt1 D1jv, [yjy  D2; member(map(lambda x:y) v) y]

[xjx  D1; Vt2 [xjx  D1; member D2 y; first x = a],[yjy  D2;
member D2 y] member(map(lambda x:y) [xjx  v; first x = a]) y]

Vt3 [xjx  D1; member D2 y; e = t],[yjy  D2;
member(map(lambda x:y) [p1jp1  v; p2 = t]) y]

Vt1 D1jv, D2

[xjx  D1; Vt2 D1j[f x; ygjf x; yg  v; x = a]; D2

not (member D2 y)] Vt3 D1j[p1jp1  v; p2 = t], D2

Vt1 D
map(lambda p0

1:p0
2) D Vt2 [p0

1jp0
1  D; (first p0

2) = a]
Vt3 [p0

1jp0
1  D; p2 = t]

# Vt1 = ( any; true), Vt2 = ( f x; yg; x = a), Vt3 = ( p1; p2 = t)

Table 6.3: DLT Formulae for Tracing the A�ect-Pool of VtMs
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v t DL OP (t)
Vt1 D

group D Vt2 [f x; ygjf x; yg  D; x = a]
Vt3 [f x; ygjf x; yg  D; member[first p1jp1  v; p2 = t] x]
Vt1 D

sort/distinct D Vt2 [f x; ygjf x; yg  D; x = a]
Vt3 [p1jp1  D; p2 = t]
Vt1 Djv

max/min D Vt2 n/a ( t cannot be a tuple)
Vt3 Djv
Vt1 [xjx  D; x 6= 0]

sum D Vt2 n/a ( t cannot be a tuple)
Vt3 [xjx  D; x 6= 0]
Vt1 D

count/avg D Vt2 n/a ( t cannot be a tuple)
Vt3 D
Vt1 Djv

gc max/min D Vt2 Dj[f x; ygjf x; yg  v; x = a]
Vt3 Dj[p1jp1  v; p2 = t]
Vt1 [f x; ygjf x; yg  D; y 6= 0]

gc sum D Vt2 [f x; ygjf x; yg  D; x = a; y 6= 0]
Vt3 [f x; ygjf x; yg  D;

member[first p1jp1  v; p2 = t] x; y 6= 0]
Vt1 D

gc count/avg D Vt2 [f x; ygjf x; yg  D; x = a]
Vt3 [f x; ygjf x; yg  D; member[first p1jp1  v; p2 = t] x]

# Vt1 = ( any; true), Vt2 = ( f x; yg; x = a), Vt3 = ( p1; p2 = t)

Table 6.4: DLT Formulae for Tracing the Origin-Pool ofVtMs (1)
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D1 ++ D2 Vt1 8i:Di

++ : : : ++ Dn Vt2 8i: [f x; ygjf x; yg  Di ; x = a]
Vt3 8i: [p1jp1  Di ; p2 = t]
Vt1 D1jv, D2jv

D1 �� D2 Vt2 D1j[f x; ygjf x; yg  v; x = a],
[f x; ygjf x; yg  D2; member vf x; yg; x = a]

Vt3 D1j[p1jp1  v; p2 = t],
[p1jp1  D2; member vp1; p2 = t]

Vt1 8i: [x i jx i  Di ; member(map(lambda x:x i ) v) x i ]
[xjx1  D1; Vt2 8i: [x i jx i  Di ; member

: : : ; xn  Dn ; C] (map(lambda x:x i ) [xjx  v; first x = a]) x i ]
(C6= �) Vt3 8i: [x i jx i  Di ;

member(map(lambda x:x i ) [p1jp1  v; p2 = t]) x i ]
Vt1 D1jv, [yjy  D2; member(map(lambda x:y) v) y]

[xjx  D1; Vt2 [xjx  D1; member D2 y; first x = a], [yjy  D2;
member D2 y] member(map(lambda x:y) [xjx  v; first x = a]) y]

Vt3 [p1jp1  D1; member D2 y; p2 = t],[yjy  D2;
member(map(lambda x:y) [p1jp1  v; p2 = t]) y]

Vt1 D1jv, D2j�
[xjx  D1; Vt2 D1j[f x; ygjf x; yg  v; x = a]; D2j�

not (member D2 y)] Vt3 D1j[p1jp1  v; p2 = t], D2j�
Vt1 D

map(lambda p0
1:p0

2) D Vt2 [p0
1jp0

1  D; (first p0
2) = a)]

Vt3 [p0
1jp0

1  D; p2 = t]
# Vt1 = ( any; true), Vt2 = ( f x; yg; x = a), Vt3 = ( p1; p2 = t)

Table 6.5: DLT Formulae for Tracing the Origin-Pool ofVtMs (2)

155



continue the DLT process, we may use virtual lineage data,D|(any,true) , for

the subsequent DLT steps. The materialised lineage data canbe extracted from

the data sources at the end of the DLT process. This can save the time and

memory overheads of the DLT process.

Thus, in practice, we use virtual lineage data even if the data source is mate-

rialised and lineage data are materialised only at the end ofthe DLT process, or,

in the case of lineage data that must be materialised in some untraceable cases

when the tracing data and data sources are all virtual (the case ofVtVs discussed

below).

6.4.3 Case VtVs

The DLT formulae for VtVs are similar to the formulae forVtMs but in this case

the source data are unavailable. Thus, we useLineageobjects to store the virtual

intermediate lineage data. However, since data sources arevirtual, we cannot

compute the virtual view by evaluating the query. Thus, if the virtual view is

used in a DLT formula, the lineage data is untraceable without computing the

virtual view. Table 6.6 gives the DLT formulae for the case ofVtVs.

For example, suppose the query isv = group D where D is a virtual data

source. If the virtual tracing tuple t is (any,true) , the virtual a�ect-pool is

Dj(any,true) . If t is ({x,y},x= a), the virtual a�ect-pool is Dj({x,y},x= a). If

t is (p1; p2=t), based on the formulae in Table 6.3, the virtual a�ect-poolin D

can be expressed asDj({x,y} ; member [first p1 jp1  v; p2=t] x). However,

we cannot computev by just evaluating the query group D de�ning v sinceD is

virtual. In this case, AutoMed's Global Query Processor canbe used to compute

v. Oncev is computed, the virtual tracing data t can also be computed and this

situation reverts to the case ofMtVs which we discussed earlier.
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v t DL AP (t) DL OP (t)
Vt1 Dj(any; true )

group D Vt2 Dj(f x; yg; x = a)
Vt3 untraceable
Vt1 Dj(any; true )

sort/distinct D Vt2 Dj(f x; yg; x = a)
Vt3 Dj(p1; p2 = t)

max/min D Vt1;2;3 Dj(any; true ) untraceable
sum D Vt1;2;3 Dj(any; true ) Dj(x; x 6= 0)

count/avg D Vt1;2;3 Dj(any; true )
Vt1 Dj(any; true ) untraceable

gc max/min D Vt2 Dj(f x; yg; x = a) untraceable
Vt3 untraceable
Vt1 Dj(any; true ) Dj(f x; yg; y 6= 0)

gc sum D Vt2 Dj(f x; yg; x = a) Dj(f x; yg; x = a; y 6= 0)
Vt3 untraceable
Vt1 Dj(any; true )

gc count/avg D Vt2 Dj(f x; yg; x = a)
Vt3 untraceable
Vt1 8i:Di j(any; true )

D1 ++ D2 ++ : : : ++ Dn Vt2 8i:Di j(f x; yg; x = a)
Vt3 8i:Di j(p1; p2 = t)

D1 �� D2 Vt1;2;3 untraceable
[xjx1  D1; : : : ; xn  Dn ; C] Vt1;2;3 untraceable

(C6= �)
[xjx  D1; member D2 y] Vt1;2;3 untraceable

[xjx  D1; not (member D2 y)] Vt1;2;3 untraceable
Vt1 Dj(any; true )

map(lambda p0
1:p0

2) D Vt2 Dj(p0
1; (first p0

2) = a)
Vt3 Dj(p0

1; p2 = t)
# Vt1 = ( any; true ), Vt2 = ( f x; yg; x = a), Vt3 = ( p1; p2 = t)

Table 6.6: DLT Formulae for VtVs
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Alternatively, the view de�nition of v could be propagated through the remain-

ing DLT steps until the end of the process. So far we have only implemented the

�rst approach and it remains to implement the second approach and to investigate

their trade-o�s.

6.5 DLT for General Transformation Pathways

Having obtained the DLT formulae for the above four cases, lineage data based

on a single transformation step is obtained by procedureDLT4AStep(td; ts) as

described in Section 6.3, and its output is the lineage oftd in ts's data sources

i:e: a list of Lineageobjects which may contain either materialised or virtual

lineage data.

In our DLT algorithms for a general transformation pathway,there are two

further procedures: tracing the lineage of a single tuple along a transformation

pathway and tracing the lineage of a set of tuples along a transformation pathway.

This is because the lineage of oneLineageobject based on a single transformation

step may be a list ofLineageobjects, if the step has multiple data sources.

6.5.1 The DLT Algorithms

Figure 6.2 presents our DLT algorithms for tracing data lineage along a gen-

eral transformation pathway: oneDLT4APath(td; [ts1; :::; tn ]) traces the lineage

of a single tracing tuple td along a transformation pathway [ts1; :::; tn ], and

listDLT4APath([td1; :::; tdm ], [ts1; :::; tsn ]) traces the lineage of a list of tracing

tuples along a transformation pathway.

oneDLT4APath�rstly �nds the transformation step, tsi , which creates the

schema construct containingtd and then callsDLT4AStepto obtain the lineage

of td based on this transformation step. DLT4AStep returns a list of Lineage
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Proc oneDLT4APath(td; [ts1; :::; tsn ])
f

lpList = �;
for i = n downto 1; do

if (td:construct= ts i :result)
Num = i ;
lpList = DLT4AStep(td; ts i );
continue; //* End the for loop

restT P = [ ts1; :::; tsNum ];
return listDLT4APath(lpList; restT P );

g

Proc listDLT4APath([td1; :::; tdm ]; [ts1; :::; tsn ])
f

lpList = �;
for i = 1 to m; do

lpList = merge(lpList; oneDLT4APath(tdi ; [ts1; :::; tsn ]));
return lpList ;

g

Figure 6.2: DLT Algorithms for a General Transformation Pathway

objects. After that, oneDLT4APathcalls the procedurelistDLT4APath to further

trace the lineage of this list ofLineageobjects along the rest of the transformation

pathway (i:e: the steps prior to tsi ). oneDLT4APathalso returns a list ofLineage

objects. listDLT4APathitself calls oneDLT4APathfor each itemtdi in the tracing

data list to �nd the entire lineage of the whole list based on the transformation

pathway.

The mergefunction in the procedurelistDLT4APath is used to avoid duplica-

tion of lineage data (as in Chapter 5, Section 4:5:2).

The algorithms in Figure 6.2 are correct in the sense that they give the same

result as the DLT algorithms given in Section 5:5:2 in Chapter 5. This is be-

cause the DLT formulae described in Section 6.4, which are used in the proce-

dure DLT4AStepcomputing lineage data based on oneadd transformation, can

be derived from the DLT formulae described in Section 5:4, while procedures
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oneDLT4APathand listDLT4APath obtain the �nal lineage data by checking all

transformation steps along a transformation pathway in reverse.

Similarly to the DLT algorithms described in Chapter 5, the exact complexity

of the overall DLT process in this chapter isO(n � m) where n is the number of

add transformations relevant to the tracing data in the transformation pathway

and m is the number of di�erent schema constructs in the computed lineage data.

6.5.2 Example

Suppose that constructhhCourseSum; Avgii is generated by the following transfor-

mation steps:

hhCourseSum; Avgii = [ {x,y,z}|{x,y,z}  gc avg

([{{k1,k2},x}|{k1,k2,k3,x}  hh Details; markii ])]

hhDetails; Markii = [ {'IS',k1,k2,x}|{k1,k2,x}  hh IStab; Markii ]

++ [{'MA',k1,k2,x}|{k1,k2,x}  hh MAtab; Markii ]

where constructshhCourseSum; Avgii , hhMAtab; Markii and hhIStab; Markii are ma-

terialised and constructhhDetails; Markii is virtual. The transformation pathway

generatinghhCourseSum; Avgii construct consists of the following sequence of view

de�nitions, where the intermediate constructsv1, : : :, v4 and hhDetails; Markii are

virtual:
v1 = [ {'IS',k1,k2,x}|{k1,k2,x}  hh IStab; Markii ]

v2 = [ {'MA',k1,k2,x}|{k1,k2,x}  hh MAtab; Markii ]

hhDetails; Markii = v1 ++ v2

v3 = map(lambda {k,k1,k2,x} :{{k,k1},x} ) hhDetails; Markii

v4 = gc avg v3

hhCourseSum; Avgii = map(lambda {{x,y},z} :{x,y,z} ) v4
Supposetd = {'MA','MAC01',81} is a tuple in construct hhCourseSum; Avgii .

Traversing the above transformation pathway in reverse, weobtain td's lineage
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data, dl, with respect to each view as follows:

td = hhCourseSum; Avgiij {'MA','MAC01',81}
MtVs=) v4|dl = v4j{{'MA','MAC01'},81}
MtVs=) v3|dl = v3j({x,y},x={'MA','MAC01'} )
VtVs=) hh Details; Markiij dl = hhDetails; Markiij

({k,k1,k2,x},{k='MA';k1='MAC01'} )
VtVs=) v2|dl = v2j({k,k1,k2,x},{k='MA';k1='MAC01'} );

v1|dl = v1j({k,k1,k2,x},{k='MA';k1='MAC01'} )
VtMs=) hh MAtab; Markiij dl = hhMAtab; Markiij

({k1,k2,x},{'MA'='MA';k1='MAC01'} )

hhIStab; Markiij dl = hhIStab; Markiij

({k1,k2,x},{'IS'='MA';k1='MAC01'} )

In conclusion, we can see that the lineage fromhhIStab; Markii is empty and

the lineage from hhMAtab; Markii is obtained by evaluating the tracing query

[{k1,k2,x}| {k1,k2,x}  hh MAtab; Markii ; 'MA'='MA' ; k1='MAC01'].

6.5.3 Performance of the DLT Algorithms

In this section, we study the performance of our DLT algorithms by compar-

ing their running times with respect to the number of relevant add steps in the

transformation pathway, and with respect to the number of schema constructs

in the computed lineage data. Experiments were set up based on an exten-

sion of the example given in Section 4:2:3, where the source schemaSScontains

several relations of the formdeptName(empid; empname; salary), and the tar-

get schemaGScontains two relationsperson(emp id; empname; salary; dept) and

deptSum(deptName,avgSalary).

In Figure 6.3, the tracing data is in the constructhhperson; salaryii of the global

schemaGS, and only one construct in the source schemaSSis computed in the

data lineage. In order to set up transformation pathways containing increasing
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numbers ofaddtransformations, we create transformation pathways transforming

SSand GSto each other repeatedly,i:e: transformation pathways are created in

the form of SS! GS1 ! SS1 ! GS2 ! : : : ! SSn ! GS, in which SSi (i = 1:::n) is

identical to SSand GSi (i = 1:::n) is identical to GS, but only the schemasSSand

GSare materialised. Figure 6.3 illustrates the running timesof our DLT process

based on these transformation pathways2.

In Figure 6.4, the transformation pathway creating the target schemaGSis

�xed (and has 16 relevant add transformations). In order to obtain di�erent

numbers of constructs in the computed lineage data, we vary the tracing data

from containing only one tracing tuple in one global schema construct into a set

of tracing tuples from multiple global schema constructs. Figure 6.4 illustrates

the running times of our DLT process in this scenario.

We can see that, as expected the running times of our DLT process increase

linearly according to the number of relevantaddtransformations and the number

2The implemented algorithm does not include the DLT check process described in Section
6.4.1. We do not expect signi�cant changes of the performance if it is extended to include the
DLT check process, since the DLT check process only examinesquery types of transformation
steps, which has a much lower consuming time than DLT processes. However, this still remains
to be veri�ed as future work.

162



of schema constructs in the computed lineage data.

6.6 Extending the DLT Algorithms

In the above algorithms, we only consider IQLc queries andaddand renametrans-

formations. In practice, queries beyond IQLc and delete, contract and extend

transformations may appear in the transformation pathwaysintegrating ware-

house data. We now consider how these transformations can also be used for

data lineage tracing.

6.6.1 Using Queries beyond IQL c

Our DLT algorithms handle IQLc queries inaddtransformations. Referring back

to the Figure 3:5 in Section 3:3 which illustrates the data transformation and

integration processes in a typical data warehouse,addtransformations for single-

source cleansing may contain built-in functions which cannot be handled by our

DLT formulae given earlier. In order to go back all the steps to the data source

schemasDSSin the staging area, the DLT process may therefore need to handle

queries beyond IQLc.

In particular, suppose the constructc is created by the following transforma-

tion step, in which f is a function de�ned by means of an arbitrary IQL query

and s1; :::; sn are the schemes appearing in the query:

addT(c; f (s1; :::; sn));

There are three cases for tracing the lineage of a tracing tuple t 2 c:

1. f is an IQLc query, in which case the DLT formulae described in this chapter

can be used to obtaint's lineage;
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2. n = 1 and f is of the formf (s1) = [ h xjx  s1; C] for someh and C, in which

case the lineage oft in s1 is given by:

[x|x  s1; C; (h x) = t]

3. For all other cases, we assume that the data lineage oft in the data source

si is all data in si , for all 1 � i � n.

6.6.2 Using delete Transformations

The query in a delete transformation speci�es how the extent of the deleted

construct can be computed from the remaining schema constructs.

deletetransformations are useful for DLT when the construct is unavailable.

In particular, if a virtual intermediate construct with vir tual data sources must be

computed during the DLT process, normally we have to use the AutoMed Global

Query Processor to derive this construct from the original data sources. However,

if the virtual intermediate construct is deleted by adeletetransformation and all

constructs appearing in thedeletetransformation are materialised, then we can

use the query in thedeletetransformation to compute the virtual construct. Since

we only need to access materialised constructs in the data warehouse, the time

of the evaluation procedure is reduced.

This feature can make a viewself-traceable. That is, for the data in an inte-

grated view, we can identify the names of the source constructs containing the

lineage data, and obtain the lineage data from the view itself, rather than access

the source constructs.

6.6.3 Using extend Transformations

An extendtransformation is applied if the extent of a new construct cannot be

precisely derived from the source schema. The transformation extendT(c; ql; qu)
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adds a new constructc to a schema, where queryql determines from the schema

what is the minimum extent of c (and may beVoid) and qu determines what is

the maximal extent of c (and may beAny) [MP03b].

If the transformation is extendT(c; Void; Any), this means that the extent ofc

is not derived from the source schema. We simply terminate the DLT process for

tracing the lineage ofc's data at that step.

If the transformation is extendT(c; ql;Any), this means the extent ofc can be

partially computed by the query ql. Using ql, we can obtain a part of the lineage

of c's data.

However, we cannot simply treat the DLT process via such anextendtrans-

formation as the same as via anadd transformation by using the DLT formulae

described in Section 6.4. Since in anaddtransformation, the whole extent of the

added construct is exactly speci�ed, while in anextendtransformation it is not.

The problem that arises is that extra lineage data may be derived because the

tracing data contains more data than the result of the query,ql, in the extend

transformation.

For example, transformationextendT(c; D1 �� D2; Any), where D1 = [1; 2; 3],

D2 = [2; 3; 4]. Although the query result is list [1], the extent ofc may be [1; 2],

in which 00200 is derived from other transformation pathways. If we directly use

the DLT algorithm described above, the obtained lineage data of 22 c are D1j[2]

and D2j[2; 3; 4]. While in fact, the data 00200has no data lineage along thisextend

transformation.

Therefore, in practice, in order to trace data lineage alongan extendtransfor-

mation with the lower-bound query, ql, the result of the query must be recom-

puted and be used to �lter the tracing data during the DLT process.

If the transformation is extendT(c; Void; qu), this means that the extent of

c must be fully computed in the result of the queryqu. Although extra data
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may appear inqu's result, it cannot appear in the extent ofc. We use the same

approach as described foradd transformations to trace lineage ofc's data based

on qu. However, we have to indicate that, extra lineage data may becreated.

Finally, if the transformation is extendT(c; ql; qu), we �rstly obtain the lineage

of c's data based on these two queries, and then return their intersection as the

�nal lineage data, which would be much more accurate but still may not be the

exact lineage data.

6.6.4 Using contract Transformations

A contract transformation removes a construct whose extent cannot be pre-

cisely computed by the remaining constructs in the schema. The transformation

contractT(c; ql; qu) removes a constructc from a schema, whereql determines

what is the minimum extent of c, and qu determines what is the maximal extent

of c. As with extend, ql may beVoid and qu may beAny.

If the transformation is contractT(c; Void; Any), we simply ignore thecontract

transformation in our DLT process.

Otherwise, we use thecontract transformation similarly to the way we use

deletetransformations described above. However, we also have to indicate that

if using ql, only partial lineage data can be obtained; if usingqu, extra lineage

data may be obtained; and if using the intersection of the results of both ql and

qu, we can also only obtain an approximate lineage data.

6.7 Implementation

This section describes a set of data warehousing packages for the AutoMed toolkit,

which implement the generalised DLT algorithm described inthis chapter. These

packages use java and the AutoMed Repository API.
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Figure 6.5: The Diagram of the Data Warehousing Toolkit

Currently, there are three packages available in the data warehousing toolkit:

dataWarehousing.dlt, dataWarehousing.utiland dataWarehousing.DWExample. All

packages have the pre�xed hierarchy \uk.ac.bbk.automed". The diagram in Fig-

ure 6.5 shows the relationships of the three packages and therest of the AutoMed

toolkit, as well as the relationships of the classes in thedataWarehousing.dltpack-

age. Solid arrowed lines indicate the classes contained in the dataWarehousing.dlt

package, and dashed arrowed lines indicate the dependence relationships between

classes or packages.dataWarehousing.DWExamplegives an example of creating the

AutoMed metadata for a data warehouse,i:e: creating the schemas of the data

warehouse and AutoMed transformation pathways expressingmappings between
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the schemas. dataWarehousing.utilincludes the utilities used in the data ware-

housing toolkit. dataWarehousing.dltcontains the classLineage, which is the data

structure storing lineage data; the classTransfStep, which is the data structure

storing transformation steps; the classDataLineageTracing, which is the imple-

mentation of the generalised DLT algorithm descried in thischapter; and the

classDemoDLT, giving an example of using the DLT package. AppendixC gives

greater details of this data warehousing toolkit.

6.8 Discussion

AutoMed schema transformation pathways can be used to express data trans-

formation and integration processes in heterogeneous datawarehousing environ-

ments. This chapter has discussed techniques for tracing data lineage along such

pathways and thus addresses the general DLT problem for heterogeneous data

warehouses.

We have developed a set of DLT formulae using virtual arguments to handle

virtual intermediate schema constructs and virtual lineage data. Based on these

formulae, our algorithms perform data lineage tracing along a general schema

transformation pathway, in which eachaddtransformation step may create either

a virtual or a materialised schema construct. In practice, we use virtual data for

expressing intermediate lineage data even it is available.This can save the time

and memory costs of the DLT processes.

One of the advantages of AutoMed is that its schema transformation pathways

can be readily evolved as the data warehouse evolves. In thissection we have

shown how to perform data lineage tracing along such evolvable pathways.

Furthermore, the Lineagedata structure described in Section 6.2 can be used

to express the data in the extent of a virtual global schema construct. This
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extends our DLT method to a virtual data integration framework, where the

integrated database is virtual.

Although this chapter has used IQLc as the query language in which transfor-

mations are speci�ed, our algorithms are not limited to one speci�c data model or

query language, and could be applied to other query languages involving common

algebraic operations on collections such as selection, projection, join, aggregation,

union and di�erence.

Finally, since our algorithms consider in turn each transformation step in a

transformation pathway in order to evaluate lineage data ina stepwise fashion,

they are useful not only in data warehousing environments, but also in any data

transformation and integration framework based on sequences of primitive schema

transformations. For example, [Zam04, ZP04] present an approach for integrating

heterogeneous XML documents using the AutoMed toolkit. A schema is auto-

matically extracted for each XML document and transformation pathways are

applied to these schemas. Reference [MP03b] also discusseshow AutoMed can

be applied in peer-to-peer data integration settings. Thus, the DLT approach

we have discussed in this chapter is readily applicable in peer-to-peer and semi-

structured data integration environments.
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Chapter 7

Using AutoMed Transformation

Pathways for Incremental View

Maintenance

Data warehouses integrate information from distributed, autonomous, and pos-

sibly heterogeneous data sources. When data sources are updated, the data

warehouse, and in particular the materialised views in the data warehouse, must

be updated also. This is the problem ofview maintenancein data warehouses.

Materialised warehouse views need to be maintained either when the data of

a data source changes, or if there is an evolution of a data source schema. Chap-

ter 4 discussed how AutoMed schema transformations can be used to express

the evolution of a data source or data warehouse schema, either within the same

data model, or a change in its data model, or both; and how the existing ware-

house metadata and data can be evolved so that the previous transformation,

integration and data materialisation e�ort can be reused.

In this chapter, we focus on refreshing materialised warehouse views when the

data of a data source changes, and we present an incremental view maintenance
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(IVM) approach based on AutoMed schema transformation pathways. Section

7.1 discusses related work on view maintenance. Section 7.2presents our IVM

formulae and algorithms over AutoMed schema transformation pathways. Sec-

tion 7.3 discusses methods for avoiding materialisations in our IVM algorithms.

Section 7.4 discusses how queries beyond IQLc and extendtransformations can

be used in our IVM process. Finally, Section 7.5 gives our concluding remarks.

7.1 Related Work

The problem of view maintenance at the data level (i:e: when the database schema

does not change) has been widely discussed in the literature. Comprehensive

surveys of this problem are given in [GM99, Don99], as well asa discussion of

applications, problems and techniques for maintaining materialised views.

The work of Blakeleyet al: in [BLT86, BCL89] presents the notion ofirrelevant

update denoting updates applied to source relations that have no e�ect on the

state of the derived relations. They discuss a mechanism of detecting irrelevant

updates. As to relevant updates,i:e: updates over source relations that may

have an e�ect on the state of the derived relations, an approach for maintaining

select-project-join (SPJ) views is presented.

Reference [QW91] presents a set of propagation rules for deriving incremental

expressions which compute the changes to SPJ views based on algebraic opera-

tions. This work also indicates that these derived incremental expressions are not

always cheaper to evaluate than recomputing the views from scratch.

Ceri and Widom's work in [CW91] presents an approach for deriving pro-

duction rules for maintaining SQL views, but does not consider duplicate data

items, aggregate functions, and di�erence operations. This algorithm determines

the key of the source relation that is updated in order to e�ciently maintain the
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views, but cannot be applied if a view does not contain the keyattributes from

the source relation.

Gupta et al:'s work [GMS93] presents a deferred view maintenance algorithm,

counting, applying to SQL views which may or may not have duplicate data items

and can be de�ned by aggregate functions, andUNIONand di�erence operators.

This algorithm works by storing the number of the derivations of each tuple in

the materialised view.

References [GL95, CGL+ 96, Qua96] present propagation formulae based on

relational algebra operations for incrementally maintaining views with duplicates

and aggregations. In particular, reference [CGL+ 96] describes propagation for-

mulae based on post-update source tables, that is source tables available in the

state where changes have already been applied.

Reference [PSCP02] discusses the problem of incrementallymaintaining views

of non-distributive aggregate functions. An aggregate function isdistributive if

the refreshed view can be computed by only using the originalview and the

changes to the source tables, such asSum and Count . In order to maintain

non-distributive aggregate function views, such asAvg , Max and Min views

after a DELETE operation, not only the changes to the source table, but also

the source table itself has to be used in the maintenance process.

The problem of view maintenance in data warehousing environments has been

discussed by Zhugeet al: in [ZGMHW95, ZGMW96, ZGMW98]. In particular,

reference [ZGMHW95] considers the IVM problem for a single-source data ware-

house and references [ZGMW96, ZGMW98] for a multi-source data warehouse.

Four consistency levels of warehouse data are considered inthese works:conver-

gence| after the last update and all activity has ceased, the view is consistent

with the source relations;weak consistency| every state of the view corresponds

to some valid state of the source relations, but possibly notin a corresponding
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order: for example, supposing that the statei and j of the view corresponds

to the state p and q of the source relations, it may be thati < j but p > q;

strong consistency| every state of the view corresponds to a valid state of the

source relations, and in a corresponding order; andcompleteness| there is a

1-1 order-preserving mapping between the sates of the view and the states of the

data sources.

The problem of IVM for multi-source data warehouses has alsobeen discussed

in other literature. For example, reference [MS01] presents change propagation

rules for IVM of multi-source views which can involve one or more base relations

belonging to one or more data sources. Reference [AASY97] presents two IVM

algorithms, namely the SWEEP and Nested SWEEP algorithms, focusing on

views de�ned by SPJ expressions. Based on the two SWEEP algorithms, reference

[DZR99] develops the MRE Wrapper for incrementally maintaining warehouse

views.

In addition, reference [QW97] presents a concurrency control algorithm, 2VNL,

for maintaining on-line data warehouses and allowing user queries and warehouse

maintenance transactions to execute concurrently withoutblocking each other.

References [GGMS97, AFP03] discuss the view maintenance problem in the con-

text of object-oriented database systems, where views can be de�ned by object

query languages such as OQL. In particular, reference [AFP03] describes an ap-

proach to immediate IVM for OQL views by storing object IDs ofsource objects.

7.2 IVM over AutoMed Schema Transformations

Our IVM algorithms use the individual steps of a transformation pathway to

compute the changes to each intermediate construct in the pathway, and �nally

173



obtain the changes to the view created by the transformationpathway in a step-

wise fashion. Since no construct in a global schema is contributed by deleteand

contracttransformations, we ignore these transformations in our IVM algorithms.

In addition, computing changes based on a transformationrenameT(O; O0) is sim-

ple | the changes to O0are the same as the changes toO. Thus, we only consider

add transformations here. In Section 7.4.2 we discuss using also extendtransfor-

mations.

We develop a set of IVM formulae for each kind of SIQL query that may

appear in anadd transformation. These IVM formulae can be applied on each

addtransformation step in order to compute the changes to the construct created

by that step. By following all the steps in the transformation pathway, we thus

compute the intermediate changes step by step, �nally ending up with the �nal

changes to the global schema data.

Referring back to Figure 3:5 in Section 3:3 which illustrates the data transfor-

mation and integration processes in a typical data warehouse, in this chapter we

assume that the data source updates input to our IVM process are with respect

to the single-cleansed schemasSSi . Thus, our IVM process can be used to main-

tain those materialised schemas which are downstream from the single-source

data cleansing, including the multi-cleansed schemas, data warehouse schemas

and data mart schemas.

7.2.1 IVM Formulae for SIQL Queries

We useMC=OC to denote a collection of data items inserted into/deleted from a

collection C1. There may be many possible expressions forMC and OC but not all

are equally desirable. For example, we could simply letOC = C and MC = MCnew ,

but this is equivalent to recomputing the view from scratch [Qua96]. In order

1For the purposes of this chapter, all collections are assumed to be bags.
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to guard against such de�nitions, we use the concept ofminimality [GL95] to

ensure that no unnecessary data are produced.

Minimality Conditions Any changes (MC=OC) to a data collection C, includ-

ing the data source and the view, must satisfy the following minimality conditions:

(i ) OC � C : We only delete tuples that are inC;

(ii ) MC \ OC = �: We do not delete a tuple and then reinsert it.

We now give the IVM formulae for each kind of SIQL query, in which v

denotes the view,Ddenotes the updated data source,Mv=Ov and MD=ODdenote

the collections inserted into/deleted fromv and D, and Dnew denotes the data

source after the update. We observe that these formulae guarantee that the above

minimality conditions are satis�ed by Mv and Ov provided they are satis�ed by

MDand OD.

IVM formulae for distinct, map, and aggregate functions

Table 7.1 illustrates the IVM formulae for these functions.We can see that the

IVM formulae for distinct/max/min/avg require access to the post-update data

source and using the view data; the formulae forcount/sumneed to use the view

data; and the formulae formapuse only the updates to the data source.

IVM formulae for grouping functions

Grouping functions, such asgroup D and gc f D, group a bag of pairsD on

their �rst component, and may apply an aggregate functionf to the second

component. In order to incrementally maintain a view de�nedby a grouping

function, we �rstly �nd the data items in Dwhich are in the same groups as the

updates,i:e: have the same �rst component as one or more of the updates. Then
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v IVM Formulae
distinct D Mv distinct [xjx  MD; not (member vx)]

Ov distinct [xjx  OD; not (member Dnew x)]
map (lambda p1.p2) D Mv map(lambda p1.p2) MD

Ov map(lambda p1.p2) OD
let r1 = max MD; r2 = max OD

max D Mv

8
<

:

maxMD; if (v < r1 );
� ; if (v � r1 )&( v 6= r2 );
max Dnew ; if (v > r1 )&( v = r2 ).

Ov

8
<

:

v; if (v < r1 );
� ; if (v � r1 )&( v 6= r2 );
v; if (v > r1 )&( v = r2 ).

let r1 = min MD; r2 = min OD

min D Mv

8
<

:

min MD; if (v > r1 );
� ; if (v � r1 )&( v 6= r2 );
min Dnew ; if (v < r1 )&( v = r2 ).

Ov

8
<

:

v; if (v > r1 );
� ; if (v � r1 )&( v 6= r2 );
v; if (v < r1 )&( v = r2 ).

count D Mv v + ( count MD) � (count OD)
Ov v

sum D Mv v + ( sum MD) � (sumOD)
Ov v

avg D Mv avg Dnew

Ov v

Table 7.1: IVM Formulae for distinct, map, and Aggregate Functions
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this smaller data collection can be used to compute the changes to the view, so

as to save time and space. Table 7.2 illustrates the IVM formulae for grouping

functions.

v IVM Formulae
group D Mv group [f x; ygjf x; yg  Dnew ;

member[pjf p; qg  (MD++ OD)] x]
Ov [f x; ygjf x; yg  v; member[pjf p; qg  (MD++ OD)] x]

gc f D Mv gc f [f x; ygjf x; yg  Dnew ;
member[pjf p; qg  (MD++ OD)] x]

Ov [f x; ygjf x; yg  v; member[pjf p; qg  (MD++ OD)] x]

Table 7.2: IVM Formulae for Grouping Functions

We can see that the IVM formulae for grouping functions require access to

the updated data source and using the view data.

IVM formulae for bag union and monus

Table 7.3 illustrates IVM formulae for bag union and monus (derived from [GL95]),

in which \ is an intersection operator with the following semantics:D1\ D2=

D1�� (D1�� D2) = D2�� (D2�� D1). The IVM formulae for bag union only

use the changes to the data sources, while the formulae for bag monus have to

use the view data and require an auxiliary viewD2�� D1. This auxiliary view

is similarly incrementally maintained by using the IVM formulae for bag monus

with D1�� D2.

IVM formulae for comprehensions

We �rst discuss IVM formulae for a comprehension [xjx1  D1; : : : ; xn  Dn; C1;

C2; :::; Ck ] without memberand not memberexpressions appearing in the �lters.

For ease of discussion, we use the join operator./ to express this com-

prehension. In particular, (D1 ./ c D2) = [ f x; ygjx  D1; y  D2; c] where
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v IVM Formulae
D1++ D2 Mv (MD1�� OD2) ++ (MD2�� OD1)

Ov (OD1�� MD2) ++ (OD2�� MD1)
D1�� D2 Mv ((MD1�� MD2) ++ (OD2�� OD1)) �� (D2�� D1)

Ov ((OD1�� OD2) ++ (MD2�� MD1)) \ v

Table 7.3: IVM Formulae for Bag Union and Monus

c = C1; :::; Ck . More generally, (D1 ./ c1 ;c2 D2 ./ c3 : : : ./ cn Dn) = [ xjx1  

D1; : : : ; xn  Dn; c1; c2; :::; cn ] in which ci is the conjunction of those predicates

from C1; :::; Ck which contain variables appearing inx i but without any variable

appearing inx j , j > i .

We �rstly give the IVM formulae of a view v = D1./ c D2. The justi�cation of

these formulae is given in AppendixB .

Mv = ( D1new ./ cMD2�� MD1./ cMD2) ++ MD1./ c D2new

Ov = ( OD1./ c D2new �� OD1./ cMD2) ++ (D1new ./ c OD2�� MD1./ c OD2)

++ OD1./ c OD2

More generally, the IVM algorithm, IVM4Comp, for incrementally maintaining

the view v = ( D1./ c1 ;c2 D2./ c3 : : : ./ cn Dn) is given in Figure 7.1. This algorithm

needs to access all the post-update data sources. It �rstly computes the changes

to the intermediate viewD1./ c1 ;c2 D2based on the updates to the data sourceD1

and D2, and then checks the rest of data sourcesD3: : : Dn in turn. If there are

updates to Di , a temporary view tempView= D1./ c1 ;c2 D2./ : : : ./ c( i � 1)
D(i � 1) is

created in order to compute the changes to the intermediate view D1./ c1 ;c2 D2./

: : : ./ ci Di . After checking all data sources of the viewv, the changes tov have

been computed.

The IVM4Compalgorithm is similar to the IVM algorithms discussed in ref-

erences [ZGMW98] and [AASY97],i:e: the Strobe and SWEEP algorithms, in

the context of maintaining a multi-source data warehouse. Both the Strobe and

the SWEEP algorithm perform an IVM process for each update toa data source
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Algorithm IVM4Comp()
Begin:

Mv = D1new ./ c1;c2MD2�� MD1./ c1;c2MD2) ++ MD1./ c1;c2 D2new

Ov = ( OD1./ c1;c2 D2new �� OD1./ c1;c2MD2) ++ OD1./ c1;c2 OD2
++ (D1new ./ c1;c2 OD2�� MD1./ c1;c2 OD2)

tempView= D1new ;
for i = 3 to n; do

if (MDi or ODi is not empty)
tempView= tempView./ c( i � 1) Dnew

(i � 1) ;
Ov = ( Ov ./ ci Dinew �� Ov ./ ciMDi) ++ Ov ./ ci ODi

++ (tempView./ ci ODi �� Mv ./ ci ODi);
Mv = ( tempView./ ciMDi �� Mv ./ ci MDi)++ Mv ./ ci Dinew ;

else
Mv = Mv ./ ci Dinew ;
Ov = Ov ./ ci Dinew ;

return Mv and Ov;
End

Figure 7.1: TheIVM4CompAlgorithm

so as to ensure the data warehouse is consistent with the updated data source.

For both algorithms, the cost of the messaging between the data warehouse and

the data sources for each update isO(n) where n is the number of data sources.

However, in practice, warehouse data are normally long-term and just refreshed

periodically. Our IVM4Compalgorithm is able to handle a batch of updates and

is speci�cally designed for a periodic view maintenance policy. The message cost

of our algorithm for a batch of updates to any of the data sources isO(n).

IVM formulae for memberand not member

For ease of discussion, we usê and Z to denote expressions withmemberand

not memberoperators, for exampleD1^ D2 denotes [xjx  D1; member D2x]

and D1Z D2 denotes [xjx  D1; not (member D2x)]. The IVM formulae for

v = [ xjx  D1;member D2 x] are given below, in which the functioncountNum a D

returns the number of occurrences of the data itema in D, i:e: countNum a D=
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count [x|x  D;x=a] , and the priorities of ^ and Z operators are higher than

++ and �� operators.

Mv = ( MD1^ D2new �� MD1^ r1 ) ++ D1new ^ r1

Ov = ( D1new ^ r2 �� MD1^ r2 ) ++ (OD1^ D2new �� OD1^ r1 ) ++ OD1^ r2

where

r1 = [ xjx  MD2; (countNumx MD2) = ( countNumx D2new )]

r2 = OD2Z D2new

The IVM formulae for v = [ xjx  D1;not (member D2 x)] are as follows:

Mv = ( MD1Z D2new�� MD1^ r2 ) ++ D1new^ r2

Ov = ( D1new^ r1 �� MD1^ r1 ) ++ (OD1Z D2new �� OD1^ r2 ) ++ OD1^ r1

where

r1 = [ xjx  MD2; (countNumx MD2) = ( countNumx D2new)]

r2 = OD2Z D2new

We can see that all post-update data sources are required in the IVM formulae.

The justi�cation of these formulae is given in AppendixB .

7.2.2 IVM over Schema Transformation Pathways

Having de�ned the IVM formulae for each kind of SIQL query, the update to a

construct created by a singleaddtransformation step is obtained by applying the

appropriate formula to that step's query. Our IVM process for a single transfor-

mation step is IVM4AStep(cd; ts) and its output is the change to the construct

created by transformation stepts based on the changes,cd, to ts's data sources.

As discussed above, the post-update data sources and the view itself are re-

quired by some IVM formulae. In a general transformation pathway, some inter-

mediate constructs may be virtual. If a required data collection is unavailable,

i:e: not materialised, theIVM4AStepprocedure cannot be applied. Thus, we have

to precheck eachaddtransformation in the pathway. If a virtual data collection is
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required by the IVM formula for a transforation step, we must�rstly materialise

this data collection and store it in the data warehouse. Thisprecheck only needs

to be performed once for each transformation pathway, unless the transformation

pathway evolves due to the evolution of a data source schema.This materialisa-

tion increases the storage overhead of the data warehouse, but does not increase

the message cost of the IVM process since these materialisedconstructs are also

maintainable by using the same IVM process along the transformation pathway.

Alternatively, we could use AutoMed's Global Query Processor (GQP) to

evaluate the extent of a virtual construct during the IVM process so as to avoid

increasing persistent storage overheads. However, since it uses post-update data

sources, the GQP can only recover a post-update view. If a view itself is used in

an IVM formula, i:e: the view beforethe update, this cannot be recovered by the

GQP.

We now give an example of prechecking a transformation pathway. The trans-

formation pathway generatinghhCourseSum; Avgii in the global schema in Section

5:5:2 can be expressed as the following sequence of view de�nitions, where the

intermediate constructsv1, : : :, v4 and hhDetails; Markii are virtual:

v1 = [ {'IS',k1,k2,x}|{k1,k2,x}  hh IStab; Markii ]

v2 = [ {'MA',k1,k2,x}|{k1,k2,x}  hh MAtab; Markii ]

hhDetails; Markii = v1 ++ v2

v3 = map(lambda {k,k1,k2,x} :{{k,k1},x} ) hhDetails; Markii

v4 = gc avg v3

hhCourseSum; Avgii = map(lambda {{x,y},z} :{x,y,z} ) v4

In order to incrementally maintain hhCourseSum; Avgii , the intermediate views

v3 and v4 must be materialised (based on the IVM formulae for groupingfunc-

tions). For example, suppose that an update to the data sources is a tuple in-

serted into hhIStab; Markii , MhhIStab; Markii = {'ISC01','ISS05',80} . Following
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the transformation pathway, we obtain the changes to the intermediate views as

follows:
Mv1 = {'IS','ISC01','ISS05',80}

MhhDetails; Markii = {'IS','ISC01','ISS05',80}

Mv3 = {{'IS','ISC01'},80}

Since the extents ofv3 and v4 are materialised, changes tov4 can be obtained

by using the IVM formulae for grouping functions, and then beused to compute

changes tohhCourseSum; Avgii by using the IVM formula for mapexpressions.

However, the post-update extent ofv3 can be recovered by AutoMed's GQP,

and using the inverse query ofmap(lambda {{x,y},z} :{x,y,z} ) v4, the pre-

update extent ofv4 can also be recovered asv4 = map(lambda {x,y,z} :{{x,y},

z} ) hhCourseSum; Avgii . Thus, in practice, no intermediate view needs to be ma-

terialised for incrementally maintaininghhCourseSum; Avgii along the pathway.

7.3 Avoiding Materialisations in IVM

The above example shows that some materialisations in the IVM process are

avoidable so reducing the storage overhead of a data warehouse. In this section,

we will investigate these avoidable materialisations moregenerally, so as to apply

them in our IVM process.

We consider �ve methods to avoid materialisations in our IVMprocess: using

AutoMed's GQP; using view de�nitions; using inverse queries; IVM formulae for

virtual schema constructs; and rede�ning view de�nitions.We now discuss these

in turn in Section 7:3:1 { 7:3:5 below.
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7.3.1 Using AutoMed's Global Query Processor

As described above, AutoMed's Global Query Processor (GQP)can be used to

evaluate the extent of a virtual construct during the IVM process so as to avoid

increasing persistent storage overheads. However, using the GQP will have higher

time overheads than other methods discussed below since theGQP uses data

source wrappers to access data sources for evaluating queries. Also it will require

more memory than the other methods to store the result of the GQP evaluation.

Furthermore, the GQP cannot be used to recover a view before the update since

it uses post-update data sources.

7.3.2 Using View De�nitions

Instead of using the GQP for recovering a virtual construct,we can use the view

de�nition to replace the construct in our IVM formulae so that the query can be

pushed to data sources to be evaluated rather than being evaluated by the GQP.

For example, the view de�nition of the virtual construct v3 in Section 7.2.2

is as follows:
v3 = map(lambda {k,k1,k2,x} :{{k,k1},x} ) hhDetails; Markii

= map(lambda {k,k1,k2,x} :{{k,k1},x} )

([{'IS',k1,k2,x}|{k1,k2,x}  hh IStab; Markii ]++

[{'MA',k1,k2,x}|{k1,k2,x}  hh MAtab; Markii ])

= ([ {{'IS',k1},x}|{k1,k2,x}  hh IStab; Markii ]++

[{{'MA',k1},x}|{k1,k2,x}  hh MAtab; Markii ])

Then the IVM formula for computing Mv4 can be transformed into:
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Mv4 = gc avg [f x; ygjf x; yg  v3new ;

member[pjf p; qg  (Mv3 ++ Ov3)] x]

= gc avg [f x; ygjf x; yg  

([{{'IS',k1},x}|{k1,k2,x}  hh IStab; Markii ]

++ [{{'MA',k1},x}|{k1,k2,x}  hh MAtab; Markii ]);

member[pjf p; qg  (Mv3 ++ Ov3)] x]

= gc avg

([{{'IS',k1},x}|{k1,k2,x}  hh IStab; Markii ;

member[pjf p; qg  (Mv3 ++ Ov3)] {'IS',k1} ]

++ [{{'MA',k1},x}|{k1,k2,x}  hh MAtab; Markii ;

member[pjf p; qg  (Mv3 ++ Ov3)] {'MA',k1} ])

Thus, the two sub queries,[{{'IS',k1},x}|{k1,k2,x}  hh IStab; Markii ; member

[pjf p; qg  (Mv3 ++ Ov3)] {'IS',k1} ] and [{{'MA',k1},x}|{k1,k2,x}  hh MAtab,

Markii ; member[pjf p; qg  (Mv3++ Ov3)] {'MA',k1} ], can be pushed into the materi-

alised data sourceshhIStab; Markii andhhMAtab; Markii respectively to be evaluated

locally.

7.3.3 Using Inverse Queries

Some virtual intermediate schema constructs can be recovered from the constructs

in the global schema using theinverse query, such as virtual constructv4 in the

example in Section 7.2.2. Suppose thatq is an IQLc query, and v = q(D). If

there is a queryq� 1 such that D = q� 1(v), we term q� 1 the inverse query ofq.

The recovered constructs are pre-update ones since the inverse queries are

based on the view constructs before the update. Thus, the approach of using

inverse queries complements the approach of using AutoMed's GQP and view

de�nitions which are based on post-update data sources.

However, not all queries have inverse queries. In SIQL, onlyv = group D
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always has an inverse query,D = map(lambda {x,xl} :[{x,y} j{y}  xl ]) v.

The query v = map (lambda p1.p2) Dalso has an inverse query if and only if all

variables appearing inp1 are contained inp2: the corresponding inverse query is

D = map (lambda p2.p1) v. Otherwise,Dcannot be recovered fromv.

7.3.4 IVM Formulae for Virtual Schema Constructs

We can develop IVM formulae for virtual schema constructs soas to avoid ma-

terialisations in our IVM process along AutoMed transformation pathways.

Considering a viewv de�ned by a SIQL queryq over data sourceS, v = q(S) ,

it is necessary that our IVM formulae can handle the following four cases:MvMs

| both the view and the source data are materialised; MvVs | the view is

materialised and the source data is virtual;VvMs | the view is virtual and the

source data is materialised; andVvVs | both the view and the source data are

virtual.

The IVM formulae for the case ofMvMs were given in Section 7.2.1, and we

now present the IVM formulae for the other three cases. Note that, we assume

that updates to data sources and the update to the view are materialised.

Case MvVs

The IVM formulae for the case ofMvMs given in Section 7.2.1 show that IVM

formulae for distinct , max, min, avg, grouping functions and comprehensions

are using the data sources. We now consider each of these kinds of SIQL queries.

The IVM formulae for the other kinds of SIQL queries do not usethe data sources

as arguments, and thus do not need to be considered.

1. v = distinct D

If Dis virtual, Ov is not obtainable if there are deletions,OD, from the data

185



source.

2. v = max/min D

If Dis virtual, v is not maintainable if there are deletions,OD, from the data

source.

3. v = avg D

If auxiliary views v_s = sum Dand v_c = count Dare available,v is main-

tained by following IVM formulae.

Mv = ( v_s + ( sum MD) � (sum OD))=(v_c + ( count MD) � (count OD))

Ov = v

4. v = group D

let r1 = group MD

r2 = group OD

Ov = [ {x,y}|{x,y}  v;

member(map(lambda {p,q}.p ) ( r1 ++ r2 )) x]

let r3 = [ {x,y �� q}|{x,y}  Ov; {p,q}  r2 ; x=p]

r4 = [ {x,y ++ q}|{x,y}  r3 ; {p,q}  r1 ; x=p]

Mv = r4 ++ [{x,y}|{x,y}  r1 ;

not (member (map(lambda {p,q}.p ) r4 ) x)]

5. v = gc max/min/avg D

v is not maintainable if D is virtual.

6. v = gc sum/count D

let r1 = gc sum/count MD

r2 = gc sum/count OD

Ov = [ {x,y}|{x,y}  v;

member(map(lambda {p,q}.p ) ( r1 ++ r2 )) x]
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let r3 = [ {x,(y - q)}|{x,y}  Ov; {p,q}  r2 ; x=p]

r4 = [ {x,(y + q)}|{x,y}  r3 ; {p,q}  r1 ; x=p]

Mv = r4 ++ [{x,y}|{x,y}  r1 ;

not (member (map(lambda {p,q}.p ) r4 ) x)]

7. v is de�ned by comprehensions, includingmemberand not memberfunc-

tions. If the data source is virtual,v is not maintainable.

Case VvMs

The IVM formulae for the case ofMvMs, show that IVM formulae for distinct ,

aggregate functions, grouping functions and bag monus are using pre-update

views. Here, we are not concerned with the situation of aggregate functions if

the views are virtual, since the view of an aggregate function is a number which

does not incur signi�cant cost overheads. If such a materialised view is required

for our IVM algorithms, we can store it in the data warehouse.

We now consider the IVM formulae for the SIQL queries listed above, except

for aggregate functions, if the view is virtual but the source data is materialised:

1. v = distinct D
Mv = distinct [x|x  MD; (countNum x Dnew ) = ( countNum x MD)]

Ov = distinct [x|x  OD; not (member Dnew x)]

2. v = group D

let r1 = [ {x,y}|{x,y}  Dnew ; member(map(lambda {p,q}.p ) (MD++ OD)) x]

Mv = group r1

Ov = group (r1 ++ OD�� MD)

3. v = gc f D
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let r1 = [ {x,y}|{x,y}  Dnew ; member(map(lambda {p,q}.p ) (MD++ OD)) x]

r2 = group r1

r3 = group (r1 ++ OD�� MD)

r4 = r2 \ r3

Mv = r2 �� r4

Ov = r3 �� r4

4. v = D1�� D2

Suppose thatv and the auxiliary view D2�� D1are all unavailable.

let r1 = MD1++ OD1++ MD2++ OD2

r2 = [ x|x  D1new ; member r1 x]

r3 = [ x|x  D2new ; member r1 x]

r4 = r2 ++ OD1�� MD1

r5 = r3 ++ OD2�� MD2

r6 = r2 �� r3

r7 = r4 �� r5

Mv = r6 �� r7

Ov = r7 �� r6

Case VvVs

In the case ofVvVs, only views de�ned by map functions or ++ expressions

are incrementally maintainable. The changes to the view areobtained from the

updates to the data sources (see Section 7.2.1).

7.3.5 Rede�ning View De�nitions

In our IVM process, materialisations may be avoided if we rede�ne the view

de�nition. For example, suppose thatv = [ x|x  (D1++ D2); member D3 x],

in which data sourcesD1, D2and D3are materialised. In order to incrementally
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maintain the view v, we decompose the view de�nition into the following SIQL

queries, by using the rules for decomposing IQLc queries given in Chapter 5:

v1 = D1++ D2

v = [ x|x  v1; member D3 x]

Then, the intermediate viewv1 must be materialised since it is a data source of

a comprehension.

However, consider the view de�nitionv' = [ x|x  D1; member D3 x] ++

[x|x  D2; member D3 x]. Obviously, viewsv and v' are equivalent. The de�ni-

tion of v0 can be expressed as follows:

v' = v1' ++ v2'

v1' = [ x|x  D1; member D3 x]

v2' = [ x|x  D2; member D3 x]

We can see that no intermediate view is required to be materialised for computing

the updates to the viewv' .

The above example illustrates that if a comprehension contains ++ expres-

sions as sub-queries, we can rede�ne the comprehension by pulling the ++ oper-

ators outside the comprehension, using the general equivalence [h|Q1; : : : ; xi  

(Di1++ Di2); : : : ; Qn] = [ h|Q1; : : : ; xi  Di1; : : : ; Qn] ++ [h|Q1; : : : ; xi  Di2; : : : ;

Qn], so as to avoid materialising the intermediate results of these++ expressions.

In practice, there two limitations of applying this kind of rede�nition. One, if

the source data of a++ expression are virtual, for exampleDi1 andDi2 are virtual,

applying the rule cannot save the storage overhead of materialisation. Since we

have to either materialise the intermediate viewDi1 ++ Di2, or materialise Di1

and Di2 individually.

Two, applying the rule will increase the number of comprehensions in a trans-

formation pathway hence decreasing the e�ciency of the IVM process. If the
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number of ++ expressions in a comprehension isn and the number of the data

sources in each++ expression isai (1 � i � n), then the number of compre-

hensions created after applying the rule isa1 � a2 � : : : � an . From the IVM

formulae for comprehensions given in Section 7.2.1, we can see that the time and

temporary storage overheads of maintaining comprehensions are normally expen-

sive, since we have to access each post-update source data and create temporary

intermediate views if the number of generators in a comprehension is greater than

2. Thus, if the number of generators in a comprehension is greater than 2, we do

not apply the rede�nition rule.

7.4 Extending the IVM Algorithms

7.4.1 Using Queries beyond IQL c

Our IVM algorithms above handle IQLc queries inaddtransformations. However,

add transformations for single-source cleansing may contain built-in functions

which cannot be handled by our IVM formulae above. In order tomaintain

materialised single-cleansed schemas, the IVM process maytherefore need to

handle queries beyond IQLc.

In particular, suppose the constructc is created by the following transforma-

tion step, in which f is a function de�ned by means of an arbitrary IQL query

and s1; :::; sn are the schemes appearing in the query:

addT(c; f (s1; :::; sn));

We consider the IVM process propagating the changes toc, Mc=Oc, according

to the data source updatesMs1=Os1; :::; Msn=Osn in the following three cases:

1. f is an IQLc query, in which case the DLT formulae described in this chapter

can be used to computeMc=Oc;
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2. n = 1 and f is of the formf (s1) = [ h xjx  s1; C] for someh and C, in which

case the changes toc are computed by the following formulae:

Mc = [ h x|x  Ms1; C]

Oc = [ h x|x  Os1; C]

More generally, if the following hold forf

f (S++ T) = op f (s) f (T)

f (S�� T) = op0 f (s) f (T)

for some pair of operatorsop and op' such that (a op b) op' b = a for

all a,b (e.g. if op = + and op' = - , or op = ++ and op' = -- ), then, we

can incrementally computec if s1 changes.

In particular, if the operator op is ++ and op' is �� , the changes toc are

given by:

Mc = f (Ms1)

Oc = f (Os1)

Otherwise, the new extent ofc, cnew, is incrementally computed by the

following formula:

cnew = op0 (op c f (Ms1)) f (Os1)

and the changes toc are given by:

Mc = cnew �� c

Oc = c �� cnew

3. For all other cases, the new extent ofc, cnew, is fully recomputed from

scratch and the changes toc are given by:

Mc = cnew �� c

Oc = c �� cnew
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7.4.2 Using extend transformations

So far, we have considered onlyaddand renametransformations. In this section,

we discuss how to utiliseextendtransformations in our IVM process.

We recall from Chapter 3 that an extend transformation is applied if the

extent of a new construct cannot be precisely derived from the source schema.

The transformation extendT(c; ql; qu) adds a new constructc to a schema, where

the query ql determines from the schema what is the minimum extent ofc (and

may beVoid) and the queryqu determines what is the maximal extent ofc (and

may beAny).

If the transformation is extendT(c; Void; Any), this means that no information

about the extent of c can be derived from the source schema. We terminate the

IVM process for computing changes to constructc at that step.

If the transformation is extendT(c; ql;Any), this means the extent ofc can

be partially recovered by the queryql. Using ql, we can compute the changes,

Mc=Oc, to construct c. Since ql is a lower bound on the extent ofc, we can

insert Mc into c safely. However, we cannot simply deleteOc from c, because

c may contain more data than the result ofql. Similarly, if the transformation

is extendT(c; Void; qu), the result of the query qu may contain more data than

construct c. Oc computed based onqu can be simply deleted fromc, but Mc

cannot be inserted intoc safely.

Finally, if the transformation is extendT(c; ql; qu), we �rstly compute the

changes toc based on these two queries, and selectMc based onql and Oc

based onqu to update c. However, we have to indicate to the data warehouse

users that such updates may not be the exact changes to the view construct c.
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7.5 Discussion

AutoMed schema transformation pathways can be used to express data trans-

formation and integration processes in heterogeneous datawarehousing environ-

ments. This chapter has discussed techniques for incremental view maintenance

along such pathways. We have developed a set of IVM formulae.Based on these

formulae, our algorithms perform an IVM process along a schema transformation

pathway. We also have discussed approaches for avoiding materialisations in our

IVM algorithms so as to save storage overheads.

One of the advantages of AutoMed is that its schema transformation pathways

can be readily evolved as the data warehouse evolves. In thischapter we have

shown how to perform IVM along such evolvable pathways.

Although this chapter has used IQLc as the query language in which transfor-

mations are speci�ed, our algorithms are not limited to one speci�c data model or

query language, and could be applied to other query languages involving common

algebraic operations on collections such as selection, projection, join, aggregation,

union and di�erence.

Finally, since our algorithms consider in turn each transformation step in a

transformation pathway in order to compute data changes in astepwise fash-

ion, they are useful not only in data warehousing environments, but also in any

data transformation and integration framework based on sequences of primitive

schema transformations, such as peer-to-peer and semi-structured data integra-

tion environments.
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Chapter 8

Conclusions and Future Work

This thesis has discussed the use of the both-as-view (BAV) data integration

approach and the AutoMed toolkit for data warehousing. There are three main

advantages in using BAV and AutoMed for data warehousing: (i ) the data source

wrappers translate each data source schema into its equivalent AutoMed repre-

sentation; any necessary inter-model translation then happens explicitly within

the AutoMed transformation pathways, under the control of the data warehouse

designer; (ii ) if the data warehouse is to be redeployed on a platform with a

di�erent data model, it is easy to reuse the previous data transformation and

implementation e�ort; ( iii ) evolutions of the data source schemas and the data

warehouse schema are readily supported. Point (i ) was discussed in Chapter 3 of

this thesis, and points (ii ) and (iii ) were discussed in Chapter 4.

In order to use AutoMed for heterogenous data warehousing, we considered

the following four research problems in this thesis: how AutoMed metadata can

be used to express the schemas of a data warehouse and processes such as data

cleansing, transformation and integration; how schema evolution can be handled;

how AutoMed metadata can be used for data lineage tracing; and how AutoMed

metadata can be used for incremental view maintenance.
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Our solutions to these problems are in the context of a heterogeneous data

warehouse environment where evolutions of the data source schemas and the data

warehouse schema may occur, including changes in the data models in which these

schemas have been represented.

In Chapter 2, we have given an overview of the major issues in data ware-

housing, which include the de�nition of a data warehouse, data warehouse archi-

tecture, data warehouse modelling, and data warehouse processes.

In Chapter 3, we have discussed how AutoMed metadata can be used in a

data warehousing environment. We have shown how AutoMed metadata can be

used to express the schemas of the data sources and of the datawarehouse, and

to represent data warehouse processes such as data cleansing, transformation,

integration, summarisation and creating data marts.

In Chapter 4, we have described how AutoMed schema transformations can be

used to express the evolution of schemas in a data warehouse.We have shown how

the existing warehouse metadata and data can be evolved so that the previous

transformation, integration and data materialisation e�ort can be reused.

In Chapters 5 and 6, we have addressed the problem of data lineage tracing

(DLT), i:e: �nding the derivation in the data sources of the tracing datain the

global database. In particular, Chapter 5 has given the de�nitions of data lineage

in the context of AutoMed, presented a method for tracing data lineage along

a materialised AutoMed transformation pathway and discussed the problem of

derivation ambiguity in data lineage tracing. Chapter 6 hasthen generalised the

DLT algorithms to handle virtual intermediate transformation steps, so that our

DLT process can be applied along a general transformation pathway. The main

contributions of our DLT approach are as follows:

Firstly, we have considered both why- and where-provenanceusing bag seman-

tics and have given the de�nition of a�ect-pool and origin-pool for data lineage
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in the context of AutoMed. In contrast, the previous work of Cui et al only

considered why-provenance.

Secondly, we have developed a set of DLT formulae using virtual arguments to

handle virtual intermediate schema constructs and virtuallineage data. Based on

these formulae, we have presented algorithms which performdata lineage tracing

along a general schema transformation pathway.

In practice, we use virtual lineage data to express the intermediate lineage

data even if it is available. This can save in time and memory usage of the DLT

process, and makes our DLT process applicable in both materialised and virtual

data integration scenarios.

Although we have used IQLc as the query language in which transformations

are speci�ed, our algorithms are not limited to one speci�c data model or query

language, and could be applied to other query languages involving common al-

gebraic operations on collections such as selection, projection, join, aggregation,

union and di�erence.

Thirdly, since our algorithms consider in turn each transformation step in a

transformation pathway in order to evaluate lineage data ina stepwise fashion,

they are useful not only in data warehousing environments, but also in any data

transformation and integration framework based on sequences of primitive schema

transformations.

In Chapter 7, we have developed a set of incremental view maintenance (IVM)

formulae. Based on these formulae, we have presented algorithms which perform

an IVM process along a schema transformation pathway. We have also discussed

approaches for avoiding materialisations in our IVM algorithms so as to reduce

storage overheads.

The major results of Chapter 3 have been published in [FP03b]and those of

Chapter 4 in [FP04]. The DLT algorithm of Chapter 5 has been published in
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[FP02, FP03a] and that of Chapter 6 in [FP05]. The major results of Chapter 7

have been published in [Fan05].

Although developed in the context of AutoMed and a data warehousing envi-

ronment, the techniques described in this thesis can be applied in any materialised

data integration environment in which the data transformation and integration

logic is expressed by sequences of schema transformations.This approach is

likely to be bene�cial in situations involving data transformation and integra-

tion across multiple data models and where both source and integrated schemas

may frequently evolve. Grid, peer-to-peer and semi-structured data integration

environments are likely to have these characteristics because they involve hetero-

geneous, distributed, autonomous data sources which are accessed and integrated

across a network. Both the metadata and the data of these datasources may au-

tonomously evolve. Also, di�erent integrated schemas willbe needed to meet the

needs of di�erent end-users and applications, and these integrated schemas may

be dynamic and evolving e.g. new schemas created for new userrequirements

and existing schemas changed for updated user requirements.

In more static and homogeneous data integration environments, traditional

approaches using one common data model with GAV or LAV views are likely to

be more appropriate because they have simpler metadata to manage | just one

common data model, and a set of view de�nitions rather than a set of schema

transformation pathways. Also, if there is not a requirement to support frequent

schema evolutions, processes such as global query evaluation, populating inte-

grated schemas and maintaining materialised views may be more e�cient using

a set of view de�nitions directly compared with using a set ofschema transfor-

mation pathways.

We are currently pursuing several directions of research building on the results

of this thesis:
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1. Implementation of data warehouse maintenance

Materialised data warehouse views need to be maintained when the data

sources change, and much previous work has addressed this problem at the

data level, as did this thesis in Chapter 7. However, as discussed in Chapter

4, materialised views may also need to be modi�ed if there is an evolution of

a data source schema. We have discussed methods for handlingsuch schema

evolutions in that chapter. We now need to develop detailed algorithms.

We will then combine our view maintenance approaches at the data level

(from Chapter 7) and at the schema level (from Chapter 4), in order to

develop a toolkit to handle the general view maintenance problem of a data

warehouse.

2. Extension of our DLT & IVM approaches

The DLT and IVM approaches described in this thesis assume IQLc as the

query language. However, our approaches can be easily modi�ed to handle

other query languages involving common algebraic operations on collec-

tions such as selection, projection, join, aggregation, union and di�erence.

Furthermore, our DLT and IVM approaches are both performed in a step-

wise fashion, and so any data transformation and integration framework

based on sequences of schema transformations can use these approaches,

e:g: [SKR01, YLT03]. In particular, we wish to extend our approaches to

handle multiple query languages and to apply to web-based data integration

environments.

3. Extension to peer-to-peer environments

So far, we have assumed a single global schema for the DLT and IVM

approaches described in this thesis. However, AutoMed can also be used
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in peer-to-peer data integration settings [MP03b]. We planto extend our

DLT and IVM algorithms to be applicable in peer-to-peer environments.

4. Application in biological data integration

It is planned to apply the results of this thesis in the ongoing projects

BioMap1 and ISPIDER2. BioMap is developing a warehouse integrating

protein family, structure, function and pathway/process data with gene ex-

pression and other experimental data, which aims to providean integrated

sequence/structure/function resource that supports analysis, mining and

visualisation of functional genomics data. ISPIDER aims toprovide an

integrated platform of proteomic data resources enabled asGrid and Web

services for the storage, dissemination and management of proteomic data,

and to produce appropriate middleware technologies for distributed query-

ing, workows and other integrated data analysis tasks across this range of

proteome databases.

Reference [MZR+ 05] gives an initial discussion of how the AutoMed toolkit

can be used for integrating heterogeneous biological data sources, both for

materialised integration as in BioMap and for virtual integration as in ISPI-

DER. Biological data sources typically have a very high degree of hetero-

geneity in terms of the type of data model used, the schema design within

a given data model, as well as incompatible formats and naming of val-

ues. Reference [MZR+ 05] identi�es that the particular strengths of using

AutoMed for biological data integration are that it supports reversible, ex-

tensible transformations from data source schemas to an integrated schema,

and enables both virtual and materialised integration.

1Seehttp://www.biochem.ucl.ac.uk/bsm/biomap/index.html
2Seehttp://www.ispider.man.ac.uk/
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It is expected that the results of this thesis, and also extensions 1-3 above,

will bene�t the above two projects by enabling incremental view mainte-

nance for the BioMap warehouse and by enabling data lineage tracing for

both BioMap and ISPIDER. Moreover, this will be in a context where evo-

lutions of the data source schemas and the integrated schemas are readily

supported, thus accommodating future changes of the BioMapand ISPI-

DER data sources and of their integrated schemas.
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Appendix A

Proof of Theorem 1

For a tracing tuple t in the view v = q(D) over a sequence of bagsD = hD1; :::; Dn i ,

the tracing queriesTQAP
D (t) and TQOP

D (t) in Theorem 1 satisfy De�nition 1 and 2

respectively. That is, letting qAP
D = hTap

1 ; :::; Tap
n i and qOP

D = hTop
1 ; :::; Top

n i denote

the results ofTQAP
D (t) and TQOP

D (t) respectively, then the following hold:

1. Tap
i � Di and Top

i � Di , for all 1 � i � n.

2. q(qAP
D ) and q(qOP

D ) evaluate to a bag, vjt, consisting of all copies oft in v1

(this corresponds to condition (a) of De�nition 1 and 2).

3. 8t � 2 Tap
i , q(Tap

1 ; :::; Tap
i jt � ; :::; Tap

n ) 6= �; and

8t � 2 Top
i , q(Top

1 ; :::; Top
i jt � ; :::; Top

n ) 6= �

(this corresponds to condition (c) of De�nition 1 and 2).

4.

8
>>>>>>>>><

>>>>>>>>>:

(a) 8hT0
1; :::; T0

n i satisfying 1-3; T0
i � Tap

i for all 1 � i � n

(corresponding to condition (b) of De�nition 1); and

(b) 8t � 2 Top
i ;

t � =2 (Di �� Top
i ) and q(Top

1 ; :::; [xjx  Top
i ; x 6= t � ]; :::; Top

n ) 6= vjt

(corresponding to conditions (b) and (d) of De�nition 2) :

1We usevjt to denote all copies oft in v.
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Proof of t1 :
If q = D1 ++ : : : ++ Dn ;

then TQAP
D (t) = TQOP

D (t) = hD1jt; : : : ; Dn jt i
SupposeT� = hT�

1; :::; T�
n i = hD1jt; : : : ; Dn jt i

1. Clearly, T�
i � Di for all 1 � i � n;

2. q(T� ) = q(T�
1; :::; T�

n ) = ( D1jt) ++ ::: ++ (Dn jt) = vjt;

3. 8t � 2 T�
i , q(T�

1; :::; T�
i jt � ; :::; T�

n ) = T�
1 ++ ::: ++ T�

i ++ ::: ++ T�
n

= ( D1jt) ++ ::: ++ (Dn jt) 6= �, since t 2 v;

4. (a) 8T� 0
i satisfying 1-3, if T� 0

i * T�
i for somei , then:

Either there exists t0 2 T� 0
i such that t0 6= t,

) t0 2 q(T�
1; :::; T� 0

i ; :::; T�
n ) ) q(T�

1; :::; T� 0
i ; :::; T�

n ) 6= vjt, violating 2;

Or (countNumt T� 0
i ) > (countNumt T�

i ) 2, and since

(countNumt T�
i ) = ( countNumt Di ),

) (countNumt T� 0
i ) > (countNumt Di ), violating 1.

Therefore T� 0
i � T�

i for all 1 � i � n.

(b)Di �� T�
i = Di �� Di jt = [ xjx  Di ; x 6= t]

Therefore, 8t � 2 T�
i , t � =2 (Di �� T�

i ).

Also, [xjx  T�
i ; x 6= t � ] = [ xjx  T�

i ; x 6= t] = �.

Supposev' = q(T�
1; :::; [xjx  T�

i ; x 6= t � ]; :::; T�
n ) = q(T�

1; :::; � ; :::; T�
n ),

then countNumt v' = ( countNumt v) � (countNumt T�
i )

) (countNumt v' ) < (countNumt v), if countNumt T�
i > 0.

Therefore, in general,q(T�
1; :::; [xjx  T�

i ; x 6= t � ]; :::; T�
n ) 6= vjt

Proof of t2 :
If q = D1 �� D2

then TQAP
D (t) = hD1jt; D2i

and TQOP
D (t) = hD1jt; D2jt i

2Function countNum a Dreturns the number of occurrences of the data itema in the bag
D, i:e: countNum a D= count [xjx  D; x = a]:
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Let qAP
D = hTap

1 ; Tap
2 i = hD1jt; D2i

and qOP
D = hTop

1 ; Top
2 i = hD1jt; D2jt i

1. Clearly, Tap
i � Di and Top

i � Di for all 1 � i � n;

2. q(qAP
D ) = D1jt �� D2 = ( D1 �� D2)jt = vjt

q(qOP
D ) = D1jt �� D2jt = ( D1 �� D2)jt = vjt;

3. 8t � 2 Tap
1 , it must be the case that t � = t,

) Tap
1 jt � = Tap

1 jt = D1jt

Therefore q(Tap
1 jt � ; Tap

2 ) = D1jt �� D2 = ( D1 �� D2)jt = vjt 6= �

Similarly, 8t0 2 Tap
2 , we haveq(Tap

1 ; Tap
2 jt0) = D1jt �� D2jt0 6= �

For qOP
D , the proof is similar.

4. (a) For any hTap0

1 ; Tap0

2 i satisfying 1-3,

becauseTap
1 = D1jt and Tap0

1 � D1,

if Tap0

1 * Tap
1 , then there exists t0 2 Tap0

1 such that t0 6= t.

Becauseq(hTap0

1 ; Tap0

2 i ) = Tap0

1 �� Tap0

2 = vjt,

therefore t0 2 Tap0

2 and q(h[t0]; Tap0

2 i ) = [ t0] �� Tap0

2 = �, violating 3.

Therefore Tap0

1 � Tap
1 .

BecauseTap
2 = D2 and Tap0

2 � D2, we haveTap0

2 � Tap
2 .

(b) 8t � 2 Top
i , we havet � = t.

BecauseTop
i = Di jt ,

Di �� Top
i = Di �� Di jt = [ xjx  Di ; x 6= t]

Therefore t � =2 (Di �� Top
i ).

Also, becauset � = t,

[xjx  Top
i ; x 6= t � ] = [ xjx  Top

i ; x 6= t] = �

Therefore q([xjx  Top
1 ; x 6= t � ]; Top

2 ) = q(� ; Top
2 ) = � 6= vjt

and q(Top
1 ; [xjx  Top

2 ; x 6= t � ]) = q(Top
1 ; �) = Top

1 = D1jt 6= vjt in general.
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Proof of t3 :
If q = group D

then TQAP
D (t) = TQOP

D (t) = [ xjx  D; first x = first t]

Let T� = qAP
D = qOP

D = [ xjx  D; first x = first t]

1. Clearly T� � D.

2. q(T� ) = group [xjx  D; first x = first t]

= [ xjx  group D; x = t] = vjt

3. 8t � 2 T� ; q(T� jt � ) = group (T� jt � ) 6= �

4. (a) SupposeT� 0 satis�es 1-3.

If T� 0 * T� , then there exists t � 0 2 T� 0 such that (first t � 0) 6= ( first t)

) there exists t0 2 q(T� 0) = group T� 0 such that (first t0) 6= ( first t)

) q(T� 0) 6= vjt; violating 2

Therefore T� 0 � T�

(b) BecauseD�� T� = [ xjx  D; first x 6= first t], then

8t � 2 T� ; t � 2 [xjx  D; first x = first t] and t � =2 (D�� T� )

Again, becauseq([xjx  T� ; x 6= t � ]) = group (T� �� T� jt � ) 6= group T�

then q([xjx  T� ; x 6= t � ]) 6= vjt

Proof of t4 :
If: q = sort D = distinct D

then TQAP
D (t) = TQOP

D (t) = Djt
For q = sort D :

1. T� = qAP
D = qOP

D = Djt � D;

2. q(T� ) = sort D jt = vjt;

3. 8t � 2 T� ; t � = t, and therefore

q(T� jt � ) = sort T � jt 6= �;

222



4. (a) SupposeT� 0 satis�es 1-3.

If T� 0 * T� , then there exists t0 2 T� 0 such that t0 6= t

) t0 2 q(T� 0) = sort T � 0

) q(T� 0) 6= vjt; violating 2

Therefore T� 0 � T�

(b) BecauseD�� T� = [ xjx  D; x 6= t] and 8t � 2 T� ; t � = t,

therefore t � =2 (D�� T� ).

Also, because

q([xjx  T� ; x 6= t � ]) = q(T� �� T� jt � ) = sort (T� �� T� jt � ) 6= sort T �

Therefore q([xjx  T� ; x 6= t � ]) 6= vjt

The proof of q = distinct D is similar.

Proof of t5 :
If: q = max D= min D

then TQAP
D (t) = D

and TQOP
D (t) = Djt

For q = max D:

1. qAP
D = D� Dand qOP

D = Djt � D .

2. q(qAP
D ) = q(D) = t

q(qOP
D ) = q(Djt) = maxt = t

3. 8t � 2 qAP
D ; q(qAP

D jt � ) = max Djt � 6= �

8t � 2 qOP
D ; q(qOP

D jt � ) = max Djt � 6= �

4. (a) Clearly, qAP
D = D is the maximal subset ofD.

(b) BecauseD�� qOP
D = [ xjx  D; x 6= t] and 8t � 2 qOP

D ; t � = t

then t � =2 (D�� qOP
D ) and q([xjx  qOP

D ; x 6= t]) = q(�) 6= t

The proof of q = min Dis similar.
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Proof of t6 :
If: q = sum D

then TQAP
D (t) = D

and TQOP
D (t) = [ xjx  D; x 6= 0]

1. qAP
D = D� Dand qOP

D = [ xjx  D; x 6= 0] � D .

2. q(qAP
D ) = q(D) = t

q(qOP
D ) = sum[xjx  D; x 6= 0] = sum D= t

3. 8t � 2 qAP
D ; q(qAP

D jt � ) = sum Djt � 6= �

8t � 2 qOP
D ; q(qOP

D jt � ) = sum[xjx  [xjx  D; x 6= 0]; x = t � ] 6= �

4. (a) Clearly, qAP
D = D is the maximal subset ofD.

(b) BecauseD�� qOP
D = [ xjx  D; x = 0] = Dj0 and 8t � 2 qOP

D ; t � 6= 0

then t � =2 (D�� qOP
D )

Also, because

q([xjx  qOP
D ; x 6= t � ]) = sum [xjx  qOP

D ; x 6= t � ] 6= sum qOP
D (t � 6= 0)

then q([xjx  qOP
D ; x 6= t � ]) 6= vjt

Proof of t7 :
If: q = count D = avg D

then TQAP
D (t) = TQOP

D (t) = D

Clearly, T� = qAP
D = qOP

D = Dsatis�es 1,2,3.

4. (a) T� = D is the maximal subset ofD

(b) BecauseD�� T� = D�� D= �

then 8t � 2 T� ; t � =2 (D�� T� ).

Also,

count [xjx  T� ; x 6= t � ] = count [xjx  D; x 6= t � ] 6= count D, and

avg [xjx  T� ; x 6= t � ] = avg [xjx  D; x 6= t � ] 6= avg D

Therefore q([xjx  qOP
D ; x 6= t � ] 6= v
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Proof of t8 :
If: q = gc max D= gc min D

then TQAP
D (t) = [ xjx  D; first x = first t]

and TQOP
D (t) = Djt

For q = gc max D:

1. qAP
D = [ xjx  D; first x = first t] � Dand qOP

D = Djt � D

2. q(qAP
D ) = gc max[xjx  D; first x = first t] = [ t]

q(qOP
D ) = gc max Djt = [ t]

3. 8t � 2 qAP
D ; q(qAP

D jt � ) = gc max Djt � 6= �

8t � 2 qOP
D ; t � = t ) q(qOP

D jt � ) = gc max qOP
D jt = [ t] 6= �

4. (a) SupposeT� 0 satis�es 1-3.

If T� 0 * qAP
D , then there exists t � 0 2 T� 0 such that (first t � 0) 6= ( first t)

) there exists t0 2 q(T� 0) = gc max T� 0 such that (first t0) = ( first t � 0)

) (first t0) 6= ( first t) ) q(T� 0) 6= vjt; violating 2

Therefore T� 0 � qAP
D

(b) BecauseD�� qOP
D = [ xjx  D; x 6= t] and 8t � 2 qOP

D ; t � = t

then t � =2 (D�� qOP
D )

Also, q([xjx  qOP
D ; x 6= t]) = q(�) 6= vjt

The proof of q = gc min Dis similar.
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Proof of t9 :
If: q = gc sum D

then TQAP
D (t) = [ xjx  D; first x = first t]

and TQOP
D (t) = [ xjx  D; first x = first t; second x 6= 0]

1. qAP
D = [ xjx  D; first x = first t] � D;

qOP
D = [ xjx  D; first x = first t; second x 6= 0] � D.

2. q(qAP
D ) = gc sum[xjx  D; first x = first t] = t

q(qOP
D ) = gc sum[xjx  D; first x = first t; second x 6= 0] = t

3. 8t � 2 qAP
D ; q(qAP

D jt � ) = gc sum qAP
D jt � 6= �

8t � 2 qOP
D ; q(qOP

D jt � ) = gc sum qOP
D jt � 6= �

4. (a) SupposeT� 0 satis�es 1-3.

If T� 0 * qAP
D , then there exists t � 0 2 T� 0 such that (first t � 0) 6= ( first t)

) there exists t0 2 q(T� 0) = gc sum T� 0 such that (first t0) = ( first t � 0)

) (first t0) 6= ( first t) ) q(T� 0) 6= vjt; violating 2

Therefore T� 0 � qAP
D

(b) BecauseD�� qOP
D = [ xjx  D; (first x 6= first t) or (second x = 0)]

then qOP
D * (D�� qOP

D ) ) 8 t � 2 qOP
D ; t � =2 (D�� qOP

D )

Also, because (second t � ) 6= 0

then q([xjx  qOP
D ; x 6= t � ]) = gc sum([xjx  qOP

D ; x 6= t � ]) 6= gc sum qOP
D

Therefore q([xjx  qOP
D ; x 6= t � ] 6= vjt

Proof of t10 :
If: q = gc count D = gc avg D

then TQAP
D (t) = TQOP

D (t) = [ xjx  D; first x = first t]

The proof of T� = [ xjx  D; first x = first t] satisfying 1; 2; 3 and 4 is similar

to abovegc f functions.
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Proof of t11 :
If: q(D) = [ xjx1  D1; : : : ; xn  Dn ; C1; :::; Ck ]

then TQAP
D (t) = TQOP

D (t) = h[x1jx1  D1; x1 = ( lambda x:x1) t]; : : : ;

[xn jxn  Dn ; xn = ( lambda x:xn ) t]i
SupposeT� = hT�

1; :::; T�
n i = h[x1jx1  D1; x1 = ( lambda x:x1) t]; : : : ; [xn jxn  

Dn ; xn = ( lambda x:xn ) t]i

1. Clearly, T�
i � Di , for all 1 � i � n;

2. Supposex = f x1; :::; xn g (without loss of generality), and

t = f t1; :::; tn g where t i = ( lambda x:x i t).

q(T� ) = q(T�
1; :::; T�

n ) = [ xjx1  T�
1; : : : ; xn  T�

n ; C1; :::; Ck ]

= [ f x1; : : : ; xngjx1  [xjx  D1; x = t1]; : : : ;

xn  [xjx  Dn ; x = tn ]; C1; :::; Ck ]

Becauset = f t1; :::; tn g satis�es predicatesC1; :::; Ck , then

q(T� ) = [ f x1; : : : ; xngjx1  D1; : : : ; xn  Dn ; f x1; :::; xn g = f t1; :::; tn g] = vjt

3. Because8t � 2 T�
i , t � = t i

q(T�
1; :::; T�

i jt � ; :::; T�
n ) = [ xjx1  T�

1; : : : ; x i  T�
i jt � ; : : : ; xn  T�

n ; C1; :::; Ck ]

Therefore q(T�
1; :::; T�

i jt � ; :::; T�
n ) 6= �;

4. (a) SupposeT� 0 = hT0
1; :::; T0

n i satis�es 1-3.

If T� 0
i * T�

i for somei , then there exists t � 0
i 2 T� 0

i such that t � 0
i 6= t i

) q(T�
1; :::; [t � 0

i ]; :::; T�
n ) 6= vjt

Also, becauseq(T�
1; :::; [t � 0

i ]; :::; T�
n ) � q(T� ), and q(T� ) = vjt

) q(T�
1; :::; [t � 0

i ]; :::; T�
n ) = �, violating 3

Therefore T� 0 � T�

(b) BecauseT�
i = Di jt i , then 8t � 2 T�

i , t � = t i and

Di �� T�
i = Di �� Di jt i = [ xjx  Di ; x 6= t i ]

Therefore t � =2 (Di �� T�
i )

Also, [xjx  T�
i ; x 6= t � ] = [ xjx  T�

i ; x 6= t i ] = �, therefore

227



q(T�
1; :::; [xjx  T�

i ; x 6= t � ]; :::; T�
n ) = q(T�

1; :::; � ; :::; T�
n )

= [ xjx1  T�
1; :::; x i  �; :::; xn  T�

n ; C1; :::; Ck ]

= � 6= vjt

Proof of t12 :
If: q = [ xjx  D1; member D2 y]

then TQAP
D (t) = TQOP

D (t) = hD1jt; [yjy  D2; y = ( lambda x:y) t]i
Supposex = y (without loss of generality), and lethT�

1; T�
2i = hD1jt; D2jt i

1. Clearly, T�
1 � D1 and T�

2 � D2.

2. q(hT�
1; T�

2i ) = [ xjx  D1jt ; member D2jt x ] = vjt

3. 8t � 2 T�
i ; t � = t ) T�

i jt � = T�
i jt = T�

i

Therefore q(hT�
1jt � ; T�

2jt � i ) 6= �

4. (a) SupposehT0
1; T0

2i satis�es 1-3.

If T0
i * T�

i , then there exists t0 2 T0
i such that t0 6= t.

If t0 2 T0
1 and t0 2 T0

2, then t0 2 q(hT0
1; T0

2i ) ) q(hT0
1; T0

2i ) 6= vjt, violating 2;

else if t0 2 T0
1 and t0 =2 T0

2, then q([t0]; T0
2) = �, violating 3;

else if t0 =2 T0
1 and t0 2 T0

2, then q(T0
1; [t0]) = �, violating 3.

Therefore T0
i � T�

i

(b)Because8t � 2 T�
i ; t � = t, then

Di �� T�
i = [ xjx  Di ; x 6= t] and

t � =2 (Di �� T�
i )

Also, because [xjx  T�
i ; x 6= t � ] = �

then q(T�
1; [xjx  T�

2; x 6= t � ]) = q([xjx  T�
1; x 6= t � ]; T�

2) = � 6= vjt
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Proof of t13 :
If: q = [ xjx  D1; not (member D2 y)]

then TQAP
D (t) = hD1jt; D2i

and TQOP
D (t) = hD1jt; � i

Let qAP
D = hTap

1 ; Tap
2 i = hD1jt; D2i

and qOP
D = hTop

1 ; Top
2 i = hD1jt; � i

1. Clearly, Tap
i � Di and Top

i � Di , for i = 1,2;

2. q(qAP
D ) = [ xjx  D1jt ; not (member D2 x)] = vjt

q(qOP
D ) = [ xjx  D1jt ; not (member� x)] = vjt

3. 8t �
1 2 Tap

1 ; t �
1 = t and Tap

1 jt �
1 = Tap

1 jt = Tap
1

Therefore q(Tap
1 jt �

1; Tap
2 ) = q(Tap

1 ; Tap
2 ) = q(qap

D ) = vjt 6= �

Becauset =2 D2 ) 8 t �
2 2 Tap

2 ; t �
2 6= t

then q(Tap
1 ; Tap

2 jt �
2) = [ xjx  D1jt ; not (member D2jt �

2 x)] = D1jt 6= �

For qOP
D , the proof is similar.

4. (a) SupposehT0
1; T0

2i satis�es 1-3.

If T0
1 * TAP

1 , then there exists t0
1 2 T0

1 such that t0
1 6= t.

If t0
1 =2 T0

2 then t0
1 2 q(hT0

1; T0
2i ) ) q(hT0

1; T0
2i ) 6= vjt, violating 2;

else if t0
1 2 T0

2, then q([t0
1]; T0

2) = �, violating 3

Therefore T0
1 � Tap

1

BecauseTap
2 = D2 then T0

2 � Tap
2 .

(b)8t �
1 2 Top

1 ; t �
1 = t and (D1 �� Top

1 ) = [ xjx  D1; x 6= t]

Therefore t �
1 =2 (D1 �� Top

1 )

Also, because [xjx  Top
1 ; x 6= t �

1] = [ xjx  Top
1 ; x 6= t] = �

Therefore q([xjx  Top
1 ; x 6= t � ]; Top

2 ) = � 6= vjt

There is no need to considerTOP
2 since it is � by de�nition.
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Proof of t14 :
If: q = map(lambda p1.p2) D

then TQAP
D (t) = TQOP

D (t) = [ p1jp1  D; p2 = t]

Let T� = qAP
D = qOP

D = [ p1jp1  D; p2 = t]

1. Clearly, T� � D.

2. q(T� ) = map(lambda p1:p2) [p1jp1  D; p2 = t] = vjt

3. 8t � 2 T� ; (( lambda p1:p2) t � ) = t

Therefore q(T� jt � ) = map(lambda p1:p2) [p1jp1  T� jt � ; p2 = t] = t � 6= �

4. (a) SupposeT0 satis�es 1-3.

If T0 * T� , then there exists t0 2 T0 such that (( lambda p1:p2) t0) 6= t

) q(T0jt0) = map(lambda p1:p2) [p1jp1  T0jt0; p2 = t] = �, violating 3

Therefore T0 � T�

(b) For any t � 2 T� ,

because (D�� T� ) = [ p1jp1  D; p1 6= t � ] = [ p1jp1  D; p2 6= t]

then t � =2 (D�� T� )

Also,

because [p1jp1  T� ; p1 6= t � ] = [ p1jp1  T� ; (( lambda p1:p2) t � ) 6= t] = �

Therefore q([xjx  T� ; x 6= t � ]) = � 6= vjt
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Appendix B

Justi�cations of IVM Formulae

B.1 Justi�cation of IVM Formulae for D1./ c D2

Suppose thatv = D1./ c D2. Then

vnew = D1new ./ c D2new

= ( D1++ MD1�� OD1) ./ c D2new

= D1./ c D2new++ MD1./ c D2new �� OD1./ c D2new

= D1./ c (D2++ MD2�� OD2) ++ MD1./ c D2new �� OD1./ c D2new

= ( D1./ c D2++ D1./ cMD2�� D1./ c OD2) ++ MD1./ c D2new�� OD1./ c D2new

= ( v ++ D1./ cMD2�� D1./ c OD2) ++ MD1./ c D2new �� OD1./ c D2new

Because (D1./ c OD2) � v,

vnew = ( v ++ D1./ cMD2++ MD1./ c D2new) �� OD1./ c D2new �� D1./ c OD2

= ( v ++ (D1new++ OD1�� MD1) ./ cMD2++ MD1./ c D2new)

�� OD1./ c D2new �� (D1new++ OD1�� MD1) ./ c OD2)

= ( v ++ (D1new ./ cMD2�� MD1./ cMD2) ++ OD1./ cMD2++ MD1./ c D2new)

�� (OD1./ c D2new++ (D1new ./ c OD2�� MD1./ c OD2) ++ OD1./ c OD2)

Because (OD1./ cMD2) � (OD1./ c D2new),
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vnew = ( v ++ (D1new ./ cMD2�� MD1./ cMD2) ++ MD1./ c D2new)��

((OD1./ c D2new �� OD1./ cMD2) ++ (D1new ./ c OD2�� MD1./ c OD2)

++ OD1./ c OD2)

Therefore,

Mv = ( D1new ./ cMD2�� MD1./ cMD2) ++ MD1./ c D2new

Ov = ( OD1./ c D2new �� OD1./ cMD2) ++ (D1new ./ c OD2�� MD1./ c OD2)

++ OD1./ c OD2

B.2 Justi�cation of IVM Formulae for D1^ D2

Suppose thatv, r1 and r2 are de�ned as follows:

v = D1^ D2

r1 = [ xjx  MD2; (countNumx MD2) = ( countNumx D2new )]

r2 = OD2Z D2new

The following equivalences hold for thê operator since the data items ofr1 are

from MD2and do not appear inD2, and the data items ofr2 are from OD2and

do not appear inD2after the deletion:

D1 ^ (D2 ++ r 1 �� r 2) = D1 ^ D2 ++ D1 ^ r 1 �� D1 ^ r 2

(D1++ MD1�� OD1) ^ D2 = D1 ^ D2++ MD1^ D2 �� OD1^ D2

Then,

vnew = D1new^ D2new

= D1new^ (D2++ r 1 �� r 2)

= D1new^ D2++ D1new^ r 1 �� D1new^ r 2

= ( D1^ D2++ MD1^ D2�� OD1^ D2) ++ D1new^ r 1 �� D1new^ r 2

= ( v++ MD1^ D2�� OD1^ D2) ++ D1new^ r 1 �� D1new^ r 2

Because (OD1^ D2) � v,
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vnew = ( v++ MD1^ D2++ D1new^ r 1) �� D1new^ r 2 �� OD1^ D2

= ( v++ MD1^ D2++ D1new^ r 1) �� (D1new^ r 2 ++ OD1^ D2)

= ( v++ MD1^ (D2new �� r 1 ++ r 2) ++ D1new^ r 1)

�� (D1new^ r 2 ++ OD1^ (D2new �� r 1 ++ r 2))

= ( v ++ (MD1^ D2new�� MD1^ r 1++ MD1^ r 2) ++ D1new^ r 1)

�� (D1new^ r 2 ++ (OD1^ D2new �� OD1^ r 1 ++ OD1^ r 2))

Because (MD1^ r 2) � (D1new^ r 2),

vnew = v ++ ((MD1^ D2new�� MD1^ r 1) ++ D1new^ r 1)��

((D1new^ r 2�� MD1^ r 2) ++ (OD1^ D2new �� OD1^ r 1) ++ OD1^ r 2)

Therefore,

Mv = ( MD1^ D2new �� MD1^ r1 ) ++ D1new ^ r1

Ov = ( D1new ^ r2 �� MD1^ r2 ) ++ (OD1^ D2new �� OD1^ r1 ) ++ OD1^ r2

B.3 Justi�cation of IVM Formulae for D1Z D2

Suppose thatv, r1 and r2 are de�ned as follows:

v = D1Z D2

r1 = [ xjx  MD2; (countNumx MD2) = ( countNumx D2new)]

r2 = OD2Z D2new

The following equivalences hold for theZ operator since the data items ofr1 are

from MD2and do not appear inD2, and the data items ofr2 are from OD2and

do not appear inD2after the deletion:

D1 Z (D2 ++ r 1 �� r 2) = D1 Z D2 ++ D1 ^ r 2 �� D1 ^ r 1

(D1++ MD1�� OD1) Z D2 = D1 Z D2++ MD1Z D2 �� OD1Z D2

Then,
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vnew = D1newZ D2new

= D1newZ (D2++ r 1 �� r 2)

= D1newZ D2 ++ D1new^ r 2 �� D1new^ r 1

= ( D1 Z D2++ MD1Z D2 �� OD1Z D2) ++ D1new^ r 2 �� D1new^ r 1

= ( v++ MD1Z D2 �� OD1Z D2) ++ D1new^ r 2 �� D1new^ r 1

Because (OD1Z D2) � v,

vnew = ( v++ MD1Z D2++ D1new^ r 2) �� D1new^ r 1 �� OD1Z D2

= ( v++ MD1Z D2++ D1new^ r 2) �� (D1new^ r 1 ++ OD1Z D2)

= ( v++ MD1Z (D2new �� r 1 ++ r 2) ++ D1new^ r 2)

�� (D1new^ r 1 ++ OD1^ (D2new �� r 1 ++ r 2))

= ( v ++ (MD1Z D2new�� MD1^ r2 ++ MD1^ r1 ) ++ D1new^ r2 )

�� (D1new^ r1 ++ (OD1Z D2new �� OD1^ r2 ++ OD1^ r1 ))

Because (MD1^ r1 ) � (D1new^ r1 ),

vnew = v ++ ((MD1Z D2new�� MD1^ r2 ) ++ D1new^ r2 )��

((D1new^ r1 �� MD1^ r1 ) ++ (OD1Z D2new �� OD1^ r2 ) ++ OD1^ r1 )

Therefore,

Mv = ( MD1Z D2new�� MD1^ r2 ) ++ D1new^ r2

Ov = ( D1new^ r1 �� MD1^ r1 ) ++ (OD1Z D2new �� OD1^ r2 ) ++ OD1^ r1
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Appendix C

Implementation of Data

Warehousing Packages and API

for the AutoMed Toolkit

This appendix describes the data warehousing packages and API for the AutoMed

toolkit. In particular, it is the implementation of the generalised DLT algorithm

described in Chapter 6. The packages and API use java and the AutoMed Repos-

itory API as the basic programming toolkits. Section C.1 discusses the structure

of the data warehousing packages, Section C.2 gives a GUI supporting our DLT

process, and Section C.3 gives a summary of this appendix.

C.1 Package Structure

Currently, there are three packages available in the data warehousing toolkit:

dataWarehousing.dlt, dataWarehousing.utiland dataWarehousing.DWExample. All

packages have the pre�xed hierarchy \uk.ac.bbk.automed".
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C.1.1 Package uk.ac.bbk.automed.dataWarehousing.DWExample

This package gives an example of creating the AutoMed metadata for a data

warehouse,i:e: creating the schemas of the data warehouse and AutoMed trans-

formation pathways expressing mappings between the schemas. As described

in Section 3:3, there are four steps to create the AutoMed metadata: creating

AutoMed repositories, specifying data models, extractingdata source schemas,

and de�ning transformation pathways. The following three classes are used to

perform these steps.

Class De�neRepository

This class is provided by the AutoMed API, which uses JDBC to access an

underlying relational database and de�nes schemas of the repositories storing

AutoMed metadata. We recall from Chapter 2 that the AutoMed repositories

can be implemented using any DBMS supporting JDBC. If the DBMS of the

data warehouse supports JDBC, then the AutoMed repositories can be part of

the data warehouse itself.

In order to specify the URL of the DBMS and de�ne the schema of the reposi-

tories, there are two associated con�g �les, \data_source_repository.cfg " and

\ reps_schema.cfg", located in an assigned folder.

Class De�neSchemas

The classDe�neSchemashas two functionalities, specifying the data models used

for expressing the schemas of the data warehouse, and extracting schemas from

the data sources.

Di�erent wrapper objects are created for di�erent kinds of data sources, for ex-

ample anOracleWrapper is created for Oracle databases and aPostgresWrapper
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for PostgreSQL databases. The following code shows how aPostgresWrapper

object is created:

PostgresWrapperFactory pwf = new PostgresWrapperFactory ();

PostgresWrapper pw = (PostgresWrapper)PostgresWrapper. newAutoMedWrapper

(username,password,"org.postgresql.Driver",

"jdbc:postgresql://dbURL:5432/dbName",

source_schema_name,pwf);

Here,usernameand password give the username and password for accessing the

PostgreSQL database;"jdbc:postgresql://dbURL:5432/dbName" speci�es the

database URL and name, andsource_schema_nameis the name of the AutoMed

schema extracted from the database, which is nominated by the programmer.

Note that, source_schema_namegiven above is the name of thesource-level

schemaof the database. The AutoMed toolkit de�nes two levels of schemas for

relational databases:source-level schemasand AutoMed-level schemas. Source-

level schemas are derived directly from relational databases and are used by the

DBMS wrappers to query the data source data. AutoMed-level schemas are the

relational schemas as described in Chapter 3. They are automatically derived

from the source-level schemas by the AutoMed wrappers, and can be used by

data warehouse builders as the staring point for transformation pathways. All

algorithms described in this thesis are based on AutoMed-level schemas.

For example, suppose a relational database contains a tablecsmarks(sid ,

sname,mark). The source-level schema of the database contains a construct

hhcsmarks; 3; sid; sname; markii , while the AutoMed-level schema includes the con-

structs hhcsmarksii , hhcsmarks; sidii , hhcsmarks; snameii and hhcsmarks; markii .

The createdPostgreSQLWrapperobject pwcan then be used to extract the

schemas of the PostgreSQL database. In particular, the code

pw.getSchema();
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is used to obtain the source-level schema, named bysource_schema_name, and

the code

pw.newAutoMedSchema(automed_schema_name);

is used to create the AutoMed-level schema, named byautomed_schema_name.

Class De�neTransformations

AutoMed transformation pathways are created over the AutoMed-level schemas

of the data sources. The classDe�neTransformationsis used to de�ne the trans-

formation pathway from the AutoMed-level schemas of the data sources to the

AutoMed-level schema of the global database.

Suppose thatSchemaobject s is the source schema. The code given below is

used to implement the following transformations ons:

addRel (<<dept>>, ['comp','math']);

addAtt (<<dept,d_name>>, [{x,x} | x <- <<dept>>]);

addAtt (<<dept,avgSalary>>,[{'comp',avg[s|{n,s}<-<<c omp,salary>>]},

{'math',avg[s|{n,s}<-<<math,salary>>]}]);

We �rstly create a Model object sql_2 specifying the relational data model sup-

porting the SQL-2 query language, and twoConstruct objectstable and column

specifying the table and column constructs of this data model. Then, the method

applyAddTransformation is used to add instances oftable and column to the

schemas:

Model sql_2 = Model.getModel("sql_2");

Construct table = sql_2.getConstruct("table");

Construct column = sql_2.getConstruct("column");

Schema cs = s.applyAddTransformation(table, new Object[] {"dept"},
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"['comp','math']");

SchemaObject dept= cs.getSchemaObject("<<dept>>");

Schema ts = cs.applyAddTransformation(column,

new Object[] {dept,"d_name"},

"[{x,x} | x <- <<dept>>]");

cs=ts;

SchemaObject d_name= cs.getSchemaObject("<<dept,d_name>>");

ts = cs.applyAddTransformation(column,

new Object[] {dept,"avgSalary"},

"[{'comp',avg[s|{n,s}<-<<comp,salary>>]}," +

"{'math',avg[s|{n,s}<-<<math,salary>>]}]");

C.1.2 Package uk.ac.bbk.automed.dataWarehousing.util

This package includes the utilities used in the data warehousing toolkit. It has

three main classes:QueryDecomposer, IQLEvaluator4DWand Tools4DW.

Class QueryDecomposer

QueryDecomposerclass is the implementation of the rules used to decompose a

general IQLc query into a sequence of SIQL queries, as described in Section 5:2.

The public static methodqueryDecomposer(StringIQLquery, int queryNumber)

is used to decompose the string argumentIQLquery (an IQLc query represented

as a string) and returns anArrayListobject containing the sequence of resulting

SIQL queries which are also string objects. The argumentqueryNumber(an in-

teger) is used to generate unique query identi�ers when we use this method to

decompose successive IQLc queries. This method creates variables of the form

$Query_queryNumber_ito express the sub-queries of an IQLc query.

For example, the list of IQLc queries:
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v1 = distinct (D3 �� D4)

v2 = (D1 �� D2) ++ v1

is decomposed into following SIQL queries:

$Query_1_1 = D3�� D4

v1 = distinct $Query_1_1

$Query_2_1 = D1�� D2

v2 = $Query_2_1++ v1

Class IQLEvaluator4DW

As described in Section 2:2:3, AutoMed's Global Query Processor (GQP) can

be used to evaluate an IQLc query over a global schema in the case of a virtual

data integration scenario. The process of evaluating a query over a virtual global

schema includes: Query Reformulation, Query Optimisation, Query Annotation

and Query Evaluation. There are two limitations of using theAutoMed GQP in

our data lineage tracing algorithms:

Firstly, in a data warehouse environment, the global schemawill be materi-

alised. The AutoMed GQP is designed for virtual data integration scenarios and

does not consider materialised data. Whether the global schema is materialised

or not, the AutoMed GQP recomputes the extent of the global schema constructs

from the data sources. Using the Query Evaluator directly onmaterialised data

is achieved by theIQLEvaluator4DWclass.

The second limitation of the AutoMed GQP is that it can evaluate queries over

the constructs of just one schema. For example, the GQP cannot evaluate an IQLc

queryhhmath; nameii ++ hhcomp; nameii if the construct hhmath; nameii appears in a

source schema and the constructhhcomp; nameii in the global schema. However, in

our DLT algorithms, constructs of the source and intermediate schemas frequently

appear in the same tracing query. Evaluating IQLc queries involving constructs
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from multiple schemas is also achieved byIQLEvaluator4DWclass.

The approaches to achieve above two functionalities are as follows:

Firstly, a new Query Reformulation classQueryReformulator4DWinheriting

the QueryReformulatorclass in the AutoMed API has been created. InQueryRe-

formulator4DW, we gather all materialised schema constructs (in the data sources

and in the intermediate and global schemas) into a list considered by the refor-

mulation procedure so that it does not replace materialisedconstructs within the

GAV view de�nitions over the source schema constructs.

Secondly, if there is a virtual construct of an intermediateschema appearing

in an IQLc query, we use theQueryReformulatorsuper class in the AutoMed API

to compute its extent by treating the virtual intermediate schema as the global

schema.

Class Tools4DW

This class consists of several lower-level methods used by the data warehousing

packages. For example,GetIQLSourceobtains the names of the schema constructs

appearing in an IQLc query andgetQueryTypeobtains the action type of an IQLc

query.

C.1.3 Package uk.ac.bbk.automed.dataWarehousing.dlt

This package contains the classLineage, which is the data structure storing lineage

data; the classTransfStep, which is the data structure storing transformation

steps; the classDataLineageTracing, which is the implementation of the generalised

DLT algorithm descried in Chapter 6; and the classDemoDLT, giving an example

of using the DLT package.

241



Class Lineage

The Lineageclass has six private attributes which are used to store the information

of the lineage data (note thatASG(Abstract Syntax Graph) is the data structure

used in the AutoMed GQP for representing IQL queries):

� (ASG)lineageData , can be a collection storing materialised lineage data,

or, if the lineage data is virtual, it will be null ;

� (String)construct , the name of the schema construct containing the lineage

data;

� (boolean)isVirtualData , stating if the lineage data is virtual or not;

� (boolean)isVirtualConstruct , stating if the construct is virtual or not;

� (String)eleStruct , describing the structure of the data in the extent of the

schema construct; and

� (String[])constraint , expressing the constraints to derive the lineage data

from the schema construct if the construct is virtual.

Public non-static methods in this class such asgetLineageData(), getCon-

struct(), isVirtualData(), isVirtualConstruct(), getEleStruct() and getConstraint()

are used to obtain the content of the above private attributes.

Class TransfStep

The TransfStepclass contains six private attributes storing the information of the

transformation steps:

� (String)action , which may be00add00, 00del 00, 00rename00, 00extend00and 00con-

tract 00;
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� (String)query, the query used in the transformation step;

� (String)result , the name of the schema construct created or deleted by the

transformation step;

� (boolean)vResult , showing if the result construct is virtual or not;

� (ArrayList)sources, containing all schema construct names appearing in the

query; and

� (boolean[])vSources, showing which source constructs in thesources col-

lection are virtual.

Public non-static methods such asgetAction(), getQuery(), getResult(), isVRe-

sult(), getSources()and getVSources()are used to obtain the content of the above

private attributes.

In addition, there are two static methods available in this class which can be

used to obtain thetransfStepobjects between a given source and global schema.

In particular, the method ArrayList getTransfSteps(StringsName, String gName)

results in anArrayListcollection containingtransfStepobjects expressing the gen-

eral transformation pathway (may contain general IQLc queries) between the two

schemas,sNameand gName. The method ArrayList getSimpleTransfSteps(String

sName, String gName) results in an ArrayList collection containing transfStepob-

jects expressing the decomposed transformation pathway (all general IQLc queries

in the general transformation pathway have been decomposedinto SIQL queries)

between the schemasNameand gName.
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Class DataLineageTracing

In the DataLineageTracingclass, the methodDLT4AStep(Lineagett , TransfStep

ts ) is used to obtain the lineage of a single tracing tuplett along a single trans-

formation step ts , while the methodsoneDLT4APath(Lineagett , ArrayList tp )

and listDLT4APath(ArrayListtts , ArrayList tp ) are respectively used to obtain

the lineage of a single tracing tuplett or a bag of tracing tuplestts along the

transformation pathway tp .

The constructor of this class isDataLineageTracing(SchemasSchema,Schema

tSchema), in which sSchemaand tSchemaare two Schemaobjects denoting the

source and target schemas. Once aDataLineageTracingobject, dlt , is created, the

simple transformation steps between the source and target schemas are also gen-

erated and stored. The public non-static methoddlt .getTransformationSteps()is

then used to obtain the generated simple transformation steps between the given

source and target schemas, and the public non-static methodsdlt .getDataLineage-

Of(Lineagelp ) anddlt .getDataLineageOf(ArrayListlpList ) are used to obtain the

lineage of the tracing data.

Class DemoDLT

The DemoDLTclass gives an example of using the DLT toolkit for tracing data

lineage along an AutoMed transformation pathway. In particular, after creating

the AutoMed metadata, the DLT process is accomplished by thefollowing three

steps:

1. Getting the source and global schemas by using theSchema.getSchema(String

schemaName) method provided by the AutoMed API. For example:

Schema s_sou = Schema.getSchema("rel_source");

Schema s_tar = Schema.getSchema("rel_global");
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2. Creating aDataLineageTracingobject, dlt:

DataLineageTracing dlt = new DataLineageTracing(s_sou,s _tar);

3. Giving the tracing tuple and tracing its data lineage. Forexample, for

tracing tuple {'M01',1000} in the construct hhperson; salaryii of the target

schema"rel_global" , the necessary code is :

Lineage tt = new Lineage(

new ASG("{'M01',1000}"),"<<person,salary>>");

ArrayList lineageData = new ArrayList();

lineageData = dlt.getDataLineageOf(tt);

Lineage.printLineageList(lineageData);

C.2 Data Lineage Tracing GUI

In this section, we describe a GUI supporting our data lineage tracing process,

and show how our DLT process can be applied in both materialised and virtual

data integration scenarios. We also show how the DLT GUI can be used as a tool

for browsing schemas, data and lineage information.

C.2.1 The DLT GUI

Figure C.1 illustrates the DLT GUI. Given the names of the source schemas,e:g:

s1 and s2, and target schema,e:g:ss, the 00Check Input Schema00button is used to

check whether the input schema names are de�ned in the AutoMed Schemas and

Transformations Repository (STR). Then the00DLT Initialization00button is used

to initialise the DLT process, which consists of three main steps: obtaining the

source and target schemas from the AutoMed STR and listing their constructs;

obtaining the transformation pathway between the source and target schemas,
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Figure C.1: The Data Lineage Tracing GUI
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decomposing it into a simple transformation pathway and listing the pathway

(illustrated in Figure C.1); and initialising a DataLineageTracing object.

Figure C.2: The Extent of Selected Construct

After DLT initialisation, the 00Show Extent00button can be used to extract the

extent of the selected construct in the target schema and show it in the 00Extent

of Selected Construct00�eld (as in Figure C.2). The displayed data items can then

be selected as the tracing tuples of the DLT process.

More generally, four kinds of tracing tuples that may be input1: RealData,

which is one or more data items selected from the extent of thetarget schema

construct (as in Figure C.1);vAll, where the tracing data is all data in the selected

target construct (as in Figure C.3);vPair, where the tracing data is a pair such

as {x,y} where the extent ofx is indicated (as in Figure C.4); andvExist, where

the tracing data is an arbitrary pattern, such as{{d,c},x} , and constraints over

its variables can also be speci�ed, such as \(>=) x 67 " (as in Figure C.5).

Once a tracing tuple is selected, the00Check Input Tracing Data00 button se-

mantically checks the input tracing tuple, and the00Data Lineage Tracing00button

�nally computes the lineage of the tracing tuple.

1These correspond to real lineage data and the three kinds of virtual lineage data,
f any; true g, (f x; yg; x = a) and (p1; p2 = t ), described in Chapter 6.
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Figure C.3: Tracing Data Lineage ofvAll

Figure C.4: Tracing Data Lineage ofvPair

C.2.2 DLT in Materialised Data Integration

In materialised data integration scenarios, both the source and target schemas are

materialisede:g:in the example of Section 4.2 the data source schemass1,s2 and

the global schemass are all materialised. The �gures of Section C.2.1 illustrated
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Figure C.5: Tracing Data Lineage ofvExist

how the DLT GUI can be used in a materialised data integrationscenario.

C.2.3 DLT in Virtual Data Integration

In virtual data integration scenarios, the target and all intermediate schemas are

virtual. Figure C.6 illustrates how the DLT GUI can be used ina virtual data

integration scenario, in which the input target schemaus is a virtual one. We

assume the same framework described as in the example of Section 4.2 and use

the virtual schema USas the target schema. In Figure C.6, the lineage of the

vExisttracing data, hhustab; markiij ({{d,c,s},m}, (=) m 80) , is computed. The

lineage of other kinds of tracing data such asRealData, vAll and vPair are also

traceable in this virtual data integration scenario.
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Figure C.6: Tracing Data Lineage with a Virtual Schema
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C.2.4 A Tool for Browsing Schemas, Data and Lineage

Information

The DLT GUI can be used to browse the extent of both materialised and virtual

target schemas, as well as the constructs of these schemas and the lineage of their

data.

If we de�ne the input source and target schemas as being the same schema, the

DLT GUI can be used as a simple query engine over this schema. For example, in

Figure C.7, both the input source and target schemas aress. If the tracing data is

vExistdata, hhgstab; themaxiij ({{d,c},x},[(=) d 'MA',(>=) x 80]) , the com-

puted lineage data is actually equivalent to applying the IQLc query [{{d,c},x} j

{{d,c},x}  hh gstab; themaxii ; (=) d 'MA';(>=) x 80 ] to the schemass.

C.3 Discussion

In this appendix, we have discussed a set of data warehousingpackages and API

for the AutoMed toolkit, which implement the generalised DLT algorithm de-

scribed in Chapter 6. Currently, the data warehousing toolkit consists of three

packages: dataWarehousing.dlt, dataWarehousing.utiland dataWarehousing.DW-

Example.

We have given a data integration scenario and example to illustrate how our

DLT process and GUI can be applied, both in materialised and virtual data

integration settings. We have also discussed how the DLT GUIcan be used as a

tool for browsing schemas, data and lineage information.

In Section 6:6:1 of Chapter 6 and Section 7:4:1 of Chapter 7, we discussed

how to extend our DLT and IVM algorithms to handle queries beyond IQLc.

This would allow our DLT process to go back all the way to the data source
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Figure C.7: Browsing Schemas and Data Information
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schemas before single-source cleansing, and would similarly allow our IVM process

to maintain materialised warehouse data according to updates to the data source

schemas. The implementation of these extensions is an area of future work.
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Glossary

BAV Both-as-view data integration approach, 17

CDM Conceptual data model, 44

DLT Data lineage tracing, 100

GAV Global-as-view data integration approach, 16

GQP Global Query Processor, 59

HDM Hypergraph-based data model, 45

IQL Intermediate query language, 54

IQL c A subset of IQL, 100

IVM Incremental view maintenance, 171

LAV Local-as-view data integration approach, 16

MDR The AutoMed Model De�nitions Repository, 61

SIQL Simple intermediate query language, 105

STR The AutoMed Schemas and Transformations Repository, 61
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