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Abstract

Data warehouses integrate data from remote, heterogenepagitonomous data
sources into a materialised central database. The heteragity of these data
sources has two aspects, data expressed in di erent data nedsl calledmodel het-
erogeneity and data expressed within di erent schemas of the same dataodel,
called schema heterogeneity

AutoMed!? is an approach to heterogeneous data transformation and aura-
tion based on the use of reversible schema transformatiorgaences, which o ers
the capability to handle data integration across heterogemus data sources. So
far, this approach has been used only for virtual data integtion. In this thesis,
we investigate the use of this approach for materialised daintegration.

We investigate how AutoMed metadata can be used to expressettschemas
present in a data warehouse environment and to represent @avarehouse processes
such as data transformation, data cleansing, data integran, and data summa-
rization. We discuss how the approach can be used for handjischema evolution
in such a materialised data integration scenario. That isf a data source or data
warehouse schema evolves how the integrated metadata andadean also to be
evolved so that the previous integration e ort can be reuseéds much as pos-
sible. We then describe in detail how the approach can be uséar two key

data warehousing activities, namely data lineage tracingna incremental view

1Seehttp://www.doc.ic.ac.uk/automed/



maintenance.

The contribution of this thesis is that we investigate for tle rst time how Au-
toMed can be used in a materialised data integration scenariWe show how the
evolution of both data source and data warehouse schemas dz handled. We
show how two key data warehousing activities, namely incresntal view main-
tenance and data lineage tracing, are performed. This is alshe rst time that
data lineage tracing and incremental view maintenance haeen considered over

sequences of schema transformations.



Contents

Acknowledgments
Abstract

1 Introduction

1.1 DataWarehousing . .. ...............
1.2 The BAV Data Integration Approach . . . . ... ..
1.3 Problem Statement . . . . ... ... ... .....
1.4 Dissertation Outline . . . ... ... .........

1.5 Dissertation Contributions . . . . . ... . ... ...

2 Overview of Major Issues in Data Warehousing

2.1 What is a Data Warehouse? . . ... ... .. ...
2.2 Data Warehouse Architecture . . . . ... ... ..
2.3 Data Warehouse Modelling . . . . .. ... .....
2.4 Data Warehouse Processes . . . . ... .. ....
241 DataExtraction. .. .. ............
2.4.2 Data Transformation . . . ... ... .. ..
24.3 DataCleansing . ... ............

2.4.4 Data Summarisation . . . ... ... ....



2.4.5 Data Warehouse Maintenance . . . . . ... ... .. ... 38

246 DatalLineageTracing. . .. . ... ... . ... ...... 40
25 DISCUSSION . . . . . . . 41
Using AutoMed Metadata for Data Warehousing 43
3.1 Motivation . . . . . ... 43
3.2 The AutoMed Framework . . . .. . ... ... .. ... ..... 46
3.21 HDMDataModel. ... ................... 46
3.2.2 ThelQL Query Language . . .. .. ... ... ...... 54
3.2.3 Transformation Pathways . .. ... ............ 56
3.2.4 The AutoMed Metadata Repository . . . . . .. ... ... 60
3.3 Expressing Data Warehouse Schemas and Transformations. . . 63
3.3.1 An Example of Data Integration and Transformation . . . 66
3.3.2 Expressing DataCleansing . . . . ... .. ... ...... 69
3.3.3 Expressing Data Integration . . . . . .. ... ... .... 75
3.3.4 Expressing Data Summarisation . . . . ... ... .. ... 75
3.35 CreatingDataMarts . . ... ... ... .......... 75
3.4 Using the Transformation Pathways . . . . . . ... ... ... .. ad
3.4.1 Populating the Data Warehouse . . . . ... ... .. ... 76
3.4.2 Incrementally Maintaining the Warehouse Data . . . . . . 77
3.4.3 Tracing the Lineage of the Warehouse Data . . .. .. .. 77
3.5 DISCUSSION . . . . . . . 78
Using AutoMed Transformation Pathways for Handling Schem a
Evolution 81
4.1 Motivation . . . . . . .. 81
4.2 A Data Integration Scenario and Example . . . . ... ... ... K
4.3 Expressing Schema and Data Model Evolution . . . . ... .. .. 88



4.4 Handling Schema Evolution . . .. ... ... ........... 90

4.4.1 Evolution of the Summarised Data Schema . . . . . . . .. 91
4.4.2 Evolution of a Data Source Schema . . . . ... ... ... 92
4.4.3 Evolution of Downstream Data Marts . . . . . . ... ... 97
4.5 DISCUSSION . . . . . . 98
Using Materialised AutoMed Transformation Pathways for D ata
Lineage Tracing 100
51 RelatedWork . . . ... ... .. ... 102
52 Simple QL . . . . . . .. 105
521 TheSIQL Syntax . . . . . . .. .. . . ... ... 105
5.2.2 Decomposing IQtinto SIQL Queries . . . . ... ... .. 107
5.2.3 An Example of Schema Transformations . . .. ... ... 111
5.3 Data Lineage Denitions . . . . . . . .. ... ..o 114
5.4 Data Lineage Tracing Formulae . . . . ... ... ... ...... 116
5.5 Data Lineage Tracing Algorithm . . . . . .. .. ... ... .... 10
5.5.1 Tracing Data Lineage through Transformation Pathway . 121
5.5.2 Algorithms for Tracing Data Lineage . . .. .. ... ... 122
5.6 IQLC to SIQL Decomposition Order . . . . . . .. ... ... ... 129
5.7 Ambiguity of Lineage Data. . . . . .. .. ... ... ....... 132
5.7.1 Derivation fordi erence and not memberOperations . . . . 132
5.7.2 Derivation for Aggregate Functions . . . . .. ... .. .. 13
5.7.3 Derivation for Where-Provenance . . ... ......... 137
574 Summary . . ... e e 140
5.8 DISCUSSION . . . . . . . e 141
Generalising the Data Lineage Tracing Algorithm 142
6.1 Motivation . . . . . . ... 142



6.2 Data Structures for Data Lineage Tracing . . . . . ... .. ... 144

6.3 DLT for a Single Transformation Step. . . . . . . .. ... .. .. 46
6.4 DLT Formulae. . . ... ... ... .. ... ... . ... ... 148
6.41 CaseMtVs. . . . . . . . . ... 149
6.42 CaseVtMs . . . . . . . . ... 152
6.43 CasevtVs . . . . . . . 156
6.5 DLT for General Transformation Pathways . . . . . ... ... .. 158
6.5.1 The DLT Algorithms . . . . . .. ... .. ... ...... 158
6.5.2 Example . . . .. ... ... 160
6.5.3 Performance of the DLT Algorithms . . . . . .. ... .. 161
6.6 Extending the DLT Algorithms . . . . . ... ... ... ..... 163
6.6.1 Using Queriesbeyond IQL . . . ... .. ... ...... 163
6.6.2 UsingdeleteTransformations . . .. ... .. ... .. .. 164
6.6.3 UsingextendTransformations . . .. .. .......... 164
6.6.4 Usingcontract Transformations . . . .. .. .. ... ... 166
6.7 Implementation . . . .. .. ... .. ... ... 166
6.8 DISCUSSION . . . . . . . . e 168
Using AutoMed Transformation Pathways for Incremental Vi ew
Maintenance 170
7.1 Related Work . . . . . ... .. ... 171
7.2 IVM over AutoMed Schema Transformations . . . . . . ... ... 13
7.2.1 IVM Formulae for SIQL Queries . . . . . . .. ... .. .. 174
7.2.2 IVM over Schema Transformation Pathways . .. .. ... 180
7.3 Avoiding Materialisations inIVM . . . . . .. .. ... .. .... 182
7.3.1 Using AutoMed's Global Query Processor . ... .. ... 183
7.3.2 Using View Denitions . . . ... ... ... ........ 183



7.3.4 IVM Formulae for Virtual Schema Constructs . . . . . .. 18
7.3.5 Redening View Denitions . . . ... ... ... ..... 188
7.4 Extending the IVM Algorithms . . . . .. .. .. ... ...... 190
7.4.1 Using Queriesbeyond IQL . . . . ... .. ... ..... 190
7.4.2 Usingextendtransformations . . ... ... ........ 192
7.5 DISCUSSION . . . . . . .. 193
8 Conclusions and Future Work 194
Bibliography 201
A Proof of Theorem 1 219
B Justi cations of IVM Formulae 231
B.1 Justi cation of IVM Formulae for D1/ . D2. . . . ... ... ... 231
B.2 Justi cation of IVM Formulae for D1 D2 . . ... ... ... .. 232
B.3 Justi cation of IVM Formulae for D1Z2D2. . . . .. ... ... .. 233
C Implementation of Data Warehousing Packages and API for th e
AutoMed Toolkit 235
C.1 Package Structure . . . . . . . . .. ... e 235
C.1.1 Packageuk.ac.bbk.automed.dataWarehousing.DWExample236
C.1.2 Packageuk.ac.bbk.automed.dataWarehousing.util. . . . . 239
C.1.3 Packageuk.ac.bbk.automed.dataWarehousing.dlt . . . . . 241
C.2 Data Lineage TracingGUI . . . . . .. .. .. ... ... ..... 245
C21 TheDLTGUI. . ... ... .. e 245
C.2.2 DLT in Materialised Data Integration . . . . .. .. .. .. 28
C.2.3 DLT in Virtual Data Integration . . ... ... .. .. .. 249

7.3.3 UsingInverse Queries . . . . . . . .. ... ... ... 184

10



C.2.4 A Tool for Browsing Schemas, Data and Lineage Informan251

C.3 DIisCuSSION . . . . . . . e 251

Glossary 254

11



List of Tables

3.1
3.2
3.3

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2
7.3

Representing Simple Relational Model Constructs . . . .... .. 49
Representing Simple XML Model Constructs . . . . .. ... ... 51
Representing Simple Multidimensional Model Construst . . . . . 53
DLT Formulae forMtMs . . . . . . . . ... ... ... ...... 148
DLT Formulae forMtVs . . . . . . . .. ... ... ... ..... 150
DLT Formulae for Tracing the A ect-Pool of ViMs . . . . . . .. 153
DLT Formulae for Tracing the Origin-Pool of ViMs (1) . . . . .. 154
DLT Formulae for Tracing the Origin-Pool of VIiMs (2) . . . . . . 155
DLT Formulae forVtVs. . . . . . . . . . .. .. . ... 157
IVM Formulae for distinct map and Aggregate Functions . . . . . 176
IVM Formulae for Grouping Functions . . . . .. ... .. .... 17
IVM Formulae for Bag Union and Monus . . . . . ... .. .. .. 178

12



List of Figures

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2

5.1
5.2
5.3
5.4

6.1
6.2
6.3

Basic Components of a Data Warehouse System Using Autodle 24

(Left) Star Schema (Right) Snow ake Schema . . ... .. .. .. 30
Merging Data from Multiple Data Sources . . . . ... ... ... 3
Frameworks of Data Integration . . . . . ... ... ........ 44
AXMLFile . . . ... e 52
AutoMed Software Architecture . . . . . . ... ... 61
AutoMed Repository Schema . . . ... .. ... ... ...... 62
Data Transformation and Integration at the Schema Level. . . . 63
An Example of Data Integration and Transformation . . . . .. . 67
Data Integration Scenario . . . . . .. ... ... ... ..., 83
Example of Data Integration . . . . . .. ... ... ........ 85
Proceduresa ectPoolOfTupleand originPoolOfTuple .. . . . . . . . 124
Procedurea ectPoolOfSet . . . . ... ... ... ... ...... 125
ProceduretraceAectPool . . ... ... ... ... .. ...... 127
Proceduremerge . . . . . . . . .. . 128
The DLT4AStepAlgorithm . . . . . . .. .. ... ... ... ... 147
DLT Algorithms for a General Transformation Pathway . . .. . . 159
Running Time vs. Number of Relevanadd Transformations . . . 162

13



6.4
6.5

7.1

Cl
C.2
C.3
CA4
C5
C.6
C.7

Running Time vs. Number of Schema Constructs . . . . .. ... 62

The Diagram of the Data Warehousing Toolkit. . . . . . .. ... 167
The IVM4CompAlgorithm . . . . . . . . ... .. ... ... ... 179
The Data Lineage Tracing GUI . . . . . .. ... ... ...... 246
The Extent of Selected Construct . . . . . .. ... ... ..... A
Tracing Data Lineage ofvAll . . . . . . . ... ... ... ..... 248
Tracing Data Lineage ofvPair . . . . . . ... ... ........ 248
Tracing Data Lineage ofvEXxist. . . . .. ... ... .. ...... 249
Tracing Data Lineage with a Virtual Schema . . . . . ... .. .. 250
Browsing Schemas and Data Information . . . . .. .. ... ... 2

14



Chapter 1

Introduction

1.1 Data Warehousing

A data warehouse consists of a set of materialised views dech over a number
of data sources. It collects copies of data from remote, diktuted, autonomous
and heterogeneous data sources into a central repository énable analysis and
mining of the integrated information. Data warehousing andn-line analytical
processing (OLAP) are essential elements of decision supp@vhich has increas-
ingly become a focus of the database industry. Many commaeatiproducts and
services relating to data warehousing are currently avaltée, and all of the prin-
cipal data management system vendors, such as Oracle, IBMifdrmix and MS
SQL Server, have o erings in these areas.

Research problems in data warehousing include data warelseuarchitecture
design, information quality and data cleansing, maintaimig data warehouses, se-
lecting views to materialise, Work ow data management [BCI301], data lineage
tracing in data warehouses, and so on. Comprehensive ovews of data ware-

housing and OLAP technology are given in [CD97, Wid95]. Cuently, increasing
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numbers of data warehouses need to integrate data from a nuerbof hetero-
geneous and autonomous data sources. Extending existingral@ouse activities
into heterogeneous database environments is a new challemg data warehousing
research.

The heterogeneity of these data sources has two aspects, alaxpressed in
di erent data models, calledmodel heterogeneityand data expressed within dif-
ferent schemas of the same data model, callsdhema heterogeneity

Up to now, most data integration approaches have been eithgtobal-as-view
(GAV ) or local-as-view(LAV ) [Len02]. In GAV, the constructs of a global schema
are described as views over local scherhasin LAV, the constructs of a local
schema are de ned as views over a global schema. One disadaga of GAV and
LAV is that they do not readily support the evolution of both local and global
schemas. In particular, GAV does not readily support the evation of local
schemas while LAV does not readily support the evolution oflgbal schemas.
Furthermore, both GAV and LAV assume one common data model fdhe data
transformation and integration process, typically the redtional data model.

Other approaches for managing distributed, heterogenouand autonomous
databases and database applications includederated databasefSL90, BIG94,
SG97] andmiddleware [BCRP98, CEMO1]. In contrast to data warehouses be-
ing materialised data integration scenarios, federated tibase systems are vir-
tual data integration scenarios which use virtual federaté schemas integrating
schema information from distributed and autonomous sourcdatabases. They
are an early example of the GAV approach. Global query procass are used

to evaluate queries over federated schemas by accessing daé in the source

1A viewin a database system is derived data de ned in terms of storedlata and/or possibly
other views. View de nitions are expressed as queries ovemheir source data. A view can be
materialised by storing the data of the view, and subsequenticcesses of the materialised view
can be much faster than recomputing it.

16



databases. The middleware approach presents a uni ed pr@anming model to
resolve heterogeneity, and facilitates communication antbordination of distrib-
uted components, so as to build systems that are distributedcross a network
[EmmOO0]. For undertaking data transformation or integraton, middleware can

adopt GAV, LAV or both approaches.

1.2 The BAV Data Integration Approach

AutoMed? supports a new data integration approach calletoth-as-view(BAV )
which is based on the use of reversible sequences of pringtschema transfor-
mations [MP03a]. From these sequences, it is possible to idera de nition of a
global schema as a view over the local schemas, and it is alsisgible to derive
a de nition of a local schema as a view over a global schema. BA&an therefore
capture all the semantic information that is present in LAV and GAV derivation
rules. A key advantage of BAV is that it readily supports the golution of both
local and global schemas, allowing transformation seque&scand schemas to be
incrementally modi ed as opposed to having to be regenerate

Another advantage is that BAV can support data transformaton and integra-
tion across multiple data models. This is because BAV suppsra low-level data
model called the HDM (hypergraph data model) in terms of whit higher-level
data models are de ned. Primitive schema transformationsadal, delete or re-
name a single modelling construct with respect to a schemahds, intermediate
schemas in a schema transformation/integration network cacontain constructs
de ned in multiple modelling languages. Previous work hashswn how rela-
tional, ER, OO, XML and at- le data models can be de ned in terms of the
HDM [MP99a, MP99b, MPO1].

2Seehttp://www.doc.ic.ac.uk/automed/

17



AutoMed is an implementation of the BAV data integration appoach. In
previous work within the AutoMed project [PM98, MP99a], a geeral framework
has been developed to support schema transformation andegtration. So far,
the BAV approach and AutoMed have been used only for virtual @a integra-
tion. In this thesis, we investigate the use of the BAV approeh for materialised
data integration. We rst investigate how AutoMed metadata can be used to
express the schemas present in a data warehouse environmamt to represent
data warehouse processes such as data transformation, dek@ansing, data inte-
gration, and data summarisation. We then discuss how schens&olution can be
handled in such a materialised data integration scenario. hgt is, if a data source
or data warehouse schema evolves how the existing warehomsgadata and data
can also be evolved so that the previous integration e ort gabe reused. We then
describe in detail how the approach can be used for two key @atvarehousing

processes, namely data lineage tracing and incremental wienaintenance.

1.3 Problem Statement

In order to use AutoMed for materialised data integration, here are four research

problems considered in this thesis.

1. How AutoMed metadata can be used to express the schemas qndcesses
such as data cleansing, transformation and integration indterogeneous
data warehouse environments, supporting both schema heatgeneity and

model heterogeneity.

2. How AutoMed schema transformations can be used to expreb®e evolu-

tion of a data source or data warehouse schema, either withthe same
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data model, or a change in its data model, or both; and how thexist-
ing warehouse metadata and data can also be evolved so thaetprevious

transformation, integration and data materialisation e ort can be reused.

3. How AutoMed metadata can be used for data lineage tracing heteroge-
neous data warehouses, including what is the de nition of da lineage in
the context of AutoMed, and how the individual steps of AutoMed schema

transformations can be used to trace data lineage in a stepse fashion.

4. How AutoMed metadata can be used for incremental view madanance in
heterogeneous data warehouses. Here, we discuss how Autlgkn handle
the problem of maintaining materialised data warehouse v if either the

data or the schema of a data source change.

1.4 Dissertation Outline

The outline of this thesis is as follows:

Chapter 2 gives the background of this thesis, including a vieew of major
issues in data warehousing.

Chapter 3 gives an overview of the AutoMed framework, at theelel neces-
sary for the work in this thesis, and discusses how AutoMed naglata can be
used to express the schemas and processes of heterogeneatas whrehousing
environments.

Chapter 4 describes how AutoMed schema transformations cdre used to
express the evolution of schemas in a data warehouse. It thehows how to
evolve the warehouse metadata and data so that the previousahsformation,
integration and data materialisation e ort can be reused.

Chapter 5 develops a set of algorithms which use materialiseAutoMed

19



schema transformations for tracing data lineage. By matadised, we mean that
all intermediate schema constructs created in the schemaatrsformations are
materialised, i:e: have an extent associated with them.

Chapter 6 generalises these algorithms to use arbitrary AoMed schema
transformations for tracing data lineage:e: where intermediate schema constructs
may or may not be materialised.

Chapter 7 discusses how AutoMed transformation pathways e used for
incrementally maintaining data warehouse views.

Finally, Chapter 8 gives our conclusions and directions ofiture work.

1.5 Dissertation Contributions

A formal approach has been chosen as the methodology of thésearch. We rst
investigate previous relevant work on data warehousing, lsma evolution, data
lineage tracing, and incremental view maintenance. We theimvestigate how
the AutoMed data integration approach can be used for thesectivities in the
context of heterogeneous data warehouse environments, €leyp new theoretical
foundations and algorithms, and implement some of our algtdims.

The contribution of this thesis is that we investigate for tle rst time how the
AutoMed heterogeneous data integration approach can be asm a materialised
data integration scenario. We show how the evolution of botdata source and
data warehouse schemas can be handled. We show how two keyadaarehousing
activities, namely incremental view maintenance and datarleage tracing, are
performed. This is also the rst time that data lineage trachg and incremental

view maintenance have been considered over sequences @metransformations.
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Chapter 2

Overview of Major Issues in Data

Warehousing

This chapter gives an overview of major issues in data warafgng. In Section
2.1, we discuss a de nition of a data warehouse. Section 2.&pents the archi-
tecture of a data warehouse system which includes the datausoces, the staging
area, the data warehouse itself and end-user applicationsdainterfaces. Section
2.3 discusses a commonly-used data modelling technique iatad warehousing,
multidimensional data modelling. Section 2.4 discussesetlprocesses of building,
maintaining and using a data warehouse. Finally, Section 2.summarises the

discussions of this chapter.

2.1 What is a Data Warehouse?

A data warehouse is a repository gathering data from a varigbf data sources and
providing integrated information for Decision Support Syems of an enterprise.

In contrast to operational database systems which supportag-to-day operations

21



of an organisation and deal with real-time updates to the dabases, data ware-
houses support queries requiring long-term, summarisedfanmation integrated

from the data sources, and generally do not require the mospuo date oper-

ational version of the data. Thus, updates to the primary de sources do not
have to be propagated to the data warehouse immediately.

The de nition of a data warehouse given in [Inm02] is:

A data warehouse is asubject-oriented integrated nonvolatile and

time-variant collection of data in support of management's decisions.

The rst feature, subject-oriented means that a data warehouse only includes
the data that will be used for the organisation's Decision $port System (DSS)
processes. In contrast, other database applications coimadata for satisfying
immediate functional or processing requirements, which maor may not have
any use for decision support. Thesubjectin the above de nition denotes the
aspect of the data used in DSS, such as the customers, prodycervices, prices
and sales of the enterprise.

The second feature in the above de nition isntegrated Data warehouses col-
lect data from multiple data sources, which may be distribwgd, heterogeneous
and autonomous. However, the warehouse data needs to be stbin a schema
that satis es the users' analysis requirements. Normallysource data is trans-
formed and integrated before entering the data warehouse #uat the focus of
the warehouse users is on using the integrated data, rathdran being concerned
with the correctness or consistency of the source data.

The third feature in the above de nition is nonvolatilewhich means that ware-
house data are normally long-term, not updated in real-timend just refreshed
periodically. In operational database systems, the data isormally the most up

to date, and update operations such as inserting, deletinghd changing data are
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frequently applied. In data warehouses, the data is used fBISS processes. Once
the data is loaded into the data warehouse, the focus is on guimg it, rather
than inserting, deleting or changing it. However, a data wahouse also needs to
be periodically refreshed in order to re ect updates in the imary data sources.
Usually, alternate bulk storage is used to store the old data the data warehouse.
Purges of obsolete data are also carried out from time to time

The last feature in the above de nition istime-variant. Information from
one past time point (the time the data warehouse was deployetb the present
may be contained in the data warehouse. Using this informatn, end users can
analyse and forecast the progress and future trends of theterprise. In contrast,
operational database applications mainly consider only oent data.

In summary, a data warehouse is built for DSS analysts or magers in an
enterprise, who may be non-technical users, to easily ace@s their business con-
text the widespread information across the enterprise. ltsia single, complete,
consistent accumulation of data obtained from a variety ofairces which may be
remote, distributed, heterogeneous and autonomous. In @dto take advantage
of this data, the basic functionalities of a data warehousera gathering, cleans-
ing, ltering, transforming, integrating and reorganising the source data into a
repository with a single schema which satis es the users' alysis requirements.

Thus, data warehousing is not a static solution but an evolag process.

2.2 Data Warehouse Architecture

A data warehouse system consists of several components: tiaa sources, the
staging area, the data warehouse itself and end-user applions and interfaces,

as illustrated in Figure 2.1. Brief descriptions of each cgnonent are given below.
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Figure 2.1: Basic Components of a Data Warehouse System UgsiAutoMed

Data Sources The data sources provide the original data of the data ware-
house. A data warehouse may integrate data from multiple aohomous and
heterogeneous data sources, which could be either remotelaral, and not un-
der the control of the data warehouse users and administrat In addition,
the data sources may be structured (e.g., relational databas), semi-structured
(e.g., XML or RDF les) or at les. Such arbitrary data sourc es pose several
challenges to warehouse builder: to create a uniform reptsy integrating these
data; to design easily understandable data warehouse sclemnand to express

the transformations between the data source and data warelee schemas.

Staging Area  The staging area keeps whole copies of the data sources and
brings them under the control of the data warehouse administtor. The data

in the staging area may be heterogeneous and contain \dirty(e:g: duplicate or
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inconsistent) data. No end-user query services are availabn this area, that is,

the warehouse users cannot access the data in the stagingaare

Data Warehouse The data warehouse contains the integrated data used to
support the DSS processes. In contrast to the staging areaatd in the data
warehouse itself have a uniform schema and have been clednbg removing
dirty data. The processes of data cleansing and data transfation happen
before loading data into the data warehouse.

The data warehouse typically consists of following componis:

- Detailed Data The detailed data is the lowest level of source informationec-
essary for supporting the DSS processes. It is normally séaorin a single
repository such as a relational or object-oriented databas The detailed
data includes current detailed data and older detailed dataFrom the stag-
ing area to the detail data, the data needs to be transformed;leansed,
loaded and integrated. These processes compose a major drbuilding a

data warehouse.

- Summarised DataThe summarised data is derived from the detailed data, in
order to allow faster processing of specic DSS functiongli For exam-
ple, suppose the detailed data contains a relational tablgale$ProductiD

LocationIDTimelD,SalesAmount The summarised data may contain tables

ProductSalesByLocati¢RroductIDLocationlD SalesAmountsummarising

the total sales for products at locations;ProductSalesByTim{@&roductID

TimelD, SalesAmountsummarising the total sales for products over time pe-

riods; LocationSalesByTinfeocationlD TimelD, SalesAmountsummarising
the total sales for locations over time periodsfotalProductSalegroductiD

SalesAmountsummarising the total sales for productsiTotalLocationSales
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(LocationlD SalesAmountsummarising the total sales for locationsjotal-
TimeSaleroductlD SalesAmountsummarising the total sales over time

periods.

The summarised data are de ned aviews over the detailed data or over
other summarising views. Views in the data warehouse can betwal or
materialised. How to maintain these views, especially matalised ones, has

been one of the key issues of data warehousing research [GM38n99].

- Metadata A data warehouse not only provides integrated data, but atspro-
vides information about the content and context of the dataj:e: metadata.
This metadata provides a directory of the structure of the waehouse con-
tents. It provides information about the warehouse schemand also about
the mappings between the data in the data warehouse, such aerh the
data sources to the detailed data and from the detailed dateotthe sum-
marised data. In Figure 2.1, we show the metadata being stafén an
AutoMed repository, where it can be accessed by the data wa@ise users

and administrators.

End-User Applications and Interfaces The end-user applications and inter-
faces provide a way for warehouse users to access warehoaga. dn particular,
data martscan be created over the data warehouse for di erent categes of DSS
users. Data marts are de ned from the warehouse data for specDSS require-
ments of the enterprise. In contrast to the summarised datajata marts can
have di erent data models and schemas from the ones of the déed data of the
warehouse. In practice, the same tools used to load the datamehouse database

can be used to load the data marts, for example Oracle WaretsiBuilder, IBM

1Seehttp://www.oracle.com/technology/documentation/ware house.html
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Data Warehouse Manage, or Microsoft Data Transformation Services.

The problem ofquery rewriting, also known asanswering queries using views
has also received much attention in database research [L8Y0Query rewriting
aims to nd e cient methods of answering a query using a set opreviously ma-
terialised views over the database tables, rather than assng the base tables
themselves. In data warehousing, it is relevant to problemsuch as query opti-
misation, materialised view maintenance and data warehoaiglesign. We do not
address the problem of query rewriting in this thesis, but itnay be an important

area of future research in the AutoMed project.

2.3 Data Warehouse Modelling

Data warehouse modelling is the process of designing the estias of the detailed
and summarised data of the data warehouse. The aim of data vedwouse mod-
elling is to design a schema representing the reality, or aédst a part of the
reality, which the data warehouse is required to support.

Data warehouse modelling is an important stage of building @ata warehouse
for two main reasons. Firstly, through the schema, data wah®use users have
the ability to visualise the relationships among the warehgse data, so as to use
them with greater ease. Secondly, a well-designed schemawa$ an e ective data
warehouse architecture to emerge, to help reduce the costiofplementing the
warehouse and improve the e ciency of using it.

Data modelling in data warehouses is rather di erent from d&a modelling in
operational database systems. The main functionality of da warehouses is to
support DSS processes. Thus, the aim of data warehouse mtidglis to make

the data warehouse e ciently support complex queries on lapterm information.

2Seehttp://www-306.ibm.com/software/data/db2/datawareho use/
3Seehttp://www.microsoft.com/sgl/evaluation/features/da tatran.asp
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In contrast, data modelling in operational database systesfocusses on e ciently
supporting simple transactions in the database such as retving, inserting, delet-
ing and changing data. Moreover, data warehouses are desdrfor users with
general information knowledge about the enterprise, whexg operational data-
base systems are more oriented toward use by software spkstis for creating
speci ¢ applications.

Modelling warehouse data requires information about bothhe source data
and the target warehouse data. The source data can be treatad inputs which
are transformed into the target warehouse data. How this trasformation happens
is required to be re ected in data warehouse modelling.

Multidimensional data modellingis a commonly-used technique to conceptu-
alise and visualise schemas by using the major componentdhad business, such
as customers, products, services, prices and sales. Thisadaodelling technique
is especially used for summarising and rearranging data apdesenting views of
the data to support DSS. Particularly, multidimensional dda modelling focuses
on numeric data such as sales, counts, balances and costs.

In multidimensional data modelling, the data warehouse isabigned to collect
facts on one or moremeasures each measure depending on a setdimensions.
For example, asalesmeasure may depend on three dimensionproducts times
and locations

Factsare collections of related data items, which are stored wiith fact tablesin
the data warehouse.Dimensionsare collections of the items of one component of
the business, such as thgroductsdimension, thetimesdimension and theocations
dimension for sales. The items of a dimension are stored witta dimension table
in the data warehouse.

The primary key of a fact table is a concatenation of the primg keys of one

or more dimension tables. Thus, every row in the fact table iassociated with
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one and only one row from each dimension table.

Measuresare the non-key attributes of fact tables, and they represérnfor-
mation relating to the dimensions key attributes of the factable.

The non-key attributes of a dimension table may be organiseas adimension
hierarchy. For example, thetimesdimension may consist of thelates monthsand
weeksattributes; the productsdimension may consist of thecategory modeland
producerattributes; and the locationsdimension may consist of thecity, region
and country attributes.

There are two kinds of schemas used in multidimensional damaodelling: star
schemasand snow ake schemasA star schema typically has one fact table, and
a set of smaller tables. Figure 2.2 (Left) below gives an exaie of a star schema.
The links between the primary keys of the fact table and the feign keys in the
dimension tables can be visualised as a radial pattern witthé fact table in the
middle.

The dimension tables may contain data redundancies. For exgle, in the
dimension table LocationgLocationIDAddressCity,RegionCountry), the City and
Regioninformation may be repeatedly stored for the locations in th same cities.
This kind of data redundancy incurs storage overheads and snéead to update
anomalies and poor update performance.

If necessary, snow ake schemas can be used to avoid such da&dundancies.
A snow ake schema is the result of normalizing the dimensisrnof a star schema,
in which there are links between primary keys and foreign keyof tables in the
dimension hierarchy. Figure 2.2 (Right) is an example of a ew ake schema.

However, fully normalizing the dimension tables may not beatessary in a
data warehouse environment. Since there are generally nodgpes occurring to
individual rows in the dimension tables, although new rows ay be added when

the data warehouse is refreshed with new data, and existingws may be deleted
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Figure 2.2: (Left) Star Schema (Right) Snow ake Schema

when the data warehouse is purged of out-of-date data, thesige of update anom-
alies and poor update performance will generally not arise the data warehouse.
In addition, the storage consumption of the data warehouss dominated by the
fact tables and the space saved by normalizing the dimensitables would gen-
erally be comparatively small. Moreover, un-normalized diension tables can
reduce the time required to combine information in the factdble with dimension

information, which is a main performance criterion of a datavarehouse.

2.4 Data Warehouse Processes

The objective of supporting DSS queries over a data wareh@ugequires a set of
data warehouse processes that are far more complex than jostlecting data from
the remote data sources and then querying them. In this seoti, we discuss the
processes obuilding, maintaining and using the data warehouse. In particular,
building the data warehouse includesxtracting, cleansing transforming, loading
summarisingdata and creatingdata marts maintaining the data warehouse is the
process of refreshing materialised views in the warehouseldhe data marts; and

using the data warehouse includes developing and using thedeuser applications,
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as well as special functionalities of the data warehouse, chuas data lineage

tracing.

2.4.1 Data Extraction

Data are extracted from the data sources into the staging aaefor integration into
the data warehouse. This is the rst step of building the datavarehouse. Data
extraction does not involve complex algebraic database ap&ons such asjoin
and aggregate functions. It focuses on determining whichmete data is required
to be extracted, and bringing the data into the staging areaThe data sources
may be very complex and poorly documented, so that data exttdon design and
performance are often the time-consuming tasks in the builth process [Lan02].

Data have to be extracted not only once, but several times in periodic
manner to supply the changes to the data warehouse and keepuip-to-date.
Thus, data extraction is not only used in building the data waehouse, but also
used in maintaining the data warehouse.

There are two kinds of strategies of data extractionfull extraction, where the
entire les or tables of the data sources are extracted to thetaging area; and
incremental extraction only the data that has been changed since a well-de ned
event back in history will be extracted at a speci ¢ point of tme. The event may
be the last time of successful extraction or a more complex s€iness event like
the last sale day of a scal period [Lan02].

Full extraction re ects all data currently available in the data sources, and
there is no need to keep track of the changes to a data sourcecs the last suc-
cessful extraction. The source data will be provided as a wiecand no additional
information, such as time-stamps, is necessary regardiniget source site.

Incremental extraction can make the data extraction procesmuch more ef-

cient, and is especially useful when incremental view mai@nance (see Section
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2.4.5 below) has been selected as the maintenance stratebipwever, for many
data sources, identifying the recently modi ed data may be ictult or intrusive
to the operations of the data sources, which is beyond the dool of the data
warehouse builder.

Normally, the data sources cannot be modi ed by the data war®use builder,
nor can their performance or availability be aected by the dta extraction
process. Because of the independence of the data sourceta darehouses nor-
mally do not use incremental extraction as the strategy forata extraction and
instead use full extraction. After full extraction, the enire extracted data from
the data sources can be compared with the previous extracteldta to identify
the changed data, so that delta changes can be captured for mtaining the
warehouse data (this happens in the staging area). This apgch may not have
signi cant impact on the data sources, but it clearly can plae a considerable
burden on the data warehouse processes, particularly if trgata volumes are
large.

Data extraction incorporates the processes of dat@ansportation and data
loading which move data from one data system to another. The most canon
requirements of data transportation are moving data from th data sources to
the staging area, from the staging area to the data warehoysend from the data
warehouse to the data marts. Data loading is data transporteon speci cally
relating to loading the detailed data into the data warehous.

In practice, Loadis a command in many commercial database systems. For
example, the OracleSQL*Loaderutility is used to move data from at les into
Oracle tables, which is faster than using a series of SQL INRE statements
because no locking or logging takes place. Similarly, Traad-SQL and thebcp

utility from Microsoft # can be used to load data into SQL Server databases. There

4Seehttp://msdn.microsoft.com/library/
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are also available many commercial tools for data extractioand loading in data
warehouses, such as Oracle Warehouse BuiltldBM Data Warehouse Managef,

and Microsoft Data Transformation Service&

2.4.2 Data Transformation

The data sources of a data warehouse may conform to multiplen@mas, while
the data warehouse has a single schema. Heterogeneous sodata have to
be transformed into the data warehouse schema before loaglimto the data
warehouse.

Two kinds of data transformations are often used in data wah®using: mul-
tistage data transformationsand pipelined data transformations[Lan02]. Mul-
tistage transformations implement each di erent transfomation as a separate
operation and create separate, temporary staging tables &tore incremental re-
sults of each step. This is a common strategy and makes the misformation
process easily monitored and restarted. However, a disadt@ge of multistage
data transformations is high space and time costs.

With pipelined data transformations, there are no temporay staging tables.
Instead data is transformed as it is loaded into the data wah®use. This con-
sequently increases the di culty of monitoring and may reqire some similarity
between the source data and the target dateg:g: both of them have schemas
speci ed within the same data model. For example, the commaal data man-
agement toolPgManaget can be used to transform data in Excel tables, Access

databases or TXT les and load them into PostgreSQL database

5Seehttp://www.oracle.com/technology/documentation/ware house.html
6Seehttp://www-306.ibm.com/software/data/db2/datawareho use/
"Seehttp://www.microsoft.com/sql/evaluation/features/da tatran.asp

8Seehttp://sgimanager.net/products/postgresgl/manager/
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2.4.3 Data Cleansing

Extracting data from remote data sources, especially frometerogeneous data
sources, can bring erroneous and inconsistent informationto the data ware-
house. Data warehouses usually face this problem, in theiole as repositories
for information derived from multiple data sources within @d across enterprises.
Thus, before loading data from the staging area to the data wehouse,data
cleansingis normally required [RD0Q]. Data cleansing is a process whideals
with detecting and removing errors and inconsistencies frothe source data in
order to improve the data quality of the data warehouse.

The problems of data cleansing includeingle-source problems and multi-
source problems [RDO0O0]. Single-source cleansing cleans dirty ddtom one data
source. This process involves formatting and standardizjnthe source data, such
as adding a key to every source record and decomposing somaetisions into
sub-dimensions according the requirement of the warehouseg; decomposing an
Addresgdimension into LocationID, Number, Street, City, Zignd Countrydimen-
sions. Multi-source cleansing considers several data soes when undertaking
the cleansing process. Multi-source cleansing may includeerging data from
multiple data sources.

Figure 2.3 illustrates an example of merging data from multle data sources.
The Customerand Client databases are integrated into theCustomersdatabase.
Records existing in one data sourc&ustomeror Client remain in the Customers
database under the transformed schema. As to records exigfiin both data
sources, information from the more reliable source can beatrsformed into the
target database.

For each of these two data cleansing problems, there are twogsible scenarios:
schema-levehnd instance-level[RD00]. Schema-level problems can be addressed

by evolving the schema(s) as necessary. Instance-level ljeans, on the other
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Figure 2.3: Merging Data from Multiple Data Sources

hand, refer to errors and inconsistencies in the actual dateontents which are
not visible at the schema level. Below, we discuss data cleamg problems for
both single and multiple data sources, and for both schemawel and instance-

level problems:

Single-Source Cleansing  Single-source, schema-level problems arise when the
source data model violates the schema used for the data waveke. For example,
the source data may be XML les while the schema used for the ttawarehouse
is relational, or relational databases with di erent scheras are used to represent
the same information in a data source and in the data warehoels

Single-source, instance-level problems includealue, attribute and record
problems. Value problems occur within a single value and ilce problems such
as a missing value, a mis-spelled value, a mis- elded value:g: putting a city
name in acountry attribute), embedded values (putting multiple values intoone

attribute value), using an abbreviation or a mis-expresseudalue (e:g: using the

35



wrong order of rst name and family name within anameattribute).

Attribute problems relate to multiple attributes in one record and include
problems such as dependence violatiore:Q: between city and zip, or between
birth-dateand age.

Record problems relate to multiple records in the data soue¢c and include

problems such as duplicate records or contradictory recad

Multi-Source Cleansing Multi-source, schema-level problems includattrib-
ute and structure con icts. Attribute con icts arise when di erent sources use
the same name for di erent constructs (homonyms) or di erennames for the
same construct (synonyms). Structure con icts arise wherhe same information
is modeled in di erent ways in di erent schemas. For examplanformation about
customers may be stored in relational databases and XML doments, or in rela-
tional databases with di erent schemasé:g:regionCustomer(name,location,service)
storing customer information according to their location ad services they use;
and wholeSaleCustomer(name,addreasid retailCustomer(name,addressjoring
customer information in di erent tables according to theirservice type.).

Multi-source, instance-level problems includattribute, record, referenceand
data sourceproblems. Attribute problems include di erent representéions of the
same attribute in di erent schemas €:9:Yes/Novs True/Fasle in a maritalStatus
attribute) or a di erent interpretations of the values of an attribute in di erent
schemas €:g: US Dollar vs Euro in acurrencyattribute).

Record problems include duplicate records or contradictprrecords among
di erent data sources.

Reference problems occur when a referenced value does nddten the target
schema construct and can be resolved by replacing the damglireferences by

Null values.
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Data source problems relate to whole data sources, for exaepaggregation
at di erent levels of detail in di erent data sources (e:g: sales may be recorded
per product in one data source and per product category in atie@r data source).

In Chapter 3 below, we will discuss how AutoMed schema trarmsfnations can
be used to express the process of data cleansing, both singled multi-source. A
large number of commercial tools of varying functionalitie are available to sup-
port data cleansing. These normally focus on speci ¢ data cleansing problems,
such as address correctiore(g: QuickAddress BatéA and AddressAbilit) 1) and
removal of duplicates €:g: DoubleTaké?). In the research arena, examples in-
clude theArktos tool for data cleansing and transformation by Vassiliadist al:
[VVSKOO0], the IntelliCleantool for knowledge-based intelligent data cleansing by
Lee and Lowet al: [LLLOO, LLLO1], the interactive data cleansing systeniotter's
Wheelby Raman et al: [RHO1], and the extensible data cleansing toddJAX by
Galhardaset al: [GFSS00, GFS01l1a]. All of these research tools consider the

problem of data cleansing more generally than the commertiaols.

2.4.4 Data Summarisation

Data summarisation is the process of creating the summang data in the data
warehouse. As discussed before, the summarising data amms over the detailed
data and possibly other views, and they may or may not be matetised. The
main usage of materialised views is to increase the speed akies over the
warehouse data and also to allow query rewriting.

However, a problem relating to materialised views igiew maintenance If the

9See http://web.tagus.ist.utl.pt/ helena.galhardas/cleani ng.html for a list of
commercial data cleansing tools.

10seehttp://www.qgas.com/address-correction-software.asp

1Seehttp://www.inforouteinc.com/prodA-1.html

12Seehttp://www.tech4t.co.uk/doubletake/
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detailed data in the data warehouse is updated, the materiged views have to

be refreshed also so as to keep them up-to-date [GM99, Don99]

2.4.5 Data Warehouse Maintenance

The issue of view maintenance in data warehouses has beenehjddiscussed
in the literature [GM99, Don99, CW91, GMS93, CGL 96, Qua96, PSCP02,
ZGMHW95, ZGMW98, AASY97], and many view maintenance polies and al-
gorithms have been developed. Logically, there are two kigdof view main-
tenance approachesfully recomputing and incrementally refreshing while tem-
porally, three kinds of view maintenance approaches may be&apted, periodic
maintenance on-commit maintenanceand on-demand maintenancgGM99].

Fully recomputing means that if a data source is updated, the&iew will be
refreshed by recomputing it from scratch. On the other handincrementally
refreshing computes the changes to the view rather than reoputing all the
view data. Incrementally refreshing a view can be signi cdly cheaper than
fully recomputing the view, especially if the size of the matialised view is large
compared to the size of the change.

A periodically maintained view is called asnapshot and is generally used
for integrating data from remote data sources, such as fronhé Internet. A
snapshot has a lower consistency level between the view art tdata sources
than on-commit maintenance, but is easy to implement.

On-commit view maintenance is also referred to asnmediate view main-
tenance [GM99], which means that views are refreshed every time an dgte
transaction commits. Using an immediate view maintenancerategy, we can
ensure that the materialised views will always contain theatest committed data.

However, it increases the time overhead of committing updattransactions.
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The on-demand view maintenance policy can control the timénat view main-
tenance occurs | materialised views are refreshed when a melsh command is
explicitly issued. One kind of on-demand view maintenance on-queried view
maintenance which means the maintenance procedure is performed only evh
the view is used or queried. This may reduce the overhead ofetlview mainte-
nance process in a data warehouse if some views are seldond (Eag02].

Both the periodical and on-demand view maintenance policgeare a kind
of deferred view maintenancestrategy [GM99, CGL' 96]. Both policies use the
post-update data sources and their changes to maintain thaews. In contrast,
the on-commit (immediate) view maintenance policy uses thpre-update data
sources and the changes to them to maintain the views. One ditvantage of
immediate view maintenance is that each update transactioncurs the overhead
of refreshing the views, and this overhead increases withetimumber of views and
their complexity.

In data warehousing environments, immediate view maintemae is generally
not possible, since administrators of data sources may naadéw what views exist
in the data warehouse, and data warehouse administrators snaot be able to
access the changes to the data sources directly. Deferredwimaintenance can
be performed periodically, or on-demand when certain conidins arise, and is
generally used as the view refreshment policy in data waralsing environments.

Combining the maintenance logic and maintenance time, therare therefore
six possible view maintenance strategies: immediate inanental, immediate re-
compute, periodic incremental, periodic recompute, defed incremental and de-
ferred recompute maintenance [Eng02, ECLO03].

The view maintenance approach discussed by Gupta and Quast al: in
[GIM96, QGMW96] is to make viewsself-maintainable which means that ma-

terialised views can be refreshed by only using the content the views and
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the updates to the data sources, and not requiring to accedsetdata in any data
source. References [Huy97], [VM97] and [LLWO99] also disswview maintenance
problems pertaining to self-maintenance for views in dataavehousing environ-
ments, focusing on select-projection-join (SPJ) views. S a view maintenance
approach usually needs auxiliary materialised views to s additional informa-
tion. Whether these auxiliary materialised views are alsceff-maintainable, with
the original views acting as the auxiliary data, is importanto this research issue.
We are not considering self-maintainability of views in ths thesis.

Materialised warehouse views need to be maintained eitheh@n the data of
a data source changes, or if there is an evolution of a data so& schema. In
Chapter 4 of this thesis we discuss how AutoMed transformatn pathways can
be used to express schema evolutions in a data warehouse. hmgter 7 of this
thesis we discuss incrementally refreshing materialiseé&rmhouse views when the

data of a data source changes.

2.4.6 Data Lineage Tracing

Sometimes what is needed is not only to analyse the data in atdavarehouse,
but also to investigate how certain warehouse information as derived from the
data sources. Given a data itent in the data warehouse, nding the set of source
data items from whicht was derived is termed thelata lineage tracingproblem
[CWWO00]. Supporting data lineage tracing in data warehousg environments
has a number of applications: in-depth data analysis, onAe analytical mining
(OLAM), scienti ¢ databases, authorization management, ad schema evolution
of materialised views [BB99, WS97, CWWO00, GF1b, FJS97].

In Chapter 3 of this thesis we discuss how AutoMed schema trsfiorma-
tion pathways can be used to express the main processes ofehegjeneous data

warehousing environments, including data transformatigrcleansing, integration,
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summarisation and creating data marts. In Chapters 5 and 6 wihen address
the issues of data lineage tracing over AutoMed schema trdasmation pathways,
including: the de nitions of data lineage in the context of AitoMed; the problem
of derivation ambiguity in data lineage tracing; formulae ér data lineage tracing
based on a single transformation step; algorithms for datankage tracing along a
sequence of transformation steps; and handling virtual tresformation steps,i:e:

steps whose results are not materialised.

2.5 Discussion

This chapter has given an overview of the major issues in datearehousing. We
rst introduced the de nition of a data warehouse, and indiated that data ware-
houses integrate data from distributed, autonomous, hetegeneous data sources
in order to support the DSS processes of an enterprise. Thesacomponents
of a data warehouse system include the data sources, the stagarea, the data
warehouse itself and the end-user applications and intedas. We discussed mul-
tidimensional data modelling. The data warehouse processdescribed in this
chapter were: building a data warehouse, including data ection, data trans-
formation, data cleansing, data loading and data summaritan; maintaining a
data warehouse; and data lineage tracing.

In the rest of this thesis, we will discuss how AutoMed metada can be used
to represent the data models and schemas of a data warehouse ¢he semantic
relationships between them. We will also develop a set of algthms which use
AutoMed transformation pathways for incremental view maitenance and data
lineage tracing in the data warehouse. Our algorithms com&r in turn each

transformation step in a transformation pathway in order toapply incremental
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view maintenance and data lineage tracing in a stepwise fagh. Thus, our al-
gorithms are useful not only in data warehousing environmés) but also in any
data transformation and integration framework based on segnces of schema

transformations, such as peer-to-peer and semi-structute@ata integration envi-

ronments.
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Chapter 3

Using AutoMed Metadata for

Data Warehousing

3.1 Motivation

In data warehouse environments, metadata is essential sinit enables activities
such as data transformation, data integration, view mainteance, OLAP and
data mining. Due to the increasing complexity of data warehges, metadata
management has received increasing research focus regeffidSR99, HMTOO,
BTMO1, CBO02].

Typically, the metadata in a data warehouse includes inforation about both
the data and the data processing. Information about the datancludes the
schemas of the data sources, warehouse and data marts, owhgr of the data,
and time information such as the time when the data was createor last updated.
Information about the data processing includes rules for ¢k extraction, cleans-
ing and transformation, data refresh and data purging polies, and the lineage
of migrated and transformed data.

Up to now, in order to transform and integrate data from hetengeneous data
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Figure 3.1: Frameworks of Data Integration

sources, a conceptual data model (CDM) has been used as ttmnmon data
mode| i:e: as the data model to which the detailed and summarised data of
the data warehouse conform, and into which source data areatrslated. This
approach assumes a single CDM for the data transformation drnintegration
process | see Figure 3.1@). Each data sourcé has a wrapper for translating
its schema and data into the CDM of the detailed data. The scinea of the
summarised data is then derived from these CDM schemas by meaof view
de nitions, and is expressed in the same modelling languags them.

For example, [HAO1] uses the relational data model as the CQOMMKAOO,
CD97, TKS01] use a multidimensional model; [GR98] describa framework for
data warehouse design based on its Dimensional Fact ModeldL* 99, Bek99,
TBC99, HLVOO] use an ER model or extensions of it; and [VSSOgtesents its
own conceptual model and a set of abstract transformationsif data extraction-
transformation-loading (ETL).

This traditional CDM framework has a number of drawbacks. Fstly, since

LFor the rest of the thesis, by data sourcewe mean the copy of the remote data that has
been brought into the staging area (unless otherwise indidzd).

44



they are both high-level conceptual data models, semanticismatches may exist
between the CDM and a source data model, and there may be a lo$snformation
between them. Secondly, if a source schema changes, it is swaightforward to
evolve the view de nitions of the integrated schema constais in terms of source
schema constructs. Finally, the data transformation and egration metadata is
tightly coupled with the CDM of the particular data warehou. If the warehouse
is to be redeployed on a platform with a di erent CDM, it is not easy to reuse
the previous warehouse implementation.

AutoMed is an implementation of the BAV data integration appgoach which
adopts a low-level hypergraph-based data model (HDM) as itsommon data
model for heterogeneous data transformation and integrain’. So far, research
has focused on using AutoMed for virtual data integration. Tis chapter describes
how AutoMed can also be used for materialised data integratn, in particular
for expressing the data transformation and integration metdata, and using this
metadata to support warehouse processes such as data cleanspopulating the
warehouse, incrementally maintaining the warehouse datdtar data source up-
dates, and tracing the lineage of warehouse data.

Using AutoMed for materialised data integration, the data surce wrappers
translate the source schemas into their equivalent specation in terms of Au-
toMed's low-level HDM | see Figure 3.1(b). AutoMed's schema transformation
facilities can then be used to incrementally transform andntegrate the source
schemas into an integrated schema. The integrated schemandae de ned in
any modelling language which has been speci ed in terms of taMed's HDM.
We will examine in this chapter the bene ts of this alternatve approach to data

transformation/integration in data warehousing environnents.

2Seehttp://www.doc.ic.ac.uk/automed for a full list of technical reports and papers re-
lating to AutoMed.
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In the rest of this chapter, Section 3.2 gives an overview ohe AutoMed
framework to the level of detail necessary for this thesis. His includes a dis-
cussion of the HDM data model, the query language supported/ lFAutoMed,
the AutoMed transformation pathways and the AutoMed Reposory API. Sec-
tion 3.3 shows how AutoMed metadata has enough expressiveseo describe
the data integration and transformation processes in a dataarehouse, including
expressing data transformation, data cleansing, data ingeation, data summari-
sation and creating data marts. Section 3.4 discusses hovetAutoMed metadata
can be used for some key data warehousing processes, indggopulating the
data warehouse, incrementally maintaining the warehouseath, and tracing the
lineage of the warehouse data. Section 3.5 discusses theddtsrof our approach.

An earlier paper [The02] proposed using the HDM as the commadata model
for both virtual and materialised integration, and a hypergaph-based query lan-
guage for de ning views of derived constructs in terms of soze constructs. How-
ever, that paper did not focus on expressing data warehousestadata, or on
warehouse processes such as data cleansing or populatind araintaining the

warehouse.

3.2 The AutoMed Framework

3.2.1 HDM Data Model

The basis of AutoMed data integration system is the low-leVdypergraph data
model (HDM) [PM98, MP99b]. Facilities are provided for de ning higherevel
modelling languages in terms of this lower-level HDM. An HDMchema consists
of a set of nodes, edges and constraints, and so each modglonstruct of a

higher-level modelling language is speci ed as some condtion of HDM nodes,
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edges and constraints.

One advantage of using a low-level common data model such ag HDM is
that semantic mismatches between high-level modelling cstnucts are avoided.
Another advantage is that the HDM provides a unifying semarts for higher-level
modelling constructs and hence a basis for automatically @emi-automatically
generating the semantic links between them | this is ongoingwork being under-
taken by other members of the AutoMed project (see for exame[ZP04, Riz04)).

A schema inthe HDM is a triple N odes; Edges; Constraints. A query over
a schema is an expression whose variables are membefd@des] Edges In this
framework, the query language is not constrained to a partitar one. However,
the AutoMed toolkit supports a functional query language a#ts intermediate
query language (IQL) | see Section 3.2.2 below.

Nodesand Edgesde ne a labeled, directed, nested hypergraph. It is nested i
the sense that edges can link any number of both nodes and atleglges. It is a
directed hypergraph because edges link sequences of nodesiges.Constraints
is a set of boolean-valued queries over the schema which aaéissed by all in-
stances of the schema. In AutoMed, constraints are expredsas IQL queries.
Nodes are uniquely identi ed by their names. Edges and comaints have an
optional name associated with them.

The constructs of any higher-level modelling languagkl are classied as
either extensional constructs or constraint constructs , or both. Extensional
constructs represent sets of data values from some domainadh such construct
in M is represented using a con guration of the extensional camgcts of the

HDM i:e: of nodes and edges. There are three kinds of extensional ¢nngs:

nodal constructs may exist independently of any other construct&n a
model. Such constructs are identi ed by ascheme consisting of the name

of the HDM node used to represent that construct. For examplen the ER
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model, entities are nodal constructs since they may existdependently of

each other. An ER entity e is identi ed by a schemehi .

link constructs associate other constructs with each other andamc only
exist when these other constructs exist. The extent of a linkonstruct is a
subset of the cartesian product of the extents of the constrts it depends
on. A link construct is represented by an HDM edge. It is idemned by a

scheme that includes the name (and/or other identifying information) of
constructs it depends on. For example, in the ER model, relanships are
link constructs since they associate other entities. An ERetationship r

between two entitiesel and e2 is identi ed by a schemehr; el; ed .

link-nodal constructs are nodal constructs that can only exist when dain
other constructs exist, and that are linked to these constuais. A link-nodal
construct has associated values, but may only exist when asgted with
other constructs. It is represented by a combination of an HM node and
an HDM edge and is identi ed by ascheme including the name (and/or
other identifying information) of this node and edge. For eample, in the
ER model, attributes are link-nodal constructs since they &wve an extent
and must always be linked to an entity. An ER attribute a of an entity e

is identi ed by a schemehe; ai .

Finally, a constraint construct has no associated extent but represents re-

strictions on the extents of the other kinds of constructs. tllimits the extent of

the constructs it relates to. For example, in the ER model, geeralisation hier-

archies are constraints since they have no extent but resttithe extent of each

subclass entity to be a subset of the extent of the superclasstity; similarly, ER

relationships and attributes have cardinality constrains.
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Previous work has shown how relational, ER, OO [MP99b], XMLMPO1,
Zam04] and at- le [BKL *04] modelling languages can be de ned in terms of the
HDM. After a modelling language has been de ned in terms of thhHDM (via
the API of AutoMed's Model De nition Repository | see Sectio n 3.2.4 below), a
set of primitive transformations is automatically availabe for the transformation
of schemas de ned in the language. Section 3.2.3 below wilscuss AutoMed
transformations.

In this section, we next illustrate how a simple relational radel, simple XML
data model and simple multidimensional data model can be regsented in the
HDM.

Representing a Simple Relational Model

Relational Construct HDM Representation

construct: Rel

class: nodal node: hRi

scheme:hRi

construct: Att node: R : ai

class: link-nodal, constraint edge:h;R;R: al

scheme:hR; a; ni if n= null
then constraint: hhh R;R: ai ;f0;1g;f 1::N gi
else constraint: hthR;R: ai ;f 1g;f 1::N gi

Table 3.1: Representing Simple Relational Model Construst

We show in Table 3.1 how a simple relational data model can bepresented in
the HDM. In our simple relational model, there are two kinds fbschema construct:
Rel and Att. A Rel construct is identied by a schemehRi where R is the
relation name, and aAtt construct is identi ed by a schemehR; a;ni wherea is
an attribute (key or non-key) which may benull or notnull (denoted by n). In
Table 3.1, we use some shorthand notation for expressing digality constraints

on HDM edgeshhhamec,; :::; cyi ; S1; ii5; Smi, Wherenameis the edge name which
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can be anonymous (denoted by_\), each ¢ is a participating construct in the
edge, and eacls; is a set of integers representing the possible values for the
cardinality of eachc; in the edge. Note thatN denotes in nity in the table. The
extent of aRelconstruct HRi in an AutoMed relational schema is the projection of
the relation R(ky; ::5; Kn; ag; ii0; am) onto its primary key attributes ky;:::; k,. The
extent of eachAtt construct iR; a;ni of R is the projection of R onto Kky; :::; Ky a,
wherea 2 Kq; 5 Karag) i am.

For example, a relationstudentid; sex dnamé would be modeled by &Relcon-
struct histudeni and threeAtt constructshistudent id; notnulli , Hstudent sex nulli
and hstudentdnamenotnuli . Note that, for ease of exposition, in this thesis
we may omit the n notation in Att constructs and we do not consider the null
feature of attributes, so that the above threeAtt constructs are simpli ed into
hstudentidi , Hstudent sex and histudentdname . We also ignore primary keys
and foreign keys and refer the reader to [MP99b] for an encaodi of a richer

relational data model, including the modelling of constraits.

Representing a Simple XML Model

Table 3.2 shows the representation of a simple XML model innas of the HDM.
In this model, there are three kinds of schema construcElement Attribute and
NestSet The extent of an Elementconstruct hei consists of all the elements
with tag e in the XML document; the extent of eachAttribute construct he; ai
consists of all pairs of elements and attributeg;y such that elementx has tag
e and has an attribute a with value y; and the extent of eachNestSetconstruct
He,; el consists of all pairs of elements;y such that elementx has tagp and
has a child elementy with tag c. We refer the reader to [ZamO04] for an encod-

ing of a richer model for XML data sources, called XML DataSaue Schemas
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(XMLDSS), which also captures the ordering of children eleemts under par-
ent elements. That paper gives an algorithm for generatinghée XMLDSS of an
XML document. That paper also discusses a unique naming sohe for Element
constructs and their instances. In particular,helementName $hcounti is used
for Elementconstructs, wherehcounti is a counter incremented every time the
same helementName is encountered in a depth- rst traversal of the schema;
and helementN ame $hcounti _hinstancei is used for instances of aiklementcon-
struct where hinstancei is a counter incremented every time a new instance of the
corresponding schema element is encountered in the documnelf the $hcounti

is omitted from an element name, then $1 is assumed.

XML Construct Equivalent HDM Representation

Construct: Element

Classnodal node: hhxml: el

Schemehtal

Construct: Attribute | node: hhxml: e: ai

Class: link-nodal, edge:h; xml: e xml:e: ai

and constraint links: hxml: ei

Scheme:he; al constraint: hhyxml: e xml:e:ai ;f0;1g;f1::Ngi
Construct NestSet | edge:hh; xml: g,; xml: i

Classlink, constraint| links: Hxml: & , hxml: i

Schemehte,; i constraint: hhy xml: e,; xml: &i ;f0:Ng; f 1gi

Table 3.2: Representing Simple XML Model Constructs

To illustrate, Figure 3.2 shows a XML le which is modeled by hree Element
constructs, fourAttribute constructs, and twoNestSetconstructs.
The Elementconstructs and their extents are as follows, where:[] denotes

alistin IQL, f :::g denotes a tuple (in this case one-tuples), arfti : :° denotes a

string in 1QL:
hrooti = [%oot _19
hroursé = [%ourse 1% %ourse _29
hstudeni = [%tudent _1% Student 28 Student _3% Student _49
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<?XML version="1.0'? >
<root>
<courseCID =\ISC01" cname=\Math" >
<student SID =\ISS01" mark=\76" = >
<student SID=\ISS02" mark=\78" = >
< =course>
<courseCID =\ISC02" cname=\Programming" >
<student SID=\ISS01" mark=\86" = >
<student SID =\ISS02" mark=\85" = >
< =course>
< =root>

Figure 3.2: A XML File

The Attribute constructs and their extents are as follows:
Htourse CIDi = [f%ourse 1% 94SC01%Y; f Course 2% ASCOXY]

[f %course 1% Mathy; f course 2% Programmindy]
[f%Student 1% 4SS01%; f Student 2% 4SS0y
f%tudent _3%95S01%; f Student 4% 4SS02Y]
[f%tudent _1° 76q; f Student 2% 78g;

f %tudent _3% 86g; f Student _4° 85¢]

hHtoursecnama

hstudent SIDi

hstudent marki

The two NestSetconstructs and their extent are:

heoursestudeni = [f%ourse -1 Student _1%; f Tourse _1° Student _2%;
f%ourse 2% Student _3%; f Tourse _2¢ Student _4%]
Hroot;studeni = [f%oot _1% %ourse _1%; f Yoot _1° Course 2]

Representing a Simple Multidimensional Model

Our simple multidimensional data model has four kinds of selma construct: Fact,

Dim (dimension), Att (non-key attribute) and Hierarchy For simplicity, we model
a measure as any other non-key attribute Fact and Dim are nodal constructs,
Att is a link-nodal construct andHierarchyis a constraint. This speci cation is

illustrated in Table 3.3.
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dimension tableR is uniquely identi ed by the schemehR; ai . This translates in

the HDM into a link-nodal construct comprising a new nodéiR : ai and an edge

Hierarchyconstructs re ect the relationship between a primary key dtibute
k; in a fact table R and its referenced foreign key attributd(l-oin a dimension table
R® or between a primary key attribute in a dimension tableR and its referenced
foreign key attribute in a sub-dimension tableR% A hierarchy construct maps
to a constraint in the corresponding HDM schema, which asdsrthat the set of

values ofk; in R are always contained in the set of values fd¢’ in R’.

Dimensional Construct HDM Representation
construct: Fact
class: nodal node: hRi

construct: Dim
class: nodal node: hRi

construct: Att

class:link-nodal node: iR : ai
scheme:hR; ai edge:h;R;R: ai
construct: Hierarchy constraint:

class: constraint [Xjf X1;:: %9 hh Ri]
scheme:HR; R’ k; kfi yif yi;i:5;ymg Hh RA]

Table 3.3: Representing Simple Multidimensional Model Caitructs
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3.2.2 The IQL Query Language

AutoMed supports a functional query language as its interntiate query lan-
guage (IQL)Y’. IQL is a comprehensions-based functional query languag&uch
languages subsume query languages such as SQL and OQL in eggiveness
[Bun94]. References [JPZ03, Pou04] give the details of IQInchreferences to
other work on comprehension-based functional query langues. Here, we give
an overview of IQL to the level of detail necessary for this #sis.

IQL supports several primitive operators for manipulatinglists. The list ap-
pend operator,++, concatenates two lists together. Thalistinct operator re-
moves duplicates from a list and thesort operator sorts a list. The monus
operator [Alb91], , takes two lists and subtracts each member of the second
list from the rst e.g. [1,2,3,2,4]- [4,4,2,1] = [3,2] The fold operator applies
a given functionf to each element of a list and then “folds' a binary operator
op into the resulting values. It is de ned recursively as follas, where(x:xs)
denotes a list with headx and tail xs:

fold fopel[] =e

fold f op e (x:xs) = (f x) op (fold f op e xs)

Other IQL list manipulation operators can be specied usingold together
with IQL's support of lambda abstractions and set of built-in arithmetic and
boolean operators (such as+ ; ;=;>;<; =;!=;>=;<=;and or; not; membe)*.
For example, the IQL functionssumand count are equivalent to SQL's SUM and

COUNT aggregation functions and can be speci ed as

3IQL is an \intermediate" language because, in a virtual integration scenario, queries using
the high-level query language supported by a global schemarea translated into IQL queries
over the schema constructs de ned in AutoMed, and these IQL geries are then translated into
the queries using the high-level query languages supporteoly the data sources so that they can
be evaluated in the data sources.

4Although they can be speci ed in this way, for e ciency purpo ses, they are actually built-
into the IQL Query Evaluator.
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sum xs = fold (id) (+) O xs

count xs = fold (lambda x.1) (+) O xs
We also have

min xs = fold (id) lesser maxNum Xxs

max xs = fold (id) greater minNum xs

avg xs = let {s,c} = fold (lambda x.{x,1}) combine {0,0} xs

in (s/c)

assuming constantsmaxNunand minNumand the following functions lesser ,
greater and combine

greater = lambda x.lambda y.if (x > y) then x else y

lesser = lambda x.lambda y.if (x < y) then x else y

combine = lambda {s1,cl}.lambda {s2,c2}{s1+s2,c1+c2}

The function flatmap applies a list-valued functionf to each member of a
list xs and is de ned in terms offold :

flatmap f xs = fold f (++) [] xs
flatmap can in turn be used to specify selection, projection and joioperators.
For example, themapfunction is a generalised projection operator and is de ned
as

map f xs = flatmap (lambda x.[f X]) xs

flatmap can also be used to de necomprehensiondBun94]. For example,
the following comprehension iterates through a list of stughts and returns those
students who are not members of sta :

[X | X <- <<student>>; not (member <<staff>> x)]
and it translates into:

flatmap (lambda x.if (not (member <<staff>> x))

then [x] else []) <<student>>
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typed IQL expression, andQ to Q, are quali ers, each quali er being either a
Iter or a generator A generator has syntaxp E wherep is a pattern and
E is a collection-valued expression. A pattern is an expressi involving tuples,
variables and constants only. A lter is a boolean-valued gxession.

Grouping operators are also de nable in terms ofold (see [PS97]). In par-
ticular, the operator group takes as an argument a list of pairxs and groups
them on their rst component, while gc aggFun xsgroups a list of pairsxs on
their rst component and then applies the aggregation fundon aggFunto the
second component.

Although 1QL is list-based, if the ordering of elements witn lists is ignored
then its operators are faithful to the expected bag semans¢ and in this thesis
henceforth we do assume bag semantics. Use of thstinct operator can be used

to obtain set semantics if needed.

3.2.3 Transformation Pathways

As described in Section 3.2.1, each modelling construct ofhégher-level mod-
elling language can be speci ed as some combination of HDMdes, edges and
constraints. For any modelling languag@& speci ed in this way, AutoMed auto-
matically provides a set of primitive schema transformatiaes that can be applied
to schema constructs expressed i . In particular, for every extensional con-
struct of M there is anaddand adeleteprimitive transformation which add and
delete the construct into and from a schema. Such a transfoation is accom-
panied by an IQL query specifying the extent of the added or tkted construct
in terms of the rest of the constructs in the schema. For thoseonstructs of
M which have textual names, there is also eenameprimitive transformation.

Also available arecontractand extendtransformations which behave in the same
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way asadd and deleteexcept that they indicate that their accompanying query
may only partially construct the extent of the new/removed shema construct.
The contract and extendtransformations can also take a pair of queriedd; uq
specifying a lower and upper bound on the extent of the new/meoved construct,
instead of just one lower-bound query as described above. wéver, for the pur-
pose of data integration in a warehousing environment, we giycally require just
the single-query versions of these transformations.

In more detail, the full set of primitive transformations fa an extensional

construct T of a modelling languageM is as follows:

addT(c; q) applied to a schemaS produces a new schem&? that di ers
from S in having a newT construct identi ed by the schemec. The extent

of ¢ is given by queryg on schemasS.

extendT(c; gl ; qu) applied to a schemaS produces a new schem&° that
di ers from S in having a newT construct identi ed schemec. The mini-
mum extent of ¢ is given by queryqgl , which may take the constant value
Void if no lower bound for this extent may be derived frons. The maxi-
mum extent of ¢ is given by queryqu, which may take the constant value

Any if no upper bound for this extent may be derived frons.

delT(c;q) applied to a schemaS produces a new schem&? that di ers
from S in not having a T construct identi ed by c. The extent of c may be

recovered by evaluating queryy on schemaS®.

Note that delT (c; g) applied to a schemaS producing schemaS®is equiv-
alent to addT(c; g) applied to S° producing S.

SFor non-extensional constructs (:e: constructs that map into HDM constraints) there are
add, delete and rename transformations if the construct is mamed. In this thesis we do not con-
sider constraint constructs because our major issues addssed, incremental view maintenance
and data lineage tracing, only relate to extensional constucts. We assume that any constraints
between the source data and the global data are satis ed.
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contractT (c; gl ;qu) applied to a schemaS produces a new schem&®that
diers from S in not having a T construct identi ed by c. The minimum
extent of ¢ is given by queryql, which may take the constant valueVoid
if no lower bound for this extent may be derived fron8°%. The maximum
extent of ¢ is given by queryqu, which may take the constant valueAny if

no upper bound for this extent may be derived frons°.

Note that contractT (c; gl ; qu) applied to a schemaS producing schemas®

is equivalent to extendT(c; gl ; qu) applied to S° producing S.

renameTc;c' ) applied to a schemaS produces a new schem@°that di ers
from S in not having a T construct identi ed by schemec and instead aT

construct identi ed by schemec' di ering from c only in its name.

Note that renameTc;c' ) applied to a schemaS producing schemaS° is

equivalent to renameTc' ; ¢) applied to S° producing S.

For example, the set of primitive transformations for scheas expressed in the
simple relational data model we de ned in Section 3.2.1 igddRel, extendRel,
delRel, contractRel , renameRe| addAtt, extendAtt , delAtt , contractAtt
and renameAtt; and for schemas expressed in the simple XML model asld-
Element, extendElement, delElement, contractElement , renameElement add-
Attribute , extendAttribute , delAttribute , contractAttribute , renameAtt-
ribute , addNestSet, extendNestset , delNestset and contractNestset

The queries present within transformations mean that eachrpnitive trans-
formation t has an automatically derivablereverse transformation t . In par-
ticular, each add extendtransformation is reversed by aeleté contract transfor-
mation with the same arguments, while eachenametransformation is reversed
by swapping its two arguments. Thus, AutoMed is doth-as-view (BAV) data

integration system. As discussed in [MP03a], BAV subsumebkd global-as-view
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(GAV) and local-as-view (LAV) approaches [Len02], since it possible to extract
a de nition of each global schema construct as a view over sge schema con-
structs, and it is also possible to extract de nitions of sorce schema constructs
as views over the global schema. We refer the reader to [JTM#Oor details of
AutoMed's GAV and LAV view generation algorithms.

In AutoMed, schemas are incrementally transformed by applyg to them a
sequence of primitive transformationd;;:::;t,. Each primitive transformation
adds, deletes or renames just one schema construct. Thugemmediate schemas
may contain constructs of more than one modelling language.

We term a sequence of primitive transformations from one setma$S; to an-
other schemas, a transformation pathwayfrom S; to S,, denotedS; ! S,. All
source, intermediate and integrated schemas and the pathygabetween them are
stored in AutoMed's Schemas & Transformations Repositorysée Section 3.2.4
below).

The queries within transformations are used by AutoMed's Gbal Query
Processor (GQP) [JPZ03] to evaluate an IQL query over a globachema in
the case of a virtual data integration scenario. The GAV viewde nition for
each global schema constructi:é: the view de nition over the source schema
constructs) is derivable from the transformation pathwayy using the view gen-
eration algorithm described in [JTMPO4]. This algorithm traverses the trans-
formation pathways from the source schemas to the global stha backwards,
and unfolds any virtual schema construct using the query inhe transformation
step which created the construct, until all constructs in tle unfolded query are
materialised.

The process of evaluating a query over a virtual global schenmcludes: Query

Reformulation, replacing the virtual global schema constructs in the qugrby
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their GAV view de nitions; Query Optimisation, optimising the query by elim-
inating redundant parts of the query, and reorganising the wery by gathering
together the query parts which can be translated by the sameath source so that
bigger sub-queries can be sent to each data source wrapperet@luate; Query
Annotation, annotating the query by indicating which sub-queries havio be sent
to which data sources; andQuery Evaluation communicating with data source
wrappers by sending them sub-queries to evaluate, receigithe results, and un-
dertaking any further necessary evaluation to obtain the @l query resul®.

In the case that the global schema is materialised, the QueBwvaluator can

be used directly on the materialised data.

3.2.4 The AutoMed Metadata Repository

The AutoMed Metadata Repository forms a platform for other omponents of
the AutoMed Software Architecture (illustrated in Figure 33) to be implemented
upon. When a data source is wrapped, a de nition of the schenfar that data
source is added to the repository. AutoMed's wrappers are ptemented at two
levels. Ahigh level wrapperconverts between AutoMed queries and data and the
standard representation for a class of data sourceg):the SQL92Wrappeconverts
between IQL and SQL92. Alow level wrappedeals with di erences between the
class standard and a particular data source:g:the PostgresSQLWrappe&onverts
between SQL92 and Postgres databases.

The schema matching tool may be used to identify related olges in various
data sources (accessing the query processor to retrievealtom schema objects)
[Riz04]. After a schema matching phase, the schema restrudhg tool can be

applied to generate a transformation pathway from a sourcelsema to the global

6As well as working on the data warehousing aspects of AutoMedl have also contributed
to the design and development of the query optimiser.
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schema [ZP04]. The global query processor undertakes thepessing described
in the previous section, and includes the query reformulamn, optimisation, an-
notation and evaluation processes. A GUI is supplied with AoMed for these
components, and it is possible for a user application to bergured to run from
this GUI, and use the APIs of the various components. We focugere on using

the AutoMed Metadata Repository in a data warehousing envanment.

processor
5

7 PR
_ apper | wiapp
wrapper wrapper
textl~le
repository

Figure 3.3: AutoMed Software Architecture

The repository has two logical components. The Model De nibns Repository
(MDR) de nes how each construct of a data modelling language represented as
a combination of nodes, edges and constraints in the HDM. THdDR is used to
con gure AutoMed so that it can handle a particular data modding language.
The Schemas and Transformations Repository (STR) de neslsemas in terms of
the data modelling constructs in the MDR, and transformatios to be speci ed
between such schemas. The MDR and STR may be held in the sameseparate

persistent storage. If the MDR and STR are stored in separat&torage, many
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AutoMed users can share a single MDR repository, which oncercgured, need
not be updated when integrating data sources that conform ta known set of
data modelling languages.

The API to these repositories uses JDBC to access an undengirelational
database. Thus, these repositories can be implemented wgsiany DBMS sup-
porting JDBC. If the DBMS of the data warehouse supports JDBCthen the

AutoMed repositories can be part of the data warehouse it$el

Access 0:N STR
Method [1:1 Schema 53 < >

2:2
Transformdg
tion
1:2
Object
Scheme [1:1 0:N
1:N 1:1
Scheme 11 Construct o Model
MDR

Figure 3.4: AutoMed Repository Schema

Figure 3.4 (taken from [BMTO02]) gives an overview of the keylgects in the
repository. The STR contains a set of descriptions &chemaseach of which con-
tains a set ofSchemaObjednstances, each of which must be based orCanstruct
instance that exists in the MDR. This Constructdescribes how theschemaObject
can be constructed in terms of strings and references to oth&chema objects,
and the relationship of the construct to the HDM. Schemas mape related to
each other using instances dfransformation

The AutoMed repository API provides methods to create, quer alter and
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remove models, constructs, schemas, schema objects andi¢farmations. The

repository APl comprises of Java classes representing eaxfhthese entities and
the methods for manipulating thend.

3.3 Expressing Data Warehouse Schemas and
Transformations

QJOH 6RXUFH 0XOWL 6RXUFH &UHDWLQJ 'DWD

7UDQVIRUPLG ! OWHIUDWLQJ
Q QJ 2oHpRQ) &OHDQOJ @ QJ  6XPPDULILQJ DWLQ)
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'66 'DWD 6RXUFH 6FKHPD "6 'DWD :DUHKRXVH 6FKHPD
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Figure 3.5: Data Transformation and Integration at the Schma Level

Figure 3.5 illustrates at the schema level the data transfaration and integra-
tion processes in a typical data warehouse. Generally, theteact-transform-load
(ETL) process of a data warehouse includes extracting dateoin the remote data
sources into the staging area, cleansing and transformingtd in the staging area
and loading them into the data warehouse. In this section wesaume that data
extraction has already happenede: all the data sources are in the staging area.
The data source schemad)S$in Figure 3.5) may be expressed in any modelling
language that has been speci ed in AutoMed. The transformg process trans-

lates eachDS$ into a transformed schemal'§ which is ready for single-source

"For details, seehttp://www.doc.ic.ac.uk/automed/resources/apidocs/i ndex.html
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data cleansing. EachTS may be de ned in the same, or a di erent, modelling
language adDS$Sand other TS. The translation from aDS$Sto a TS is expressed
as an AutoMed transformation pathwayDS$S! TS. Such translation may not
be necessary if the data cleansing tools to be employed candpplied directly to

DSS§ in which caseTS and DS$are identical.

The single-source data cleansing process transforms ed into a single-
source-cleansed schentS, which is de ned in the same modelling language as
TS but may be a di erent from it. The single-source cleansing jrcess is expressed
as an AutoMed transformation pathwayTS ! SS. Multi-source data cleansing
removes con icts between sets of single-source-cleansetesnas and creates a
multi-source-cleansed schemisl$ from them. Between the single-source-cleansed
schemas and the detailed schem®§ of the data warehouse there may be several

stages ofMS, possibly represented in di erent modelling languages.

to be transformed and integrated into one schem&, we can rst automatically
create a "union' schem&; [ :::[ S, (after rst undertaking any renaming of con-
structs necessary to avoid any naming ambiguities betweeworsstructs from dif-
ferent schemas). We can then express the transformation aimdegration process
as a pathwayS; [ :::[ Sn! S8 (There are also other schema integration ap-
proaches possible with AutoMed. With this approach, and in data warehousing
context, there is no need foextendtransformation steps).

After multi-source data cleansing, the resultingM$ are then transformed and
integrated into a single detailed schemaD$ expressed in the data model of the

data warehouse. First, a union schemslg[ ...[ M§ is automatically generated.

8Reference [AMGFO05] is concerned with correlating data fromdi erent databases and pro-
vides semantically rich materialisation rules handling stiema heterogeneity among the data-
bases. The integrated schema can use one of the integratiomles, such as union, merge and
intersection, to integrate the source databases. This funiionality can also be obtained using
AutoMed, within the pathway Si[ :::[ Sp! S.
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The transformation and integration process is then expresd as a pathwayM$

[ ...[ M! DS The DScan then be enriched with summary views by means

of a transformation pathway fromDSto the nal data warehouse schem@®WS
Data mart schemas DMpcan subsequently be derived from thBW&nd these

may be expressed in the same, or a di erent, modelling langge as theDWS

Again, the derivation is expressed as a transformation patlay DW$ DMS
Using AutoMed, four steps are needed in order to create the tadata ex-

pressing the above schemas and transformation pathways:

1. Create AutoMed repositories: AutoMed metadata is stored in the
MDR and the STR. So we rst need to create these repositoriesdlud-
ing empty relations de ned by the MDR and STR schemas illustited in
Figure 3.4.

2. Specify data models: All the data models that will be required for ex-
pressing the various schemas of Figure 3.5 need to be spatiie terms of
AutoMed's HDM, via the API of the MDR (standard de nitions of rela-

tional, ER and XML data models are available).

3. Extract data source schemas: Each data source schema is automatically
extracted and translated into its equivalent AutoMed reprgentation using

the appropriate wrapper for that data source.

4. De ne transformation pathways: The remaining schemas of Figure 3.5
and the pathways between them can now be de ned, via the API dhe
STR.

After any primitive transformation is applied to a schema, anew schema
results. By default, this will be anintentional schema within the STRi:e:

it is not stored but its de nition can be derived by traversing the pathway
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from its nearest ancestoextensionalschema. The data source schemas are,
by de nition, extensional schemas:e: their full de nition is stored within

the STR. It is also possible to request that any other schemaebomes an
extensional one, for example the successive stages of sawgidenti ed in

Figure 3.5.

After any addT(c,q)transformation step, it is possible tanaterialisethe new
construct ¢ by creating, externally to AutoMed, a new data source whose
schema includes and populating this data source by the result of evaluating
the query g (we discuss this process in more detail in Section 3.4.1 be)o
In general, a schema may be materialisedschema (all of its constructs are
materialised) or avirtual schema (none of its constructs are materialised)

or partially materialised (some of its constructs are materialised, some not).

In the following sections, we discuss in more detail how Autbed transforma-

tion pathways can be used for describing the six stages of thata transformation

and integration process illustrated in Figure 3.5. We rst gve a simple example

illustrating data transformation and integration, assumng that no data cleansing

IS necessary.

3.3.1 An Example of Data Integration and Transforma-

tion

Figure 3.6 shows a multidimensional schema consisting of acf table Salary

and two dimension tablesPersonand Job, which is represented by AutoMed

schema constructshialaryid; job.idi , HBalarysalary , hBalarydeptidi , hPer

sonidi , HPersonnama , HJob; job.idi , HJob; job_descr, HBalary Personid; idi

and hBalary Job; job.id; job_idi ; a XML schema consisting of elementsoot and

dept and two attributes id and name which is represented by AutoMed schema
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Figure 3.6: An Example of Data Integration and Transformain

constructshimooti , hdept , haept idi , Hdept name and hroot; dept ; and a rela-
tional schema consisting of a single tablBeptinto which the other two schemas
need to be transformed and integrated, which is representég AutoMed schema
constructs hiDepti , Dept idi , HDept deptnama and HDept total _salary .

In order to integrate the two source schemas into the targettkema we rst
form their union schema. The following four primitive trangormations are then
applied to this union schema in order to add théept relation to it, de ning the
extent of its id key attribute to be obtained by the XML id attribute, the extent
of its deptnameattribute to be obtained by the XML nameattribute, and the
extent of its total_salaryattribute to be obtained by summing the salaries for each
department in the Salarytable:

addRel (WDepti , map (lambda {k,i}.)  Hueptidi);

addAtt (hept;idi , map (lambda {k,i}.{i,i}) Hdept idi );

addAtt (hDept; dept.namd , [{i,n} j{k,i} hh deptidi ; {k',n}  hh dept namd ;
k=k"]);

addAtt (hDept; total_salaryi , gc sum [{d,s}[{i,j,s} hh Salary salary ;

{i".j',d} hh Salary dept.idi ;
== D)
The following ve transformations can then be applied to theaesulting schema

to remove the XML constructs from it | note how the queries show how the
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extents of these constructs could be reconstructed from thremaining schema
constructs. In particular, IQL functions generateUID s xs and generateAtt

s xs are used to generate instances of XML elements and attribwewhere the
input s is a string andxs is a list of n-tuples. The function generateUID gener-
ates a list of values of the forns_count in which count is a counter incremented
every time a new value is generated. The number of values gated is equal to
the number of items in the listxs. The function generateAtt generates a list of
tuples of the form{s_count,c1,...,cn} in which s and count are as above and
{c0,c1,...,.cn} is a tuple in the list xs. For example, supposs is'dept’ andxs

is ['D01''Sales’} ;{'D02'Accounts’} ;{'D03','Personnel} ], the result

of generateUID s xs is the list [dept_1' ;'dept_2' ;'dept_3' ], and the result

ofgenerateAtt s xs isthelist [{'dept_1','Sales'} ; {'dept_2','Accounts'} ;

{'dept_3','personnel’} ].

delNestSet  (hmoot; depti , [{'root_1',c}|c generateUID 'dept’  hiDepti ]);

delAttribute  (hdept, namd , generateAtt 'dept’ hHbept;, deptnamd );

delAttribute  (Hudept idi , generateAtt 'dept’ hDept; dept.idi );

delElement  (Hdepti , generateUID 'dept’ Hbepti );

delElement  (Hmooti, [root 1' ]);

Finally, the following sequence of transformations removthe multidimen-
sional schema constructs | note that contractrather than deletetransformations
are used since their extents cannot be reconstructed fromethhemaining schema
constructs:

contractHierarchy  (HBalary Personid;idi );

contractHierarchy  (hBalary Job; job_id; job_idi );

contractAtt (Hsalary salary );
contractAtt (HBalary dept.idi );
contractFact (Hsalary id; job_idi );
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contractAtt (HJob; job_descr );

contractDim (HJob; job_idi );
contractAtt (hPersonnamd );
contractDim (HPersonidi );

The nal schema consists of theDept relation and its attributes, as required.
This example illustrates how schemas expressed in one datadel can be
transformed into a schema expressed in another. The geneaplproach is to rst
add the new schema constructs of the target data model (relabal in the above
example) and then to delete or contract the schema constrigciof the original

data model(s) (multidimensional and XML in the above examm).

3.3.2 Expressing Data Cleansing

We recall from Chapter 2 that the problem of data cleansing tludes single-source
problems and multi-source problems, and that both of them ha& two levels,
schema-level and instance-level. In this section, we intgate how AutoMed
metadata can be used for expressing data cleansing proces$ar both single and

multiple data sources, and for both schema-level and instea-level problems.

Single-Source Cleansing

Schema-level single-source problems may arise within ansformed schema'§
in Figure 3.5 and they can be resolved by means of an AutoMedatrsformation
pathway that evolvesTS as necessary.

Single-source instance-level problems include value, @ute and record prob-
lems. Value problems occur within a single value and includeroblems such
as missing values, misspelled values, mis- elded valuesntedded values, mis-

expressed values, or values using abbreviations. Attribeitproblems relate to
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multiple attributes in one record and include problems suchs dependence viola-
tion. Record problems relate to multiple records in the dataources and include
problems such as duplicate records or contradictory recad

Handling some instance-level problems does not require tBehemas to be
evolved, only the extent of one or more schema constructs te lzorrected. In
general, suppose that the extent of a schema constructneeds to be replaced by

a new, cleansed, extent. We can do this using an AutoMed pathw as follows:

1. Add a new temporary constructtempto the schema, whose extent consists
of the “clean' data that is needed to generate the new extent @ This clean
data is derived from the extents of the existing schema comstts. This
derivation may be expressed as an IQL query, or as a call to aexiernal'
function or, more generally, as an IQL query with embedded tato external

functions.

(The IQL interpreter is easily extensible with new built-in functions, im-
plemented in Java, and these may themselves call out to othexternal
functions. If the extent of a new schema construct depends ealls to one
or more external functions, then the new construct must be nterialised.
Otherwise, if the extent of a new construct is de ned purelyn terms of
IQL and its own built-in functions then the new construct ned not be

materialised.)
2. Contract the construct c from the schema.
3. Add a new constructc whose extent is derived fromtemp.
4. Delete or contract thetemp construct.

To illustrate, suppose we have available a built-in functio toolCallwhich al-

lows a specied external data cleansing tool to be invoked thi speci ed input
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data. Then, we can invoke a data cleansing tool, for exampleQuickAddress
Batch"® to correct the zip and addressattributes of a table Person(ig name, ad-
dress, zip, city, country, phoneAndFax, maritalStatbg) regenerating these at-
tributes given the combination of address, zip and city infanation:

addRel (HTemp; id; addresszipi ,

toolCall 'QuickAddress Batch' ' hPersonaddress'
" HPersonzipi ' ' HPersoncityi ' );
contractAtt  (hPersonzipi );

contractAtt  (hPersonaddress);

addAtt (hPersonzipi , [{i,z}|{i,a,z} hh Temp; id; addresszipi ]);
addAtt (hPersonaddress, [{i,a}|{i,a,z} hh Temp; id; addresszipi );
delRel (HTemp; id; addresszipi , [{i,a,z}|{i,a} hh Personaddress;

{i",z} hh Personzipi ;i = i' ]);

Handling some instance-level problems may require the sah&s to be evolved.
For example, if we have available a built-in functiorsplit phonefax which slits a
string comprising a phone number followed by one or more smacfollowed by a
fax number into a pair of numbers, then the following AutoMedathway converts

the attribute phoneAndFawf the Persortable above into two new attributesphone

and fax
addRel (hTemp;id; phonefaxi , [{i,p,f}|{i,pf} hh PersonphoneAndFak;
{p,f} split_phone_fax pf ]);
addAtt (hPersonphond , [{i,p}/{i,p.f} hh Temp; id; phone faxi ]);
addAtt (hPersonfaxi , [{i,f}|{i,p.f} hh Temp;id; phone faxi ]);
contractAtt (hPersonphoneAndFak);
delRel (hTemp;id; phone faxi , [{i,p,f}|{i,p} hh Personphona ;
{if th Personfaxi ;i = i' ]);

http://www.gas.com/address-correction-software.asp
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Multi-Source Cleansing

After single-source data cleansing, there may still exisba icts between di erent
single-source cleansed schemas in Figure 3.5, leading ® pinocess of multi-source
cleansing.

Schema-level problems in multi-source cleansing includérdoute and struc-
ture con icts. Attribute con icts arise when di erent sour ces use the same name
for di erent constructs (homonyms) or di erent names for the same construct
(synonyms), and they can be resolved by applying appropri@renametransfor-
mations to one of the schemas. Structure con icts arise wheahe same informa-
tion is modeled in di erent ways in di erent schemas, and thg can be resolved by
evolving one or more of the schemas using appropriate Autoli@athways. For
example, the transformation pathway in Section 3.3.1 showsw the department
information modeled in an XML schema can be transformed intthe equivalent
information modeled in a simple relational schema.

Instance-level problems in multi-source cleansing incledattribute, record,
reference and data source problems. Attribute problems ilucle di erent repre-
sentations of the same attribute in di erent schemas or di eent interpretations
of the values of an attribute in di erent schemas. Such proleims can be resolved
by generating a new extent for the attribute in one of the scimas by applying an
appropriate conversion function to each of its values. In geral, suppose we wish
to convert each of the values within the extent of a construat in a schemaS by
applying a function f to it. First a new construct ¢_newis added to S, whose
extent is populated by iterating over the extent ofc and applying f to each of
its values. Then, the old constructc is deleted or contracted from the schema,
and nally c_newis renamed toc. For example, the following pathway converts
a 'M'I'S' representation for the maritalStatusattribute in the above Personta-

ble into a 'Y'/'N' representation, assuming the availability of a built-in function
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convertMSwhich maps 'M' to "Y' and 'S' to 'N":
addAtt (hPersonmaritalStatusnewi
[{i,convertMS s}[{i,s} hh PersonmaritalStatud ]);

contractAtt (hPerson maritalStatud );

renameAtt (hPersonmaritalStatusnewi , Person maritalStatug );

Note that if there is also available an inverse functiorconvertMSinvwhich
maps 'Y'to 'M' and 'N' to 'S’, then a deletetransformation could have been used
in the second step above instead of @ntract

delAtt (HPersonmaritalStatud

[{i,convertMSinv s} {i,s} hh PersonmaritalStatusnew ]);

Record problems in multi-source cleansing include dupliEarecords or con-
tradictory records among di erent data sources. For dupliate records, suppose
that constructs c and ¢’ from di erent schemas are to be integrated into a single
construct within some multi-source cleansed schema. Theprjor to the integra-
tion, we can create a new extent foc comprising only those values not present
in the extent of c' :

add (c_new, [v | v c; not (member c' V)];

contract (c);

rename  (c_new, C);

For contradictory records, we can similarly create a new esit for ¢ com-
prising only those values which do not contradict values inhie extent ofc' . For
example, suppose we have tablérsonand Employeen di erent schemas, both
with key id, and the attributes hPersonmaritalStatus and HEmp maritalStatus
are going to be integrated into a single attribute of a singléable within some
multi-source cleansed schema. Then the following transfoation removes val-
ues fromhPersonmaritalStatus which contradict values inhEmpg maritalStatus

(assuming that the latter is the more reliable source | the opposite choice would
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also of course be possiif;
addAtt  (HPersonmaritalStatusnewi ,
hPerson maritalStatud [{i,s}i,s} hh PersonmaritalStatud ;
{i",s'} hh Emp; maritalStatud ;
i =1 not (s =89));

contractAtt (hPersonmaritalStatud );

renameAtt (hPerson maritalStatusnewi , HPersonmaritalStatud );

Reference problems in multi-source cleansing occur whenederenced value
does not exist in the target schema construct and can be regedl by removing
the dangling references. For example, if an attributéfEmp deptidi references
a table hbepti with key hdeptidi , then the following transformation removes
values fromhimg deptidi for which there is no correspondingdideptidi value
in hibept :

addAtt (HEmp; deptid_newi , [{i,d}/{i,d} hh Emp; dept.idi ; memberhDepti d));

contractAtt  (hEmp; dept.idi );

renameAtt  (hEmp; deptid_newi ; tPersondept.idi );

Finally, data source problems relate to whole data sourcefr example, ag-
gregation at di erent levels of detail in di erent data sources €:g:sales may be
recorded per product in one data source and per product catay in another data
source). Such con icts can be resolved either by retainingoth sets of source data
within the target multi-source schemaM$ (with appropriate renaming of schema
constructs as necessary) or by selecting the “coarser' aggation and creating a
view over the more detailed data which summarises this datd the coarser level,
ready for integration with the more coarsely aggregated datfrom the other data

source.

OWe could also use the taxonomy of quality de ned in [BGF02] to decide which is the more
reliable source.

74



3.3.3 Expressing Data Integration

After data cleansing, the resulting multi-source-cleanseschemasM$, ..., M$
are ready to be transformed and integrated into the detailedchema,DS via
the automatically generated union schem#g [ ...[ M§. Section 3.3.1 above

illustrated this process.

3.3.4 Expressing Data Summarisation

Data summarisation de nes views over the detailed data. Tise are expressed by
means of a transformation pathway fronDSto the nal data warehouse schema

DW<Sonsisting of a series adddsteps de ning the new summarised constructs as
views over the constructs oDS The example in Section 3.3.1 illustrates a process

of de ning a summarised view over heterogeneous data sowsce

3.3.5 Creating Data Marts

Data mart schemas DMpBcan subsequently be derived from th®WSagain by
means of a transformation pathwaypWw$ DMSUnlike the previous, summarising,
step the target schema may be expressed in a di erent modelyj language to the
DWASn fact, this step can be regarded as a separate instance ofjiire 3.5 where
the DW®ow plays the role of the (single) data source and theM$lays the role
of the target warehouse schema. The scenario is a simpli ¢at of Figure 3.5
since there is only one data source, and there are no singtesse or multi-source

cleansed schemas.
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3.4 Using the Transformation Pathways

In the previous section we showed how AutoMed metadata can lsed for ex-
pressing the processes of data transformation, cleansingtegration, summari-
sation and creating data marts in a data warehouse. In this sgon, we discuss
how the resulting transformation pathways can be used for s@ key data ware-
housing processes: populating the data warehouse, incremtadly maintaining the
warehouse data after data source updates, and tracing thexdiage of warehouse

data.

3.4.1 Populating the Data Warehouse

In order to use the AutoMed transformation pathways for poplating the data
warehouse, an AutoMed wrapper is required for each kind of @astore from
which data will be extracted or into which data will be stored In order to popu-
late a constructc of the data warehouse schemBWSwve need to generate a view
de nition for each construct of DW$ terms of its nearest ancestor materialised
constructs within the pathways from the data source schemd3S$, ..., DS$ to
DWSThis can be done using a modi cation of the GAV view generadn algorithm
described in [JTMPO4]. This algorithm traverses the pathwafrom DW$o each
DS$ backwards, all the way toDSS The modi ed algorithm stops whenever a
materialised construct is encountered in a pathway. The rak is a view de n-
ition of the construct ¢ in terms of already materialised constructs. This view
de nition is an IQL query which can be evaluated, and the redting data can be
inserted into the data store linked withc, via a series of update requests to that

data store's wrapper.
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3.4.2 Incrementally Maintaining the Warehouse Data

In order to incrementally maintain materialised warehouselata, we need to use
incremental view maintenance techniques. If a materialideconstruct ¢ in the
data warehouse schemBW$ de ned by an IQL query g over other materialised
constructs, we give in Chapter 7 formulae for incrementallynaintaining c if
one its ancestor materialised constructs?C has new data inserted into it (an
increment) or data deleted from it (a decrement). We actuayi do not use the
whole view de nition q generated forc, but instead track the changes fronc@"C
through each step of the pathway toDWS At each add or renamestep we use
the set of increments and decrements computed so far to contguhe increment
and decrement for the schema constructed being generated thys step of the

pathway. Chapter 7 discusses this in detail.

3.4.3 Tracing the Lineage of the Warehouse Data

The lineageof a data itemt in the extent of a materialised constructc of the
warehouse schem®WSs a set of source data items from which was derived.
In Chapter 5, we develop de nitions for data lineage in the agext of AutoMed
transformation pathways and give formulae for deriving thdineage of a data
item t in the extent of a materialised constructc created by a transformation
step of the formaddT(c,q) We then give an algorithm for tracing the lineage of
t all the way back to the data sources by using the AutoMed pathays from the
data source schema®S$g, ..., DS§ to the warehouse schema. This algorithm
traverses a pathway backwards, and incrementally computeseew lineage data
whenever anadd or renamestep is encountered, nally ending with the required
lineage fort from within DSS, ..., DS§.

Chapter 6 generalises these algorithms to use arbitrary AoiMed schema
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transformations for tracing data lineage:e: where intermediate schema constructs

may or may not be materialised.

3.5 Discussion

In this chapter we have shown how AutoMed metadata can be uséd express
the processes of data transformation, cleansing, integran, summarisation and
creating data marts in a heterogeneous data warehouse. Inrpeular, for all cat-
egories of data cleansing problems, the general approachoisdd new constructs
to the current schema and to populate them by ‘clean' data gerated from the
extents of the existing schema constructs by means of IQL ques and/or or calls
to external functions. The old, “dirty’, schema constructsare then contracted
from the schema. Compared with the commercial tools and geaé research
tools for data cleansing discussed in SectiondZ3 of Chapter 2, we express the
process of data cleansing using a sequence of transformagiovhich readily sup-
ports schema evolution (see points 2 and 3 below). Other datdeansing tools
can be called from our data cleansing process via built-inrfations within IQL
queries. Furthermore, we consider data cleansing both atélrschema level and at
the instance level, while only one of these aspects is typligaconsidered in other
data cleansing tools.

We have also discussed how the resulting transformation gatays can be used
for populating the data warehouse, incrementally maintaimg the data warehouse
data after data source updates, and tracing the lineage of @awarehouse data.
More detail about the latter two will be given in Chapters 5 7 of the thesis. In
this thesis we assume that the data warehouse is not updatedattly but only
based on periodic changes to the data sources in the stagirrga

There are three main di erences between our approach and theaditional
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data warehousing approach based on a single conceptual datadel (CDM):

1. In the CDM approach, each data source wrapper translatebe¢ data source
model into the CDM. Since both are likely to be high-level careptual mod-
els, semantic mismatches may exist between the CDM and theusce data
model, and there may be a loss of information between them. tontrast,
with our approach, the data source wrappers translate eachath source
schema into its equivalent AutoMed representation. Any nesssary inter-
model translation then happens explicitly within the AutoMed transforma-

tion pathways, under the control of the data warehouse degsigr.

2. In the CDM approach, the data transformation and integraion metadata is
tightly coupled with the CDM of the particular data warehou. If the data
warehouse is to be redeployed on a platform with a di erent CH, it is not
easy to reuse the previous data transformation and implemigtion e ort.

In contrast, with our approach it is possible to extend the esting pathways
from the data source schemaBS$, ..., DS$ to the current detailed data
warehouse schemd)$ with extra transformation steps that evolveDSinto a
new schemaDS3®", expressed in the data model of the new data warehouse

implementation. Chapter 4 discusses how in greater detail.

3. In the CDM approach, if a data source schema changes it istrsraightfor-
ward to evolve the view de nitions of the data warehouse cotrsicts. With
our approach, a change of a data source sche@&$ into a new schema
DS$" can be expressed as a transformation pathwddSs! DSSY. The
(automatically derivable) reverse pathwayDS3" | DS$Scan then be pre-
xed to the original pathway DS$! TS to give a pathwayDSS" ! TS,

thus extending the transformation network of Figure 3.5 to mcompass the
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new schema. Chapter 4 discusses in greater detail the moditons to the

transformation network and the change propagation process
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Chapter 4

Using AutoMed Transformation
Pathways for Handling Schema

Evolution

4.1 Motivation

The heterogeneity of the data sources of data warehouses Ihas aspects, het-
erogeneous data expressed in di erent data models, calleadbdel heterogeneity
[KRO2], and heterogeneous data within di erent data schensaexpressed in the
same data model, calledchema heterogeneitykKR02, Mil98].

As we discussed in Chapter 3, the common approach to handlingpdel het-
erogeneity is to use a single conceptual data model (CDM) fdine data trans-
formation and integration. Each data source has a wrapper rfdranslating its
schema and data into the CDM. The warehouse schema is derivedm these
CDM schemas by means of view de nitions, and is expressed inet same mod-

elling language as them. With this approach, since they areoth high-level
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conceptual data models, semantic mismatches may occur beem the CDM and
a source data model, and there may be a loss of information faeen them. More-
over, if a data source schema changes, it is not straightfaavd to evolve the view
de nitions of the warehouse schema.

Lakshmananet al [LSS93, LSS99, LSS01] argue that a uniform framework for
schema integration and schema evolution is both desirabladpossible, and this is
possible with AutoMed also as we discuss in this chapter. Thale ne a higher-
order logic language, SchemaSQL, which handles data intagon and schema
evolution in relational multi-database systems. In contrat, our approach uses
a simple set of schema transformation primitives, augmerdewith a functional
qguery language, both of which are uniformly applicable to nitiple data models.
Other previous work on schema evolution [ALP91, Bel96, BeA9BSH99] has also
presented approaches in terms of just one data model.

In contrast to the CDM approach, AutoMed's data source wrapers translate
each data source schema into its equivalent AutoMed represation, without loss
of information. In Chapter 3 we discussed how AutoMed metadiacan be used to
express the schemas and the cleansing, transformation amtegration processes
in heterogeneous data warehouse environments, supportibgth schema hetero-
geneity and model heterogeneity. It is clearly advantagesuo be able to reuse
this kind of metadata if a schema evolves. In this chapter wehew how this can
be achieved.

Earlier work [MP02] has shown how the AutoMed framework realg supports
schema evolution invirtual data integration scenarios. This chapter addresses the
problem of schema evolution imaterialiseddata integration scenarios, including
both evolution of a source schema and of the warehouse schermad also the
impact on any data marts derived from the warehouse. This sgario is more

complex than with virtual data integration, since both schenas and materialised
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data may be a ected by an evolution.

4.2 A Data Integration Scenario and Example

Figure 4.1 shows a data integration scenario in AutoMed.

The Summarised
Data Schema
and Database

Union
Schemas

Detailed Data
Schemas and
Databases

Data Source
Schemas and
Databases

Figure 4.1: Data Integration Scenario

In this data integration scenario, each data sourcBB is described by a data
source schemd&s. Each S is rst conformed into a detailed data schemaD$
(which may or may not be expressed in the same modelling larage asS) by
means of a transformation pathwayf;. The process of single-source data cleansing
can be encapsulated in this transformation pathway. There ay be information
within the summarised data schema which is not semanticallgerivable from S,
and this is asserted by the pathway fromD$ to the "union-schema'U$ which
consists of the necessargxtendtransformations'.

All the union schemasUs, ..., US§ are syntactically identical and this is as-

serted by creating a sequence adl transformations between each paitJ$ and

LIf there are none, then this pathway is empty andC$ and DS are the same schema
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US:1, of the formid US:c US:; : ¢ for each schema construct. An id transfor-
mation signi es the semantic equivalence of syntacticallydentical constructs in
di erent schemas. The transformation pathways containingheseid transforma-
tions can be automatically generated by the AutoMed softwa:. An arbitrary one
of the US can then be selected for further transformation into the sumarised
schemaSS The extent of each constructc in a union schemaUs$ is equal to the
bag-union of the extent ofc in all union schemadJs, ..., US. Thatis, idis inter-
preted as bag-union by AutoMed's view generation functionidy. The processes
of multi-source data cleansing, integrating and summarisg can be handled over
the pathway from US to SS

We assume that all the source, detailed and summarised sclasrare materi-
alised in the databasePB, DD and SDwhile all union schemadJ$ are virtual.
Figure 4.2 gives a concrete example of this data integratistenario.

The transformation pathway T, below transforms the schem&, into DS by
rst creating Relconstruct MAtabi and its attributes hiMAtab; Depti , HiMAtab;
CIDi , HMAtab; SIDI and hiMAtab; Marki using add transformations, and then

using deletetransformations to delete the schema constructs &;.

Ty S ! Dg

addRel hMAtabi [{'MA''MACO1'x}}x  hh MACOIi ]
++ [{MA''MACO02' x}[x  th MACO0Z ]
++ [{MA''MACO3'x}[x  th MACO03 |;

addAtt HMAtab; Depti  [{k1,k2,k3,k1}|{k1,k2,k3} hh MAtabi J;

addAtt HMAtab; CIDi  [{k1,k2,k3,k2}|{k1,k2,k3} th MAtabi J;

addAtt HMAtab; SIDi  [{k1,k2,k3,k3}|{k1,k2,k3} th MAtabi J;

addAtt HMAtab; Marki  [{MA'MACOL'k,x}{k,x} hh MACOZ Marki |
++ [{MA''MAC02',k,x}{k,x} th MACO2, Marki |
++ [{'MA''MACO3',k,x}{k,x} hh MACO03 Marki J;
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SS and SD:
CourseSum
Dept CID Max Avg

MA | MACO1 95 81
MA | MACO02 93 85

CS | Csco3 96 78

(US: Details(Dept ,m,w,SName,Mark))

A
VT”
US,: MAtab(Dept ,CID,SID,Mark) id US,: MAtab(Dept ,CID,SID,Mark)
CStab(Dept ,CID,SID,SName,Mark) CStab(Dept ,CID,SID,SName,Mark)
A A
DS, and DD;: DS, and DD, :
MAtab CStab
Dept| CID SID |Mark Dept | CID SID | SName | Mark
MA |MACO1|MASO1| 77 CS |CsSC01|CSS01| Jack 95

S, and DB, :

IS, and DB; :

| MACO1 MACO02 MACO3 ' CSMarks

| LSID | Mark SID | Mark SID | Mark || Sid |SName|CSC01|CsC02|CSC03
| |masor| 77 MASOL| 82 MAso2 | 76 || csso1| Jack | 95 82 75

| [Maso2| 85 MASO3 | 88 maso3| 78 || Css02| Tom | 88 94 81

| o IR ) T T IR R __I

Figure 4.2: Example of Data Integration

delAtt HMACOZL Marki [{k3,x}|{k1,k2,k3,x}  hh MAtab; Marki ; k2='"MACO1];
delAtt HMACOLSIDi  [{k3,x}|{k1k2k3,x}  hh MAtab; SIDi ; k2="MACOL1];
delRel HMACOi [{k3}[{k1,k2,k3}  hh MAtabi ;k2="MACO1];

delAtt HMACO2 Marki  [{k3,x}|{k1,k2,k3,x}  hh MAtab; Marki ; k2='"MAC02];
delAtt HMACO2SIDi  [{k3,x}|{k1k2k3,x}  hh MAtab; SIDi ; k2="MACO2];
delRel HMACO2 [{k3}{k1,k2,k3}  th MAtabi ;k2="MACO2];

delAtt HMACO3 Marki  [{k3,x}|{k1,k2,k3,x}  hh MAtab; Marki ; k2='"MACO3];
delAtt HMACO3SIDi  [{k3,x}|{k1k2,k3,x}  hh MAtab; SIDi ; k2="MACO3];
delRel HMACO3 [{k3}{k1,k2,k3}  th MAtabi ;k2="MACO3];

The transformation pathway T, below transforms schem&; into DS:
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To: S ! DS
addRel hCStah {'CS' x,y}x [[CSCO01','CSC02','CSC03] ;
y hh CSMarks |;
addAtt hCStah Dept [{k1,k2,k3,k1}|{k1,k2,k3} hh CStah J;
addAtt hCStah CIDi [{k1,k2,k3,k2}|{k1,k2,k3} hh CStah J;
addAtt HCStah SIDi [{k1,k2,k3,k3}|{k1,k2,k3} hh CStah J;
addAtt HCStahh SNameé [{'CS'xk,s}|x [CSCO01','CSC02','CSC03T ;
{k,s} hh CSMarksSNamae J;

addAtt HCStal Marki [{'CS',/CSCOL' K, x}{k,x} rh CSMarksCSCO1 ]
++ [{'CS','CSC02' k,x}{k,x} hh CSMarksCSCO02 ]
++ [{'CS','CSCO3' k,x}{k,x} hh CSMarks CSCO3 ;

delAtt HCSMarksCSCO03 [{s,m}|{d,c,s,m} hh CStak Marki ; c="CSCO03";
delAtt HCSMarksCSCO02 [{s,m}|{d,c,s,m} hh CStaly Marki ; c='"CSC027;

delAtt RHCSMarksCSCO01 [{s,m}|{d,c,s,m} hh CStak Marki ;c='"CSCO017;

delAtt RHCSMarksSNamé distinct  [{s,n}|{d,c,s,n} hh CStaly SName |;
delAtt HCSMarksSid distinct  [{s,i}|{d,c,s,i} th CStaly SIDi |;
delRel hHCSMarks$ distinct  [s|{d,c,s} hh CStah J;

SinceUS contains schema constructs of relatio@€Stab which do not appear
in DS, the transformation pathway DS ! US contains extendtransformations

extending these constructs intdS:
extendAtt hCStalg Marki Void;
extendAtt hHCStah SName Void;

extendAtt HCStalh SIDi Void;

extendAtt HhCStalk CIDi Void;
extendAtt HCStal Depti Void;
extendRel HCStal Void;
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Similarly, the transformation pathway DS ! US contains extendtransforma-
tions extending the schema constructs of relatioMAtabinto DS.

A sequence ofd transformations is created betweerdS and US, and US
is selected for further transformation. In this example, wdransform US into
US which integrates the two relationsMAtaband CStabinto a relation Details
using the following transformation pathwayT, (note that US, US$ and USare all

virtual schemas):
Ty : us! uUs
addRel hbetailg thMAtabi ++ HCStali ;
addAtt Hbetails Depti hhMAtab; Depti ++ hCStahk Depti ;
addAtt hbetails CIDi MAtab; CIDi ++ hCStaly CIDi ;
addAtt hbetails SIDi hhMAtab; SIDi ++ HCStal SIDi ;
addAtt Hbetails SName hhMAtab; SNamé ++ HCStaly SName ;
addAtt Hbetails Marki ~ hhMAtab; Marki ++ HCStaly Marki ;
delAtt HMAtab; Marki [{d,c,s,m}|{d,c,s,m} hh Details Marki ; d="MA'];

delAtt hMAtab; SNameé [{d,c,s,n}|{d,c,s,n} hh Details SName ; d="MA'];
delAtt hMAtab; SIDi [{d,c,s,i}|{d,c,s,i} hh Details SIDi ; d="MA'];
delAtt HMAtab; CIDi [{d,c,s,i}|{d,c,s,i} hh Details CIDi ; d='"MA'];
delAtt hMAtab; Depti [{d,c,s,i}|{d,c,s,i} hh Details Depti ; d="MA'];
delRel hiMAtabi [{d,c,s}|{d,c,s} hh Details Marki ; d="MA'];
delAtt HCStab Marki [{d,c,s,m}|{d,c,s,m} hh Details Marki ;d='CS'];
delAtt hCStah SNamé  [{d,c,s,n}|{d,c,s,n} hh Details SName ; d='CS'];
delAtt hiMAtab; SIDi [{d,c,s,i}|{d,c,s,i} hh Details SIDi ;d='"CS'];
delAtt hCStah CIDi [{d,c,s,i}|{d,c,s,i} hh Details CIDi ;d='"CS'];
delAtt hCStal Depti [{d,c,s,i}|{d,c,s,i} hh Details Depti ;d='CS'];
delRel hCStah [{d,c,s}|{d,c,s} hh Details Marki ; d='CS'];

The transformation pathway T nally transforms schemaUSinto SS where

contract transformations are used to contract the schema construcia USthat
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cannot be recovered fron8S
Ts: uUs! SS

addRel
addAtt
addAtt
addAtt

HCourseSum
hCourseSunDepti
hCourseSumClIDi
hHCourseSumMaxi

addAtt HCourseSumAvgi

contractAtt hDetails Marki ;
contractAtt
contractAtt hbetails CNama
contractAtt Hbetails SIDi ;
contractAtt hDetails CIDi ;
contractAtt hiDetails Depti ;

contractRel hbetailg ;

hDetails SName ;

distinct  [{k1,k2}|{k1,k2,k3}

[{k1,k2,k1}|{k1,k2}

[{k1,k2,k2}|{k1,k2} hh CourseSum];

[{xy.z} i{{xy}hz} (gc max[{{k1,k2},x}|
{k1,k2,k3,x}  hh Details Marki ])];

[{xy.z} i{{xy}z} (gc avg [{{k1,k2},x}|
{k1,k2,k3,x}  hh Details Marki ])];

hh Detaild |;

hh CourseSum];

4.3 Expressing Schema and Data Model Evolu-

tion

In a heterogeneous data warehousing environment, it is pdss for either a data

source schema or the integrated database schema to evolvéisischema evolution

may be a change in the schema, or a change in the data model inieththe

schema is expressed, or both. AutoMed transformations car lused to express

the schema evolution in all three cases:

(a) Consider rst a schema$S expressed in a modelling languagd . We can

express the evolution ofs to S"™", also expressed iM , as a series of prim-

itive transformations that rename add extend deleteor contractconstructs
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of M . For example, suppose that the relational schem§,; in the above
example evolves so its three tables become a single tablehnaain extra col-
umn for the course ID. This evolution is captured by a pathwaywhich is

identical to the pathway S; ! DS given above.

This kind of transformation that captures well-known equialences between
schemas [LNE89, MP98] can be de ned in AutoMed by means of arpa
metrised transformationtemplatewhich is both schema- and data-independent.
When invoked with speci ¢ schema constructs and their extés, a template
generates the appropriate sequence of primitive transfoations within the

Schemas & Transformations Repository.

(b) Consider now a schemaS expressed in a modelling languag®! which

(©)

evolves into an equivalent schem&"" expressed in a modelling language
M "% We can express this translation by a series afdd steps that de ne
the constructs of S™" in M " in terms of the constructs ofS in M . At
this stage, we have an intermediate schema that contains thenstructs
of both S and S"™". We then specify a series afleletesteps that remove
the constructs ofM (the queries within these transformations indicate that
these are now redundant constructs since they can be deriviedm the new

constructs).

The example in Section 38:1 shows how evolutions between schemas ex-
pressed in di erent modelling languages can be captured byansformation
pathways. Again, generic inter-model translations betwe&eone data model
and another can be de ned in AutoMed by means of transformain tem-

plates.

Considering nally to an evolution which is both a changein the schema

and in the data model, this can be expressed by a combinatioh @) and
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(b) above: either (a) followed by (b), or (b) followed by (a),or indeed by

interleaving the two processes.

4.4 Handling Schema Evolution

We now consider how the integration network illustrated in kgure 4.1 is evolvable
in the face of evolution of a data source schema or the sumnsad data schema.
We have seen in the previous section how AutoMed transformahs can be used
to express the schema evolution if either the schema or thetdanodel changes,
or both. We can therefore treat schema and data model change & uniform
way for the purposes of handling schema evolution: both arpressed as a
sequence of AutoMed primitive transformations, in the rstcase staying within
the original data model, and in the second case transformirige original schema
in the original data model into a new schema in a new data model

In this section we describe the actions that are taken in ord¢o evolve the
integration network of Figure 4.1 if the summarised data sémaSSevolves (Sec-
tion 4.4.1) or if a data source schem§ evolves (Section 4.4.2). Given an evolution
pathway from a schemeaS to a schemaS"®", in both cases each successive primi-
tive transformation within the pathway S! S"V is treated one at a time. Thus,
we describe in sections 4.4.1 and 4.4.2 the actions that a@kén if S ! S"™W
consists of just one primitive transformation. IfS! S"" is a composite trans-
formation, then it is handled as a sequence of primitive trasformations.

Our discussion below assumes that the primitive transfornian being handled
is adding, removing or renaming a construct o§ that has an underlying data

extent.
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4.4.1 Evolution of the Summarised Data Schema

Suppose the summarised data schen&Sevolves by means of a primitive trans-
formation t into SS. This is expressed by the step being appended to the
pathway T, of Figure 4.1. The new summarised data schema &3¢ and its
associated extension iSD®". SSis now an intermediate schema in the extended
pathway T,;t and it no longer has an extension associated with itt may be a
rename add extend deleteor contracttransformation. The following actions are

taken in each case:

1. If t isrenameT(c,c’) then there is nothing further to do. SSis semantically
equivalent to S and SD®" is identical to SDexcept that the extent ofc

in SDis now the extent ofc' in SD&Y.

2. If t isaddT(c,q), then there is nothing further to do at the schema levelSS
is semantically equivalent toSS¢". However, the new construct in SD®"
must now be populated, and this is achieved by evaluating thguery q over
SD

3. If t is extendT(c¥ then the new constructc in SD®" is populated by an
empty extent. This new construct may subsequently be popuiked by an

expansion in a data source (see Section 4.4.2).

4. If t is deleteT(c,q)or contractT(c), then the extent of c must be removed
from SDin order to create SD®¥ (it is assumed that this a legal dele-
tion/contraction, e.g if we wanted to delete/contract a tade from a re-

lational schema, then rst the constraints and then the coltnns would be

2For this chapter, we assume thatextend and contract transformations have lower-bound
gueriesVoid and upper-bound queriesAny, and we denote them asxtendT(c) and contractT(c).
We leave as further work handling schema evolution for more gneral extend and contract
transformations.
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deleted/contracted and lastly the table itself; such syntetic correctness of
transformation pathways is automatically veried by AutoMed). It may
now be possible to simplify the transformation network, intat if T, con-
tains a matching transformationaddT(c,q)or extendT(c) then both this and
the new transformationt can be removed from the pathwayS! S3°V.
This is purely an optimization | it does not change the meaning of a path-
way, nor its e ect on view generation and query/data translédon. We refer
the reader to [Ton03] for details of the algorithms that simifify AutoMed

transformation pathways.

In cases 2 and 3 above, the new constructwill automatically be propagated
into the schemaDM®f any data mart derived fromSS To prevent this, a trans-
formation contractT(c) can be pre xed to the pathway SSI DMS Alternatively,
the new constructc can be propagated toDM3f so desired, and materialised
there. In cases 1 and 4 above, the change 86and SDmay impact on the data

marts derived fromSS and we discuss this in Section 4.4.3.

4.4.2 Evolution of a Data Source Schema

Suppose a data source schensa evolves by means of a primitive transformation
t into §°". As discussed in Chapter 3, there is automatically availagla reverse
transformation t * from §*" to S and hence a pathwayt *; T; from §*¥ to DS.
The new data source schema i§'°" and its associated extension iDB®Y. § is
now just an intermediate schema in the extended pathway *; T; and it no longer
has an associated extension.

t may be arenameadd delete extendor contracttransformation. In 1{5 below
we see what further actions are taken in each case for evolyithe integration

network and the downstream materialised data as necessary.
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We rst introduce some necessary terminology: Ip is a pathwayS! S°and
c is a construct in S, we denote bydescendantg; p) the constructs of S° which
are directly or indirectly dependent onc, either becausec itself appears inS° or
because a construct' of SYis created by a transformationaddT(c® g) within p
where the queryq directly or indirectly referencesc. The set descendants; p)
can be straight-forwardly computed by traversingp and inspecting the query

associated with eactaddtransformation within in.

1. Ift isrenameT(c,c’) then schemaS'™" is semantically equivalent toS. The
new transformation pathway T"®":§*"1 DSist 1; T, = renameT(c',c)T;.
The new source databasBB®" is identical to DB except that the extent of

c in DB is now the extent ofc' in DB®".

2. If t is addT(c,q), then S has evolved to contain a new construct whose
extent is equivalent to the expressiom over the other constructs ofS. The

new transformation pathwayT"W: Wl DSist *; T; = deleteT(c,q) T;.

3. If t isdeleteT(c,q) this means thatS has evolved to not include a construct
¢ whose extent is derivable from the expressiamover the other constructs
of §, and the new source databasBB®" no longer contains an extent foc.

The new transformation pathwayT"": ¥ DSist ; T, = addT(c,q) T;.

In the above three cases, schem@°" is semantically equivalent toS, and
nothing further needs to be done to any of the transformatiopathways, schemas
or databasesDD, ..., D@ and SD This may not be the case it is a contractor

extendtransformation, which we consider next.

4. If t is extendT(c) then there will be a new construct available from§*"
that was not available before. That is,S has evolved to contain the new

construct ¢ whose extent is not derivable from the other constructs &.
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If we left the transformation pathway T; as it is, this would result in a
pathway T,"*" = contractT(c); T; from §*" to DS, which would immediately
drop the new constructc from the integration network. That is, T,"®" is

consistent but it does not utilize the new data.

However, recall that we said earlier that we assume rmmontract steps in the
pathways from the data schemas to their union schemas, andathall the data in
S should be available to the integration network. In order to ehieve this, there

are four cases to consider if is extendT(c)

(4.a) c appears inUS and has the same semantics as the newly addedan §*".

Sincec cannot be derived from the originalS, there must be a transforma-
tion extendT(c) , in DS! US.

We remove fromT;"*" the newcontractT(c) step and this matchingextendT(c)
step. This propagatesc into DS, and we populate its extent in the materi-

alised databaseDD) by replicating its extent from DB®".

(4.b) c does not appear iNUS but it can be derived fromUS$ by means of some

transformation T.

In this case, we remove fronT;"*¥ the rst contractT(c) step, so thatc
is now present inD$ and in US. We populate the extent ofc in DD by

replicating its extent from DB®".

To repair the other pathwaysT, : § ! D$ and schemadJ$ for j 6 i,
we appendT to the end of eachT;. As a result, the new constructc now
appears in all the union schemas. To add the extent of this negonstruct
to each materialised databas®D for j 6 i, we compute it from the extents
of the other constructs inD$ using the queries within successivadd steps
inT.
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(4.c)

(4.d)

We nally append the necessary newd steps between pairs of union schemas

to assert the semantic equivalence of the constructwithin them.

¢ does not appear inUS$ and cannot be derived fronUS.

In this case, we again remove from,"*" the rst contractT(c) step so that

c is now present in schem®S$.

To repair the other pathwaysT, : § ! D$ and schemadJ$ forj 6 i,
we append anextendT(c)step to the end of eachTl;. As a result, the new

construct ¢ now appears in all the conformed schemd&s, ..., DS.

The construct ¢ may need further translation into the data model of the
union schemas and this is done by appending the necessaryusege, T, of

add/delete/renamesteps to all the pathwaysS,! DS, ..., S! DS.

We compute the extent ofc within the database DD from its extent within

DB®" using the queries within successivadd steps inT.

We nally append the necessary newd steps between pairs of union schemas
to assert the semantic equivalence of the new construct(sjtiun them.

c appears inUS but has di erent semantics to the newly addedc in §°".

In this case, we rename in §'°" to a new constructc' . The situation
reverts to adding a new construct' to §*", and one of (4.a)-(4.c) above

applies.

We note that determining whetherc can or cannot be derived from the existing

constructs of the union schemas in (4.a){(4.d) above req@s domain or expert

human knowledge. Thereafter, the remaining actions are fylautomatic.

In cases (4.a) and (4.b), there is new data added to one or mavéthe con-

formed databases which needs to be propagated $@ This is done by comput-

ing descendantg; T,) and using the algebraic equivalences of IQL syntax given
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in Chapter 3 to propagate changes in the extent af to each of its descendant
constructs dc in SS Using these equivalences, we can in most cases incremen-
tally recompute the extent ofdc. If at any stage in T, there is a transformation
addT(c’% g) where no equivalence can be applied, then we have to recortethe
whole extent ofc' .

In cases (4.b) and (4.c), there is a new schema constructappearing in the
US. This construct will automatically appear in the schemaSS If this is not

desired, a transformationcontractT(c) can be pre xed to T,.

5. If t is contractT(c), then the construct c in § will no longer be available
from §°". That is, § has evolved so as to not include a constructwhose
extent is not derivable from the other constructs ofS. The new source

databaseDB®" no longer contains an extent forc.

The new transformation pathway T :§*%! DSist 1; T, = extendT(c)
T;. Since the extent ofc is now Void, the materialised data inDD and SD
must be modi ed so as to remove any data derived from the old &t of

C.

In order to repair DD, we computedescendan{g;S! D$). For each con-
struct uc in descendantg; §! D$), we compute its new extent and replace
its old extent in DD by the new extent. Again, the algebraic properties of
IQL queries discussed in Chapter 3 can be used to propagate thewVoid
extent of constructc in §'¢" to each of its descendant constructac in DS.
Using these equivalences, we can in most cases incremeyta@atompute the

extent of uc as we traverse the pathwayf;.

In order to repair SD we similarly propagate changes in the extent of each

uc along the pathwayT,.

Finally, it may also be necessary to amend the transformatmopathways
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if there are one or more constructs irsDwhich now will always have an
empty extent as a result of this contraction ofS. For any construct uc in
USwhose extent has become empty, we examine all pathways, ..., T,.
If all these pathways contain anextendTuc) transformation, or if using the
equivalences of IQL syntax in Chapter 3 we can deduce from thethat
the extent of uc will always be empty, then we can su x a contractT(dc)
step to T, for every dc in descendan{sic; T,), and then handle this case as

paragraph 4 in Section 4.4.1.

4.4.3 Evolution of Downstream Data Marts

We have discussed how evolutions to the summarised data stf@eor to a source
schema are handled. One remaining question is how to handleetimpact of a
change to the data warehouse schema, and possibly its data, any data marts
that have been derived from it.

In Chapter 3 we discuss how it is possible to express the detion of a data
marts from a data warehouse by means of an AutoMed transfortian pathway.
Such a pathwayDW$ DMSxpresses the relationship of a data mart schenizMS
to the warehouse schemBWSAs such, this scenario can be regarded as a special

case of the general integration scenario of Figure 4.1, whe8Snow plays the
the role of the data associated with this source schema amMSlays the role

of the summarised data schema. Therefore, the same techrequas discussed in

sections 4.4.1 and 4.4.2 can be applied.
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4.5 Discussion

In this chapter we have described how the AutoMed heterogemes data inte-
gration toolkit can be used to handle the problem of schema @ution in het-
erogeneous data warehousing environments so that the prews transformation,
integration and data materialisation e ort can be reused. W have discussed
handling evolution of a source schema or the warehouse sclagrand also the
impact on any downstream data marts derived from the data wahouse. Our
techniques are mainly automatic, except for the aspects thaequire domain or
expert human knowledge regarding the semantics of new scleegonstructs.

We have shown how AutoMed transformations can be used to exgss schema
evolution within the same data model, or a change in the data odel, or both,
whereas other schema evolution literature has focussed arstjone data model.
Schema evolution within the relational data model has beenstussed in previous
work such as [LSS93, LSS99, Mil98]. The approach in [Mil98}es a rst-order
schema in which all values in a schema of interest to a user an@delled as data,
and other schemas can be expressed as a query over this retier schema. The
approach in [LSS99] uses the notation of at scheme, and gives four operators
Unite , Fold , Unfold and Split to perform relational schema evolution using
the SchemaSQL language. In contrast, with AutoMed the prose of schema
evolution is expressed using a simple set of primitive schantransformations
augmented with a functional query language, both of which arapplicable to
multiple data models.

Our approach is complementary to work on mapping compositioe.g. [VMPO03,
MHO03, FKPO04], in that in our case the new mappings are a compten of the
original transformation pathway and the transformation pahway which expresses

the schema evolution. Thus, the new mappings are, by de nan, correct. There
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are two aspects to our approach:

(i) handling the transformation pathways and

(i) handling the queries within them.

In this chapter we have in particular assumed that the quergeare expressed in
IQL. However, the AutoMed toolkit allows any query languageyntax to be used
within primitive transformations, and therefore this aspet of our approach could
be extended to other query languages.

Materialised data warehouse views need to be maintained whehe data
sources change, and much previous work has addressed thisbtgm at the data
level. However, as we have discussed in this chapter, maédised data ware-
house views may also need to be modi ed if there is an evoluti@f a data source
schema. Incremental maintenance of schema-restructuringews within the rela-
tional data model is discussed in [KR02], whereas our appaacan handle this
problem in a heterogeneous data warehousing environmenttivimultiple data
models and changes in data models. In chapter 7, we will dissuhow AutoMed
transformation pathways can also be used for incrementallyaintaining materi-

alised views at the data level.
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Chapter 5

Using Materialised AutoMed
Transformation Pathways for

Data Lineage Tracing

The data lineage tracing problem is to nd thederivation of the given tracing
datain the global database. The derivation, called théneage datais a collection
of data items in the data sources which produces the given timg data. The
tracing data consists of data item(s) in the global databasevhich may be a single
tuple, called thetracing tuple, or a set of tuples, called thdracing tuples

In this chapter, we will give the de nitions of data lineage m the context
of AutoMed, and develop a set of algorithms which use matehlised AutoMed
schema transformation pathways for tracing data lineage. \Bmaterialised, we
mean that all intermediate schema constructs created in the&chema transforma-
tions are materialised,i:e: have an extent associated with them.

We consider a subset of the full IQL query language which ingmrates the
major relational and aggregation operators on collectionsWe call this subset

IQLC and its syntax is as follows, wher&, E; ..., E, denote collection-valued IQE
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queries; ey; ::;; e, are constants, variables or IQE queries; f is an aggregation
function (max min, count, sum avg); p, pl, p2 denote patterns; andQ:::Q,
are quali ers which may be generators or Iters. Filters in QL® are limited to
boolean-valued expressions containing only variables,nsbants and comparison
operators and expressions of the forrmember E and not (member E x)

1. [eqer:;en]
group E
sort E
distinct E
fE
gc f E
E++ E++ . ++ E,

10 map (lambda pl.p2) E

This subset of IQL can express the common algebraic operats on col-
lections. In particular, let us considerselec{ ), projection( ), join(/) and
aggregatiorn( ) (union and di erence are directly supported in IQL® via the ++
and operators). The general form of a select-project-join (SPExpression
is Al & /::/ E)) and this can be expressed in IQLas a comprehension
of the form [AXxy  E;:::;X,  E,;Q. The algebraic operator applies an
aggregation function to a collection and this functionali is captured in IQL®
by the gc operator. For example, supposind@is a collection of three-tuples and
has schemeD(A1,A2,A3), the expression ap2f A3(D is expressed in IQE as
gc f (map (lambda {x1,x2,x3}.{x2,x3}) D )

Section 5.1 below discusses related work on data lineagectrsy. Section 5.2

introduces a subset of IQE, simple IQL (SIQL), for developing our data lineage
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tracing formulae, and presents the rules of decomposing IQQueries into SIQL
qgueries. Any IQL® query can be encoded as a series of transformations with SIQL
gueries on intermediate schema constructs. Section 5.3 ggats the de nitions

of data lineage in the context of AutoMed. Sections 5.4 and %.present our
approach to data lineage tracing using materialised AutoMkschema transfor-
mation pathways, including formulae and algorithms. Seain 5.6 discusses how
the order of traversing an IQL¢ query tree to decompose it into a series of SIQL
gueries does not a ect the result of our DLT process. Sectioh7 discusses the
problem of derivation ambiguity in data lineage tracing, and how this problem
may happen and may be avoided in our context. Finally, Sectin5.8 presents a

summary and discussion of this chapter.

5.1 Related Work

The problem of data lineage tracing (DLT) in data warehousig environments
has been studied by Cuiet al: in [CWWO00, CW00a, CW00b, CWO01, Cui01].
In particular, the fundamental de nitions regarding data lineage, includingtu-

ple derivation for an operatorand tuple derivation for a view were developed in
[CWWO00], as were methods for derivation tracing with bottset and bag seman-
tics. Their work has addressed the derivation tracing probm and has provided
the concept ofderivation setand derivation pool for DLT with duplicate elements.

The derivation set is the set of the tuples in the tracing data derivation exclud-
ing any duplicate elements. The derivation pool contains ltuples in the tracing

data's derivation. References [CW00a, CWO0O0b] also introda a way to perform
data lineage tracing for data warehouse views. Several DLTgarithms are pro-
vided by selecting a set of auxiliary views to materialise ithe data warehouse.

However, the approach is limited to the relational data modeonly.
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Another fundamental concept of data lineage is discussed Bynemanet al:,
in [BKTOO, BKTO1], namely the di erence between \why" provenance and \where"
provenance. Why-provenance refers to the source data thatdh some in uence
on the existence of the integrated data. Where-provenancefers to the actual
data in the sources from which the integrated data was extréed.

In our approach, both why- and where-provenance are considd, using bag
semantics. We use Cui's notion of derivation-pool to de nehe a ect-pool and the
origin-pool for data lineage tracing in AutoMed | the former derives all of the
source data that had some in uence on the tracing data, whilthe latter derives
the speci c data in the sources from which the tracing data waextracted. In
contrast, Cui's de nitions and methods are limited to why-povenance.

We develop formulae for deriving the a ect-pool and origirpool of a data
item in the extent of a materialised schema construct creadeby a single schema
transformation step. Our DLT approach is to apply these formlae on each
transformation step in a transformation pathway in turn, soas to obtain the
lineage data in stepwise fashion. The queries within trar@imation steps are
assumed to be IQE queries.

Reference [KLM 97] also introduces a notion oflerivation setsfor a tuple in
a materialised view de ned by a single-block SQL query. Thigepresents the set
of all tuples whose insertion, deletion or modi cation cou potentially a ect the
tuple in the view. But this work does not focus on how to tracehe derivation
sets.

Cui and Widom in [CWO01] discuss the problem of tracing data ieage for
general data warehousing transformations, that is, the csidered operators and
algebraic properties are no longer limited to relational ews. However, without
a framework for expressing general transformations in hetgeneous database

environments, most of the algorithms in [CWO01] are recallgnthe view de nition
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and examining each item in the data source to decide if the iteis in the data
lineage of the data being traced. This can be expensive if theew de nition is a
complex one and enumerating all items in the data source is practical for large
data sets.

Reference [WS97] proposes a general framework for compgtine-grained
data lineage,i:e: a speci c derivation in the data sources, using a limited amot
of information, weak and veri ed inversion, about the processing steps. Based
on weak and veri ed inversion functions, which must be speed by the transfor-
mation de ner, the paper de nes and traces data lineage foragh transformation
step. However, the system cannot obtain the exact lineage tda only a num-
ber of guarantees about the lineage is provided. Further, spifying weak and
veri ed inversion functions for each transformation steps onerous work for the
data warehouse de ner. Moreover, the DLT process cannot stightforwardly be
reused when the data warehouse evolves. Our approach coassdthe problem
of data lineage tracing at the tuple level and computes the ext lineage data.
Moreover, AutoMed's ready support for schema evolution mea that our DLT
algorithms can be reapplied if schema transformation pattays evolve.

There are also other previous works relating to data lineageacing, such
as [BB99, HQGW93, FJS97], which considetoarse-grainedlineage based on
annotations on each data transformation step, and providesgémated lineage
information rather than the exact data items in the data souces. Reference
[BB99] presents a schema whereby each data warehouse rowegated by the data
warehousing transformations is tagged by an identi er fortie transformation, so
that the user can trace which transformation generated eaahata warehouse row.
Reference [HQGW93] uses Petri Nets to model and capture daderivations in
scienti ¢ databases, which record the derivation relatioships among classes of

data. Reference [FJS97] discusses an approach to recondtribase data from
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summary data and certain constraints, and does not considehe problem of
data lineage at the tuple level.

Cui and Buneman in [CuiO1], [BKTO1] discuss the problem of doiguity of
lineage data. This problem is known aderivation inequivalenceand arises when
equivalent queries have di erent data lineages for identat tracing data. Cui and
Buneman discuss this problem in two scenarios: (a) when aggation functions
are used and (b) when where-provenance is traced. In Sectii of this chapter,
we investigate when ambiguity of lineage data may happen iubcontext and we
describe how our DLT approach for tracing why-provenance nalso be used for
tracing where-provenance, so as to reduce the chance of datibn inequivalence

occurring.

5.2 Simple IQL

Our data lineage tracing algorithms assume a subset of IQLsimple 1QL (SIQL),

as the query language in transformation pathways. More corgx IQL® queries
can be encoded as a series of transformations with SIQL gwsrion intermedi-
ate schema constructs. Although illustrated within this paticular query language
syntax, our DLT algorithms could also be applied to schemaansformation path-
ways involving queries expressed in other query languagepgorting operations

on set and bag collections.

5.2.1 The SIQL Syntax

SIQL queries have the following syntax where each colleativalued expression,
D D ..., D below must be a base collection or a variable de ned by anothe
SIQL query, and eachcvy; ::3; cv, is either a constant (ie: string or number) or a

variable de ned by another SIQL query:
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[cvy;cvy; i evn]
group D

sort D

distinct D

fD

gcfD

D++ D++ i ++ D

Xjxt1 DX Dy Grin Gl

[
)
=)
<
3
D)
3
o
0]
-
©
<

[Xjx  Di; not (member PY)]

122 map(lambda p;:p,) D
SIQL comprehensions are of three formsxjky Dy i %X, Dy Gon Gl

[Xjx  Di; member Py], and Xjx  D; not (member Py)]. Here, eachxy, ...,
X, is either a single variable or a pattern consisting only of vables. X is either
a single variable or value, or a pattern of variables or valseand must include all
the variables appearing irxy, ..., X,. EachG, ..., G is a condition not referring to
any base collection. Each variable appearing mand G, ..., G must also appear
in somex;, and the variables iny must appear inX.

For example, we can use following transformation steps to gress a general
SPJ operation, A( c(D / 2/ 0y)), in SIQL, where X contains all variables
appearing inXy :::Xp:

vi=[xjxx D;::5%  D:Q

v = map(lambdax:A) v1
Similarly, an aggregate expression a2t A3(D over a collectionD(A1,A2,A3) is
expressed in SIQL as:

vl = map(lambda {x1,x2,x3}.{x2,x3}) D

v =gc fvl
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5.2.2 Decomposing IQL ¢ into SIQL Queries

The syntax of IQL® and SIQL queries are similar except that the collection-
valued expressions in IQE.queries may be sub-IQE queries, while the collection-
valued expressions in SIQL queries must be a base collectara variable de ned
by another SIQL query. In order to trace data lineage along émsformation
pathways including general IQL queries, we decompose each 1QQuery into a
sequence of SIQL queries by means of a depth- rst traversal the IQL® query
tree. This section presents the rules of decomposing I1Qfjueries. The algorithms
implementing these rules will be discussed in Append®. Here, we rstly give
an example to show how a general I@Lquery can be decomposed.
Suppose that a viewv is de ned by an IQL® query D1++ [{x,z} j{x,y}
(D2 D3;z [plp D4member D5]m < y]. After decomposing the query,

the view de nition is expressed by a sequence of SIQL querias follows:
vl = D2 D3

v2 = [plp D4, member D5 Jp

v3 = [{x,y,z}|{x,y} vlz v2;z <Yy]
v4d = map (lambda {x,y,z}.{x,z}) v3

v = Dil++ v4

For decomposing IQL queries into SIQL queries, we classify IQLqueries
into following four types: l-argument queries 2-argument queries n-argument
queries and list queries The decomposition rules for each type of IQGLquery

are as follows:

Decomposition rules for  l-argument queries If an IQL® query is a 1-
argument query, i:e:, group E, sort E, distinct E , aggFun E gc aggFun E

and map (lambda pl.p2) E we decompose the query using following steps:

(1) If Eis a base collection or a variable, then the query is alreadySQL query
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and not required to be decomposed;

(2) If Eis a sub-query, then a new variable is created to replacg, and a new
transformation step is created to express that the new vatide is de ned by
the replaced sub-query. For example, Eis a sub-query, view = group E
is decomposed as:

vi = E

v = groupvl

Decomposition rules for  2-argument queries If an IQL® query is a 2-
argument query, i:e: E1 E2 similar decomposition steps as above are used
to decompose the query. However, in this case, we need coesigeparately the
two collection-valued expressionsEl and E2 For example, if E1 and E2 are

sub-queries, queryw = E1 E2is decomposed as:

vi = E1
v2 = E2
v = vl V2

Decomposition rules for n-argument queries If an IQL® query is an-
argument query, i:e: an ++ expression or a comprehension, the decomposition

rules are as follows:

(1) If the query is an expression of the fornEl++ E2++ ::++ En the de-
composition steps are similar to decomposing 1- and 2-argent queries
above, except that each collection-valued expressi@(1 i n) has to

be considered separately.

(2) If the query is a comprehension of the formpjQZ%:::;Qn, we can re ne

Lwithout loss of generality, we assume that a sub-query of an@QL® query is a SIQL query,
since we can recursively decompose the sub-query if it is a geral IQL® query.
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this syntax as pjGZ%:::;Gr,M1::; MsCJ :::; Ct], in which G1 ::Gr are gen-
erators, ML ::Msare lters involving the memberfunction (which we term
member lters ) and C1:::Ct are lters involving variables, constants and
comparison operators (which we ternsimple lters). We recall that each
generatorGi has syntaxx; E (1 i r) whereX; is a pattern andFE is

a collection-valued expression.

We rst check if the head expressiorp is a pattern containing all the vari-
ables appearing in the generator patterng; (1 i r) of the comprehen-
sion (we term such comprehensioreelect-join comprehensions If not, the

following intermediate view de nitions can be used to tran®rm the com-
prehension into this form, wherex is a pattern containing all the variables
appearing in all the generator patterns:

vl

[X[GZL:::;Gr,M1::;; MsCZL :::; Ct]

v map(lambda X:p) v1
In order to decompose the comprehension de ningl, we consider each

generator and lter.

A generator has the syntax;  E whereE is a collection-valued expression
which may be a sub-query. IfE is a base collection or a variable, the
generator satis es the SIQL syntax. IfE is a sub-query, we rede ne the

generator in the same way as for decomposing an l-argumenequ

Member Iters contain a collection-valued expressiorkE which may be a sub-
qguery. Such lters can be rede ned in the same way as for decqmsing an
1-argument query if the collection-valued expressidais a sub-query rather

than a base collection or variable.

Furthermore, in the SIQL syntax, there can only be one geneia in a com-

prehension if it contains amemberlter, i:e: [Xj)Xx  EL; member Ey] and
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[Xjx  EL; not (member R Yy)]. If a general comprehension contains multi-
ple generators andnember lters, we use following decomposition steps to
decompose a view de ned by a comprehensionyjG1:::;Gr,M1::; MsC1

::;; Ct] into a sequence of SIQL comprehensions:

vi = [X]Gl:::;Gr;C]::;Ct]
vo = [pjp Vvi;M]
vz = [pip Vvz;M2
v = [pip Vs;M§

To illustrate the whole decomposition process for a comprehsion, suppose
that the view v is de ned by the comprehension {k,z}| {x,y} D1;z
(D2 ++ D3);member(D4  D5) z;not (member D6 {y,z}) ; x>z]. This view

de nition is decomposed into following SIQL queries:
vl = D2++ D3

v2 = [{xy,z}{x,y} DLz vi;x>Z]
v3 = D4 D5
vd = [{xy.z}{x.y.z} v2; member v3 ¥
v5 = [{xVy,z}{x)y,z} v4;not (member D6 {y,z}) ]
v = map (lambda {x,y,z}{x,z}) v5
Decomposition rules for list expressions In IQL°®, there may be list ex-

pressions which contain IQE sub-queries. If the query is a list expression,
[e1; e2;::5; en], this may be a list containing only constants, such a4.,2,3,4] , or
a list containing sub-queries as its items, such §k,2,max [2,3,4] ;sum [3,4,5]] .
In the former case, there is no need to decompose it. In the tat case, without

loss of generality, the general form of such a query is

[C1; 5 Crs €151 €]
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in which cq;:::;c, are constants andey;::;;es are sub-queries. Note that, we do
not consider the order of items in a list in IQL, i:e: lists here have the semantics

of bags. The above query can be expressed by the followirg expression:

[Ci; iG] ++ [er] ++ i+ [e]

and eache; (1 i s) can then be further decomposed. For example, suppose
that the view v is de ned by the query[1,2,max [2,3,4],sum [3,4,5]] . Then

v can be expressed by following SIQL queries:
vl = max [2,3,4]

v2 = sum [3,4,5]

v3 = [1,2]
vd = [vi]
vb = [v2]
V. = Vv3++ v4++ V5

Suppose a view is de ned by a list expression. If the list expression can be
transformed as above into a-+ expression, the problem of tracing's lineage or
of incrementally maintainingv is subsumed by considering the+ expression. If
the list expression cannot be transformed into a+ expression, then the list is
a list of constants; the lineage data will be the tracing datatself, and the view
cannot be updated. Thus, in the rest of this thesis, we do nobasider the case

of list expressions for data lineage tracing or for incremt view maintenance.

5.2.3 An Example of Schema Transformations

Consider two relational schema$Sand GS SSis a source schema containing two

relations mathematiciafempid; salary ) and compScientigempid; salary ). GS

is the target schema containing two relationgpersoiiempid; salary ;dept) and
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departmenfdeptName avgDeptSalary ).
By the de nition of our simple relational model, SShas a set olRelconstructs
Rel; and a set ofAtt constructs Att 1, while GShas a set ofRel constructs Rel,

and a set ofAtt constructs Att ,, where:
Rel; = frhhmathematician ; hitompScientisig

Att 4

frhmathematicianemp.idi ; hmathematiciansalary
htompScientistemp.idi ; ftompScientistsalaryg
Rel,
Att -

frhperson ; Hdepartmenig

frhpersonemp.idi ; hipersonsalany ; ipersondept
hHdepartment deptNama ; hidepartment avgDeptSalarig

SchemaSScan be transformed toGSby the sequence of primitive schema
transformations given below. The rst seven transformatio steps create the
constructs of GSwhich do not exist in SS The query in each step gives the
extension of the new schema construct in terms of the extentd the existing
schema constructs. The last six steps then delete the redwad constructs of
SS The query in each of these steps shows how the extension ofhedeleted

construct can be reconstructed from the remaining schemargiructs:
(1) addRel (hperson ; hmathematician ++ htompScientist);

(2) addAtt (hpersonempidi ; imathematicianemp.idi ++ htompScientistemp.idi );
(3) addAtt (hipersonsalary ; hmathematiciansalary ++ HtompScientistsalany );
(4) addAtt (hpersondept ;[fx; Mathsgjx hh mathematician ]++
[fx; CompSdhjx hh compScientisit ]);

(5) addRel (Hdepartment ; [Maths?°CompSd);
(6) addAtt (Huepartment deptNama ; [f Maths®®Mathsdy; f ‘CompSE°CompSchy)):;
(7) addAtt (HdepartmentavgDeptSalary;

gc avg [fONIathsO, sgjf x;sg bh mathematiciansalary ]++

gc avg [fol\/lathsa, sgjf x;sg th mathematician salaryi ]);
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(8) delAtt  (hmathematiciansalary ; [f X; sgjf X; sg hh personsalary ;
fx%dg hh persondepti ;d= Maths®x = x9);
(9) delAtt  (hmathematicianemp.idi ; [fx;id gjfx;idg hh personemp.idi ;
fx%dg hh persondepti ;d= Maths®x = x9);
(10) delRel (Hmathematician ; [xjf x;dg hh persondepti ;d = Maths?);
(11) delAtt (HtompScientistsalary ; [f x; sgjf X; sg hh personsalary ;
fx%dg hh persondepti ;d= TCompSd x = x9):
(12) delAtt (hHrompScientistempiidi ; [fx;id gjf x;idg bh personemp.idi ;
fx%dg hh persondepti ;d= CompSd x = x9);
(13) delRel (HtompScientist ; [xjf x;dg hh persondepti ;d= CompSd);

IQLC queries are automatically broken down by our data lineagedcing soft-
ware into a sequence addd or deletetransformations with SIQL queries within
them. The decomposition procedure undertakes a depth- r&earch of the query
tree and generates the sequence of transformations from tbhettom up. For
example, the following decompositions would be equivaletd steps (4) and (7)
above, with (41) (4:5) replacing step (4) and (71) (7:9) replacing step:

(4:1) addAtt ($Query_4 1[fx; Mathshjx rh mathematician ]);
(4:2) addAtt ($Query_4 2[fx; CompSdyjx M compScientisk]);
(4:3) addAtt (hpersondepti ; $Query_4_1++ $Query 4 2;

(4:4) delAtt  ($Query_4 2[fx; CompSdgjx M compScientisk ]);
(4:5) delAtt  ($Query_4 1 [fx; Mathsjx rh mathematician ]);

°Note that, the intermediate construct names $Query.i _j are automatically generated by
our IQL ¢ decomposition algorithms
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(7:1) addRel ($Query_7_%

map(lambda f x; sg:f Maths® sg) hmathematiciansalaryi );
(7:2) addRel ($Query_7_2gc avg $Query_7_J;
(7:3) addRel ($Query_7_3

map(lambda f x; sg:fOComde{ sg) HtompScientistsalary );
(7:4) addRel ($Query_7_4gc avg $Query_7_3;
(7:5) addAtt (HdepartmentavgDeptSalary; $Query_7_2++ $Query_7_9;
(7:6) delRel ($Query_7_4gc avg $Query 7_3;
(7:7) delRel ($Query_7_3

map(lambda f x; sg:fOComde{ sg) HtompScientistsalary );
(7:8) delRel ($Query 7 2gc avg $Query 7_1;
(7:9) delRel ($Query_7_%

map(lambda f x; sg:f Maths? sg) hmathematiciansalary );

5.3 Data Lineage De nitions

We consider botha ect-provenanceand origin-provenancein our treatment of the
data lineage tracing problem. What we regard as a ect-provence includes all of
the source data that had some in uence on the tracing data. @yin-provenance
is simpler because here we are only interested in the specdata in the sources
from which the tracing data is extracted. In particular, we e the notions of
maximal witnessand minimal witness from [BKTO1] to de ne the notions of
a ect-pool and origin-pool, respectively, in De nitions 1 and 2 below, and we use
a condition from [CWWOO] to guarantee that there are no redushant elements in
the computed lineage data.

In both these de nitions, v = (D) is a view over a set of bag® de ned by

the queryg andt 2 v is a tracing tuple. Condition (a) states that the result of
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applying query g to the lineage data must be the bag consisting of all copies tof
in the view v. Condition (b) is used to enforce the maximizing and miniming
properties, respectively. Thus, the a ect-pool includeslhelements in the data
sources which could generateby applying g to them; conversely, if any element
and all of its copies in the origin-pool was deleted, thenor all of t's copies inv
could not be generated by applying the query to the lineage data. Condition (c)
guarantees that there are no redundant elements in the comiadl lineage data.
Condition (d) in De nition 2 ensures that if the origin-pool of the tracing tuple t
in the source bagD is T*, then for any tuple in D, either all of the copies of the
tuple are in T{” or none of them are inT;".

Note that, both the de nitions apply to tracing data lineage for a single SIQL
query. For a view created by a sequence of SIQL queries, we éadditional data

lineage de nitions which we give in Section 5.5.1 below.

De nition 1 (A ect-pool for a SIQL query) Let g be any SIQL query over
bagsD, ..., Dy, and letv = q(D,, ..., Dy) be the bag that results from applying

gto D, ..., Dy. Given a tracing tuplet 2 v, we de ne t's a ect-pool in D, ...,

TP, ..., T2 are maximal sub-bags ofD, ..., D, such that:
@ a(mi”, ..., T) = [xjx vix=1]
(b) 8T9 Dy;:iTh Dmig(Ty ..., To) =[xjx  vix=t]
) T Tan T T
() 8T: 8t 2 T (T, ..., [xix T®;x=t] ..., T&)e

We say that qﬂ’ (t) = T is t's a ect-pool in D.
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De nition 2 (Origin-pool for a SIQL query) Letq, D, ..., Dn t,vandq

to be the sequence of bad¥7", ..., T, whereT:, ..., T% are minimal sub-bags
of D, ..., D, such that:

@ q(T® ..., ) = [xix  v;x= 1]
(b) 8T8t 2 TP (TP, ..., [xjx TP x6t]....,TH)6[ xix Vv;x=1]
(c) 8T®: 8t 2 TP q(TP, ..., [xjx TPx=t]...,TH6

(d) 8T®: 8t 2TP:t 2(0 TP

We say that q%P (t) = T? is t's origin-pool in D.

Proposition 1.  Suppose that the a ect-pool and origin-pool of a tracing tufe
t is the sequence of bagsTs", ..., T®i and the sequence of bag®;’, ..., T,
respectively, then each bagd:" is a sub-bag ofT".

The condition (b) in De nition 1 ensures that, for any sequene of bagsiry?,
oo 100, if (TR, ..., TO®) = [xjx  v; x = t], then each bagT? is a sub-bag of

TP, Thus, from condition (a) in De nition 2, each bag T™* is a sub-bag ofT:*.

5.4 Data Lineage Tracing Formulae

Following on from the above de nitions of data lineage and té de nition of SIQL

gueries in Section 5.2, we now specify the a ect-pool and gim-pool for SIQL
gueries. As in [CWWO0O0], we uséderivation tracing queriesto evaluate the lineage
of a tuplet or a set of tuplesT with respect to a set of bag®. That is, we apply
a query to D and the result is the derivation oft (or T) in D. We call such a

query the tracing query for t (or T) on D, denoted asTQ(t) (or TQ(T)).
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Theorem 1 ( A ect-pool and Origin-pool for a tuple with SIQL queries).
Let v = (D) be the bag that results from applying a SIQL queryy to a sequence
of bagsD. Then, for any tuple t 2 v, the tracing queriesT@P (t) below give the

a ect-pool of t in D, and the tracing queriesTG" (t) give the origin-pool oft in

[il q = D++ i ++ Dy (D= HDy;: i Dhi)
TGP () = TQP(t) = hxjx Dyx=tXjix  Dhix = ti
t2: qa = h D (D = hDy; Doi)
T@” () = Hxjx Dix=t]Di
T@P () = hxix Dux=t[xjx Dix= ti
t3: q = groupD (D = HO)
TGP (1) = T@P(t) =[xjx D(firstx )=(first t)]
t4: q = sortD=distinct D (D= H)
T@P () = TEP(t) =[xjx Dx=1]
t5: g = max D=min D (D= H)
TGP () = D
TEP(M) = [xix Dx=t
t6: g = sumD (D= nD)
T@7 () = D
TQEP(t) = [xjx Dx60]
t7: g = countD=avgD (D= hD)
T (M = TEP(M = D
t8: g = gc max D=gc min D (D= hD)
TGP (t) = [xjx D(firstx )=(first 1)
TQEP() = [xjx Dx=1]
t9: g = gcsumD (D= HD)

TAP(t) = [xjx Dfirstx )=(first 1)
TQP(t) = [xjx D(firstx )=(first t);(second x) 6 0]
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t10: g = gccountD=gcavgD (D = HO)
T@P(t) = TQP() =[xjx D(firstx )=(first t)]
t11: g = [Xixx DuoinXe DnGrin Gl (D= hDg Dei)
TGP () = TQP(t) = hxajxa  Dixq = ((lambda X:X7) t)];:::;
XniXn  Dh;Xn = (( lambda X:Xp) t)]i

t12: g = [XjX Dy;member py] (D = hDy; Doi)
T@P () = TQP(t) = hxjx Dy;x=tllyly Dy =((lambda x:y) t)]i
t13: g = [Xjx Dynot (member py)] (D = hDy; D)

TG (1) = hXjx DyX=t]Di
T@P(t) = Hhxjix Dyx=t]; i

t14: g = map(lambda p;:p,) D (D= HD)
TE M) = TE (M) =[pipr Dp,= 1]

We note that general IQL® queries are allowed in the tracing queries. Appendix
A gives the proof that the results of querieI@P (t) and TGP (t) in Theorem 1

satisfy De nition 1 and 2 respectively.

Theorem 2 ( Aect-pool and Origin-pool for a set of tuples with SIQL
queries). Letv = (D) be the bag that results from applying a SIQL queryq
to a sequence of bag®. Then, for a set of tuplesT v (T 6 ), the tracing
queries TGP (T) below give the a ect-pool of T in D, and the tracing queries
TQP (T) give the origin-pool of T in D:
T1: q = D++ 4+ Dy (D= HDy; i Dhi)

TGP (T) TQEP(T) = Hxjx  Di;member x];:::;

[Xjx  Dh;membefT X]i
T2 g = bhO D (D = hDy; Doi)
T@P (T) Hxjx Dy, membefT x]; Dpi
TG (T)

Hxjx  Dp;membef x];[xjx  D»;membefT X]i
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T3: q
TG (T)
T4: q
TG (T)
T5: q
N=A
T6: q
TG (T)
TQP(T)
T7: q
TGP (T)
TQP(T)
T8: q
TGP (T)
T9: q
TGP (T)
T10: q
TGP (T)
T11: q
TG (T)
TQP(T)

group D (D = )

TP (T)

[xjx  Dymembef(firsty )jy T] (firstx )]
sort D = distinct D (D= HD)

TQP(T) =[xjx D membef x]
fD (D= HD)
[* The tracing data cannot be a set of tuples */
gc max D=gc min D (D= HD)

[Xjx D membef(firsty )jy T] (firstx )]
[Xjx DO membelT X]

gc sum D (D= HD)

[Xjx D membef(firsty )jy T] (firstx )]
[Xjx D membef(firsty )jy T](firstx );

(second x) 6 0]
gc count D =gc avg D (D= HD)

TP (T)

[Xjx D membef(first y)|y T] (first x )]

[Xjxt  DiiiXn Dh G G (D = hDy;:::;Dhi)
TQEP(T) =

[Xnjxn  Dy; membemap(lambda X:Xy) T) Xq]i
[Xjx  Di;member py] (D = hDy; i)
TQP(T) = HXjx  Di;membefT X];
lviy D;memberfmap(lambda X:y) T) y]i
[Xjx  Dp;not (member Py)] (D = hDy; D)
HXjx  Dp;membefT X]; Dol

HXjx  Dp;membefT X]; i
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T12: q
TG (T)

map(lambda p;:p,) D (D = HO)
TQ@P(T)=[pip; D membefT p,]

The proof of Theorem 2 is similar to Theorem 1. Note that, if tk tracing set

T is empty, we assume thafl's lineage data is empty as well.

5.5 Data Lineage Tracing Algorithm

Section 5.4 presented formulae for obtaining tracing ques from SIQL queries.
This section gives an algorithm for tracing the lineage dataf data in a ma-
terialised view that has been de ned by a transformation pdiway from a data
source schema. For simplicity of exposition, we assume that of the data source
schemas have rst been integrated into a single schenSconsisting of the union
of the constructs of the individual source schemas, with apppriate renaming of
schema constructs to avoid duplicate names.

The DLT algorithm described in this section assumes that alintermediate
transformation steps are materialisedi;e: the constructs created byaddtransfor-
mation steps are materialised. DLT algorithms for more genal transformation
pathways will be discussed in Chapter 6.

In general, intermediate constructs created during the 1QLto SIQL decompo-
sition by an addtransformation do not remain in the materialised global satma
as they are removed by aleletetransformation in the transformation steps after
the addtransformation. In order to materialise these intermedia constructs, we
remove the transformations which delete these intermediatconstructs so as to

leave them in the materialised global schema.
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5.5.1 Tracing Data Lineage through Transformation Path-
ways

Suppose an integrated schem@aShas been derived from a source scherS8dhough
a transformation pathway TP = tp4, ..., tp,. Regarding each transformation step
as a function applied toS, GScan be obtained a<GS= tp; tp, ::: tp, (S =
tpr (22 (tp2(tp1(9)) :::). Thus, tracing the lineage of data inGSrequires tracing

data lineage via aquery-sequencede ned as follows:

De nition 3 (A ect-pool for a query-sequence) Let Q= q,, 0, ..., Q, be
a query-sequence over a sequence of bgaind letv = D)= q, q, ::: q,(D)
be the bag that results from applyingQto D. Given a tracing tuplet 2 v, we
de ne t's a ect-pool in D according toQ G (t), to be D, whereD* = P (D,

(L i r),D¥ = ftgandD* = DI.

De nition 4 (Origin-pool for query-sequence) Let Q D, vandt be as
above. We de net's origin-pool in D according to Q G§F (t), to be D°, where
D = q°P(D%,) (1 i r), DY, = ftgand D= DS

De nitions 3 and 4 state that the derivations of data in an integrated schema
GScan be derived by examining the transformation pathways fra the source
schemaSto GSin reverse, step by step.

An AutoMed transformation pathway consists of a sequence pfimitive trans-
formations which generate the integrated schema from thewgin source schemas.
The schema constructs are generally di erent for di erent mdelling languages.
When considering data lineage tracing, we are only concetheith structural con-
structs associated with a data extent e.gNodeand Edgeconstructs in the HDM,

Reland Att constructs in the simple relational data model, andElement Attribute
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and NestSetconstructs in the simple XML data model. Thus, for data linege
tracing, we ignore primitive schema transformation steps ich are adding, delet-
ing or renaming only constraints. Moreover, we treat any pmitive transforma-
tion which is adding a construct to a schema as a generadT transformation,
any primitive transformation which is deleting a constructfrom a schema as a
genericdelT transformation, and any primitive transformation which isrenaming
a schema construct as a generirenameTtransformation. We can summarise the

problem of data lineage for each of these transformations fslows’:

(a) ForanaddT(c; q) transformation, the lineage of data in the extent of schema
construct c is located in the extents of the schema constructs appearimny

the query g.

(b) For a renameTc' ;c) transformation, the lineage of data in the extent of

schema constructc is located in the extent of schema construat' .

(c) All delT(c;q) transformations can be ignored since they create no schema

constructs.

5.5.2 Algorithms for Tracing Data Lineage

In our algorithms below, we assume that each schema construc, in any schema
along the pathwayS! GShas two attributes: relateTPis the transformation step
that created c, and extentis the current extent ofc. If a schema construct remains
in the global schemaGSdirectly from the source schemd, its relateTP value is
empty.

In our algorithms, each transformation steptp has four attributes:

action, which is\add", \ren" or \del" ;

3The cases ofextendand contract transformations will be considered later in Chapter 6.
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guery which is the query used in this transformation step (if any)

source which for a renameTc' ;c) returns just ¢', and for an addT{(c; q)

returns a sequence of all the schema constructs appearingginand
resultwhich is ¢ for both renameTc' ; ¢) and addT(c; q).

In case (b) discussed above, where the constructwas de ned by a transfor-
mation step renameT(c',c) , the lineage data inc' of a bag of tracing tuplesT
in the extent of c is just T itself, and we de ne this to be both the a ect-pool
and the origin-pool of T in c'.

In case (a), where the constructc was created by a transformation step
addT(c; g), the key point is how to trace the lineage using the querg. We
can use the formulae of Theorem 1 to obtain the lineage of dataeated in this
case. The procedurea ectPoolOfTupldt; c) and originPoolOfTupl§; c) in Figure
5.1 below can be applied to trace the a ect pool and origin pdof a tuple t in the
extent of schema construct. The result of these procedured)L, is a sequence

of pairs

in which eachdl; is a bag which containst's derivation within the extent of
schema constructc;. Note that in these procedures, the sequend2 returned
by the tracing queriesT@® and T®P may consist of bags from di erent schema
constructs. For any such bagB, B.constructdenotes the schema construct from
whose extentB originates.

Similarly, by Theorem 2, two proceduresa ectPoolOfSe{T;c) and origin-
PoolOfSefT; c) can then be used to compute the derivations of a set of tragn
tuples T. Since duplicate tuples have an identical derivation, we iglinate any

duplicate items and convert the tracing bag to a tracing setrst. The procedure
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proc a ectPoolOfTuple(t; c)
input : a tracing tuple t in the extent of construct c

output : t's aect-pool, DL

begin
D = [fQextent QyjO c:relateTP.sourcé
D = TG (1)
DL = [fB;BconstrucgjB D]
return DL
end

proc originPoolOfTuplé€t; c)
input : a tracing tuple t in the extent of construct c

output : t's origin-pool, DL

begin
D = [fQextentjO c:relateTP.source
D = T (1)
DL = [fB;BconstrucgjB D]
return DL
end

Figure 5.1: Procedures ectPoolOfTupleand originPoolOfTuple
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a ectPoolOfSe(T;c) is illustrated in Figure 5.2. The procedureoriginPoolOf-
Se(T;c) is identical, with T (T) replacing TG’ (T).

proc a ectPoolOfSet(T; c)
input : a tracing tuple set T contained in construct ¢

output : T's aect-pool, DL

begin
D = [fQextentjO c:relateTP.source
D = TG (T);
DL = [fB;BconstrucgjB D]
return DL
end

Figure 5.2: Procedurea ectPoolOfSet

The algorithms a ectPoolOfTupleand a ectPoolOfSet as well asoriginPoolOf-
Tupleand originPoolOfSetare correct in the sense that the a ect-pool and origin-
pool obtained by them conform to the de nitions of a ect-pod and origin-pool
for a SIQL query in Section 5.3. This is because they use the Diformulae in
Section 5.4 to compute the lineage data.

Finally, we give below our algorithmtraceA ectPoolB, c) in Figure 5.3 for
tracing a ect lineage using entire transformation pathwag given the integrated
schemaGS$ the source schem&, and a transformation pathwaytp,, ..., tp, from
Sto GS Here, B is a bag of tuples contained in the extent of a schema consttuc
c 2 GS We recall that each schema construct has attributeelate TP and extent
and that each transformation step has attributesaction query sourceand result

The algorithm examines each transformation step frortp, down to tp;. If it
is a delete step, we ignore it. Otherwise we determine if thresult of this step is

contained in the currentDL If so, we then trace the data lineage of the current
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data of ¢ in DL, merge the result intoDL, and deletec from DL Because a tuple

t can be the lineage of botl; andt; (i 6 j), if t and all of its copies in a data
source have already been added L as the lineage ot;, we do not add them
again into DL as the lineage ot;. This is accomplished by the procedurenerge
given in Figure 5.4 below, where the operatdt® ®removes an element from a
sequence and the operatdi® ®appends an element to a sequence. At the end of
this processing the resultingdLis the lineage ofB in the data sources.

The proceduretraceA ectPoolis correct in the sense that the a ect-pool ob-
tained by it conforms to the de nitions of a ect-pool for a query-sequence in
Section 5.5.1. This is because this procedure cal®ctPoolOfSetto compute the
lineage data based on onaddtransformation step, and obtains the nal lineage
data after checking alladd transformations along a transformation pathway in
reverse.

The exact complexity of the overall DLT process i©(n  m) wheren is the
number ofaddtransformations relevant to the tracing data in the transfemation
pathway and m is the number of di erent schema constructs in the computed
lineage data. By relevant to the tracing data, we mean thoseransformation
steps from the data sources which directly or indirectly cede the global schema
construct containing the tracing data. The complexity isO(n m) because
for eachadd transformation step relevant to the tracing data, the DLT process
is performed once for each di erent schema construct presen the computed
lineage data.

We illustrate the use of thetraceA ectPool procedure above by means of a
simple example. Referring back to the example schema traoshation in Sec-
tion 5.2.3, suppose we have a tracing tuple= f Maths® 2500y in the extent of
hdepartmentavgDeptSalany in GS The a ect-pool, DL, of this tuple is traced as

follows.
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proc

input :

output :

begin

end

traceA ectPool(B; c)

tracing tuple bag B contained in construct c;

B's a ect-pool; DL

DL = hfB; cqi;
for j = r downto 1do f
case (tp; :action= \del")
continue ;
case (tp;:action= \ren" )
if (tp;:result= c; for some c¢; in DI then
DL=(DL f dlj;cig) + fdl;;tp;:sourcey;
case (tj:action= \add")
if (tp;:result= c; for some c¢; in DL then f
DL= DL f dlj;cig;
dl; = distinctdl ;
DL = mergdDL a ectPoolOfSet(dl i; ci)); g
g
return DL

Initially, DL= hff Maths® 250ay; Hlepartment avgDeptSalarigi .

Figure 5.3: ProcedureraceA ectPool

ignores all thedeletesteps, and nds theadd transformation step whoseresultis

PrdepartmentavgDeptSalaiy™ This is step (75), tps), and:
tp(7.5:query= havgMathsSalary ++ HhavgCompSciSalary and
tp(7.5):source= [ hlavgMathsSalary; havgCompSciSalary

Using algorithm a ectPoolOfSef t's lineage attps:s) is as follows:
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proc

begin

end

input :

output :

mergd DL; DL"¢W)

new data lineage sequenda ™V

merged data lineage sequencBL

for eachfdl "®W;c"®Wg 2 DL™" do f
if (c"®W = c; for some ¢j in D) then f
oldData = dl;j;
newData = oldData ++
[xjx dI"W: not (member oldData X];
DL = (DL f oldData;cjg) + fnewDatgc;g;
g
else
DL = DL + fdl"eW;chevg;
g
return DL

Figure 5.4: Proceduremerge

Dl7.5y = hf[xjx h avgMathsSalary; x = f Maths® 2500y]; HavgMathsSalarig ;

f[xjx hh avgCompSciSalaiy, x = f Maths® 2500y]; ravgCompSciSalaigi
= hff Maths? 250Qy; avgMathsSalarig ;f ; HavgCompSciSalaiyi
= hff Maths® 2500y; HavgMathsSalarigi

After removing ff Maths® 2500y; Hlepartment avgDeptSalarig , the original tu-

ple, and merging its lineag®L5), we obtain the updated lineage data alsff Maths’,

250Qy; HavgMathsSalarigi . Similarly, we obtain the data lineage relating to this
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DL Thus, Dl is all of the tuples in imathsSalary and Dl .5y is all of the tu-
ples inhmathematiciansalary , where constructiimathematiciansalary is a base
collection in SS

We conclude that the a ect-pool of tuple f Maths® 250@y in the extent of
hdepartmentavgDeptSalany in GSconsists of all of the tuples in the extent of
hmathematiciapsalary in SS

ProceduretraceOriginPodB, c) is similar, obtained by replacinga ectPoolOf-
Setby originPoolOfSet

Note that we have not implemented these DLT algorithms whiclassume fully
materialised transformation pathways. In Chapter 6, we dealop a generalised
DLT algorithm for general transformation pathways where itermediate schema
constructs may or may not be materialised. The implementatin of this gener-

alised DLT algorithm is discussed in AppendixC.

5.6 IQL °to SIQL Decomposition Order

With the decomposition rules described in 5.2.2, we decong®a general IQE
guery into a sequence of SIQL queries by means of a depth- risaversal of the
IQL® query tree. However, does the traversal order a ect the press of tracing
data lineage,i:e: would we get the same lineage data irrespective of the order
of decomposition? In this section, we investigate the pradrin of decomposition
order and conclude that the order of traversing an IQt.query tree does not a ect

the result of our DLT process.

no traversal order problem. We next discuss the situation o query having
arguments.

If a query is an 1-argument IQILS query, just one order of traversing the query
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is available. If the one sub-query has no traversal order drtem, the main query
will not have the traversal order problem.
If a query is a 2-argument IQL query, i:e: E1 E2 there may be two sub-

gueries in the main query and two orders of traversing the qoe e:g:
vi = E1

v2 = E2

v = vl V2
and

vl = E2

v2 = E1

v = V2 vl

However, there is no traversal order problem since the DLT fimulae for each
data source in the expression are independent of each other.

If a query is an-argument IQL® query, such as ant+ expression, since the
places of its arguments are exchangeable, there are variouders of traversing the
qguery. However, again the DLT formulae for each data source a ++ expression
are independent of each other. Thus, the order of traversabds not a ect the
result of tracing lineage data in the data sources.

Otherwise, if the n-argument IQL® query is a comprehension, we consider the

following three cases.

- One, the comprehension is not a select-join comprehensiamdehas to be trans-
formed into a select-join comprehension. There is no trawsal order prob-
lem in this transformation since we use anap expression to achieve this

transformation.

- Two, the select-join comprehension does not contaimember Iters. In this
case, similar to the situation of++ expressions, the DLT formulae for each
data source in the comprehension are independent of each ettand there

is no traversal order problem;
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- Three, the select-join comprehension contaimeemberlters. On the one hand,
if the select-join comprehension contains just one geneoatand member
Iter, similar to the situation of expressions, the DLT formulae for each

data source are independent of each other and there is no temsal problem.

On the other hand, if the select-join comprehension contasmmultiple gener-
ators andmemberlters, [ pjG1 G2:::; Gr; M1:::;MsC1Z :::; Ct], according to
the decomposition rules in Section 5.2.2, this compreheosiis decomposed

into following SIQL comprehensions:

vi = [p|GL:::;Gr;CT::;C
v2 = [pip Vvi;M]

va = [pip Vv2;M3

Vs = [pip Vs ;M 4]

v = [pip  VsiM]

Although the order of traversing themember Iters such as M1:::; Mscould
be changed, according to the DLT formulae in Section 5.4, thebtained
lineage data in all the intermediate viewsvy;:::;Vs is the tracing tuple t
itself while the obtained lineage data for eacimemberlter M is alambda
expression over the tracing tupldé. Both of these cannot be a ected by the
traversal order. Furthermore, each individual view; v4; :::; Vs is a select-join
comprehension either with only one generator antiemberlter, or without

any member Iters, and which therefore has no traversal order problem.

In summary, the order of traversing an IQL query tree does not a ect the

result of our DLT process.
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5.7 Ambiguity of Lineage Data

The ambiguity of lineage data, also calledlerivation inequivalence[CWWOQO],
relates to the fact that for queries which are equivalent budli erent syntactically
DLT processes may obtain di erent lineage data for identidatracing data. This
section investigates how this problem may happen in our caxt. Two queries
are equivalentif they give identical results for all possible values of thebase
collections. That is, given two queriesy and ¢ both referring to base collections
by; by, o and g are equivalent if gu[bi=l 1; 5 ba=l 0] = b=l 1 by=l 0] IS
true for all instancesl q; :::; 1, of by;:::; b, respectively. We usevl  v2 to denote

that views v1 and v2 are de ned by equivalent queries.

5.7.1 Derivation for di erence and not memberOperations

Ambiguity of lineage data may happen wherdi erence(i:e: in IQL°) and not
memberoperations are involved in the view de nitions.

For example, consider two bagR=1[0;1;1;2;3],S=[ 1;1,;2;3;3]. Two pairs
of equivalent views,vl v2 andv3 v4, are de ned as follows.

vi = R (R S =[1;23]

v2 = S (S R=[1;23]

v3 = [xjx Rmember Sk=11;1,;2;3]

v4

[xjx  Rnot (membeflyjy Rnot (member S)} X)]=1[1;1;2;3]

The lineage of data in an IQL view can be traced by decomposing the view
into a sequence of intermediate SIQL views. In order to tradbe lineage of data

in the above four views, intermediate views are required aslibws:
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Forvl, vl1' =(R S =[0;1]
For v2; v2' =(S R=[ 13]
For v3; no intermediate view needed

For v4;, v4' =[yly Rnot (member S)} =[0]:

With the above intermediate views, we can now trace the linge of the views'
data. For example, the a ect-pool of the data itemt =1 2 vlandt =1 2 v2 are
as follows. Here, we denote b|dl the lineage datadl in the collectionD, i:e: all

instances of the tupledl in the bag D (the result of the query kjx D x = dl]).

AR1() % MRxx Rx=1;R S
= ML 1vli
= hR[1; 1]; R[x|x R member v1' {; S
=  MR[1;1]; R[X|x R membei0; 1] x]; S
= ML 1RO LS 1,123 3]
= MO LIS 1,123 3]
ARo(t) % mSixx Sx=1;S R
= Mg[1fv2'i
T:2

hS[1]; S[x|x S member v2' ¥; R
hS[1]; SixIx S membef 1;3] x];R
hS[1;S[ 1;3;3];R[0; 1;1;2; 3]i

= MWR[0;1,1,23S[ 1,13 3]

We can see that the a ect-pool of identical tracing data invl and v2 are inequiv-

alent. The a ect-pool of tuplet=1 2 v3andt=1 2 v4 are:
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hR[x|x R x =1]; §[x|x S x =1]i
hR[1; 1]; Sif1]i

hR[X|x Rx=1];v4"i

MR 1LRIly  Rmemberv4'y; S
=  MWRILI;Rlly Rmembef0]y];S

= ML ILRIOLS] 11,233

= MWROLILS[ 11,23 3]

AR3(t)

AR4(t)

We can see that the a ect-pool of above identical tracing dat in v3 and v4 are
also inequivalent.

The reason for the inequivalent a ect-pool of the data in vie's de ned by
equivalent queries involving the and not memberoperators is the de nition
of a ect-pool. As described in Section 5.4, the a ect-pooln a data sourceD2in
gueries of the formD1  D2or [xjx DI not (member DR)], includes all data
in D2 So the computed a ect-pool inD2 may contain some \irrelevant” data
which does not a ect the existence of the tracing data in the iew.

For example, if the tracing data ist = 1 in the view R S, the irrelevant
data in Sare [ 1;2;3;3], which are also included irt's a ect-pool.

Although origin-pool is de ned to contain the minimal essetial lineage data
in a data source, ambiguity of lineage data may also occur fogacing origin-pool.
For example, in the case of the above four views, the origirepl of the tracing

data item t = 1 are also inequivalent (we usé&j to denote no lineage data in D):
OR/1(1) Rxx  Rx=1;(R 9jxlx (R  ;x=1]i

PR[L1EvD jixx  [0;1fx = 1]i

hR[1; 1], v1' j[1];

ML RXx  Rx=1];3[x[x  Sx=1]i

hRI[1; 1] R[1; 1]; S[1]i

hR[1; 1]; S[1];

-
iy

-
iy
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OR2(t) hSxix  Sx=1;(R 9jxx (S R;x=1]i

S[alv2' jix|x [ 1;3x =1]i

= Mg[fv2j i
= hS[1]i
and
OR3(t) ¥ MWxx Rx=1;§xx Sx=1]i
= MR[1 1], §[1]i
OR4(t) 2 MRxx Rx=1];v4'j i
= ML 1

5.7.2 Derivation for Aggregate Functions

Ambiguity of lineage data may also happen when queries invel aggregate func-
tions. Suppose that bagfkand S are the same as in Section 5.7.1. Consider DLT

processes over the following two pairs of equivalent views v6 andv7 Vv8:

Vo = sumR=7

v6 = sumilx|x Rx60]=7

v7i = max S$=[3;3]

v8 = max[x|x S;x > (min §] =[3;3]

The aect-pooloft=7 2v5andt =7 2 v6 are:
t6

ARi(t) = MR = MRI[0; 112 3]
ARe() £ MWixx Rx60]i = HR[LL23]

and the a ect-pool oft =3 2 v7 andt =3 2 v8 are:
AR7(t) ¥ s = h§[ L1;233]
ARg(t) ¥ Mxix Sx>minSli = H[L233]

We can see that the a ect-pool of identical tracing data for hese equivalent views

are inequivalent.
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The reason for this ambiguity of a ect-pool is that, accordag to the DLT
formulae of a ect-pool in Section 5.4, the a ect-pool of da in an aggregate view
includes all the data in the data source, which can bring irtevant data into the
derivation. In above example, views6 and v8 Iter o some irrelevant data by
using predicate expressions, so that the computed a ect-pbover the two views
does not contain this irrelevant data.

Such problems may be avoided in tracing the origin-pool, sia the origin-pool
is de ned to contain the minimal essential lineage data in tb data sources, and
any data item and its duplicates in the origin-pool are nonedundant.

For example, the origin-pool ot =7 2 v5andt =7 2 v6 are identical:
OR5(t) R[x[x  Rx60]i hR[1; 1; 2; 3Ji
ORe(t) ¥ MxXx [ly Ry60:x60]i = M[L123]

()]

and the origin-pool oft =3 2 v7 andt = 3 2 v8 are also identical:
OR7(t) hS[x|x S x=3]i hS[3; 3]i
ORg(t) £ MExx [y Sy> (min9Lx=3i = HS[33]

-
g,

However, the derivation inequivalence problem cannot alwa be avoided in
tracing the origin-pool. For example, suppose two equivaleviews v9 v10 are

de ned as follows:
v9 = sum S8

v10 = sum[x|x S;not (membefxljxl Sx2 Sxl1=( x2)]x)]=8

In order to trace the origin-pool ofv10's data, the intermediate views forv10

are de ned as follows:

vl = [x1jx1  S§x2 Sx1=( x2]=[ 1L1]
v10" = [x|x S not (member vi0' Y] =[2;3;3]
v10 = sumvl0" =8

Then, the origin-pool oft =8 2 v9 andt =8 2 v10 are:
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OR9(t) Sixx S x60]i
= h§[ 1,1,233]
OR10(t) £ 10" jixjx  v10" ;x 60]i = 10" j[2:3;3]i

=  Hx|x S not (member v10' X]j[2; 3; 3]i
hS[2;3; 3], v10'j i
=  Mg[Z33]i
We can see thatORg(t) 6 OR10(t). This is because the view10 is rstly
applying a select operation over the data sourcg to eliminate data itemd in S

and its inversed 1, i;:e: d+ d 1=0.

5.7.3 Derivation for Where-Provenance

The problem of where-provenance is introduced in Bunemamal:'s work [BKTO1].
In that paper, tracing the where-provenance of a tracing tup consists of nding
the lineage of one component of the tuple, rather than the whketuple. Also, the
where-provenance is not exact data, but rather a path for desbing where the
lineage is. That paper describes that derivation inequivahce may happen when

tracing where-provenance.

Examples of where-provenance inequivalence 4

Suppose thatwlis a view over a relational tablefEmployee, where the extent
of hEmployee table is a list of 3-item tuples containingname salary and bonus
information of employees. The de nition ofwlis as follows:

wl=[{name,salary} j{name,salary,bonus} th Employeé ;salary = 1200]

If f °Torf 120@y is a tuple inwland the data 1200 in the tuple only comes from the
tuple f °Torf} 1200 100Qy in the extent of HEmployet, then the where-provenance
of 1200 is the path®HEmployee:f name °Torfy:salary % which means that 1200

4The examples illustrated in this section are derived from [BKT01].
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comes from the attribute salary in the relation HEmployee where the value of
the attribute nameis °Torfi

However, if we consider the following viewv2 over construct HEmployeeg,
which is an equivalent view tow],
w2 = [fnamel20Qj{name,salary,bonus}  hth Employeg ;salary = 1200]
the where-provenance of 1200 iiTorff 120Gy is the query (view de nition) itself,
since the value is directly appearing in the query expressio

Another example illustrating inequivalent where-provenace is as follows. Sup-

pose thatw3 w4where
[{id,ns} j{id,s,b,ns} hh Di ;s = b;s = ns]
[{id,ns} j{id,s,b,ns} hh Di ;
member[{id1,ns1} j{id1l,s1,bl,ns1} hh Di ;s1 = b]] {id,ns}

w3

w4

S = ng|

In the case ofw3 the attribute ns in the result view depends on attributes:
s, b and ns, in relational table i . While in the case ofw4 the attribute ns in

the result view depends on attributes:id , s, b and ns, in hbi .

In our DLT approach, we only consider tracing the lineage datof an entire
tuple, which is termed why-provenance in [BKT01]. Howevelin AutoMed, each
extensional modelling construct of a high-level modellingnguage is speci ed as
an HDM node or edge and cannot be broken down further. For exahe, each
attribute in a relational table is a construct in the AutoMed relational schema.

In other words, in our DLT approach, not only the why-provenace but also
the where-provenance has been considered, when the AutoMsata modelling
technique is used for modelling datag:g; using the simple relational data model.
In this sense, we deal with the problem of tracing where-premance and why-

provenance simultaneously, so that the problem of inequikent where-provenance
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is avoided.

For example, by using the simple relational data model and QL queries, the
above four view de nitions can be rewritten (denoted as ) as follows. In the sim-
ple relational data model, constructs of the relational tale HEmployee include:
REmployee, HEmployegname , HEmployegsalary and hiEmployegbonus ; con-
structs of the table i include: hbi , HD;idi , D; i, D; bi and D; ng .

wl;, wl [{name,salary}|{{name,salary} hh Employeesalaryi ;

salary =1200]

w2; w2' = [{name,salary}/{name,salary} hh Employeesalaryi ;
salary = 1200]
w2" = map(lambda {name,salary} :fnamel120Qy) w2'

Obviously, wl' and w2' are identical, and w2" uses alambda expression
replacing by the constant 1200 thesalaryvalues in the result ofw2'. Here, we
cannot trace the lineage data of 1200 separately. If it is raged to do that,

de nitions of wland w2can be rewritten as:

wl; wla' = [{name,salary}|{name,salary} hh Employeesalaryi ;

salary =1200]

wla" = map(lambda {name,salary}.{salary} ) wla'
w2; w2a' = [{name,salary}|{name,salary} hh Employeesalaryi ;
salary =1200]
w2a" = map(lambda {name,salary} :f 120Qy) w2a'

We can see that, although intermediate viewsvla" and w2a" have the
same result in the current speci ¢ situation, they have di @ent de nitions. In
this sense, viewsvland w2can be regarded as inequivalent and the problem of
derivation inequivalence does not arise for these two viewslowever, even we
admit that these two views are equivalent in the current sitation, according to

the DLT formula t15 in Theorem 1, the lineage data of 1200 wla" andw2a"
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are obtained as follows:
wila'j[{name,salary}|{name,salary} wla';salary = 1200]

w2a'j[{name,salary}|{name,salary} w2a'; 1200 = 1200]
Since viewswla' and w2a' are identical, 1200 over the two views have the same

lineage.

As to viewsw3and w4 their de nitions can be rewritten as follows:

w3; w3 = [{id,s}/{id,s} hh D;d ;membehD;bi {id,s} ]
wa3" = [{id,ns}/{id,ns} hh D;nd ;member w3' {id,ns} ]

wd; w4 = [{id,ns}|{id,ns} hh D;nd ;membehD; s {id,ns} ]
w4" = [{id,s} [{id,s} hh D;d ;membehD;bi {id,s} ]
w4™ = [{id,ns}/{id,ns} w4'; member w4" {id,ns} |

We can see that tuple{id,ns} in the two views have the same lineage coming

from D; nd , HD; 9 and hD; bi constructs.

5.7.4 Summary

This section has investigated when ambiguity of lineage datmay happen in
our context | the problem may happen when tracing the lineageof the data in
views de ned by IQL® queries involving , not memberlters and aggregation
operations. In Cuiet al's work [CWWO0O0], the de nition of data lineage results
in the same problem of derivation inequivalence.

Ambiguity of lineage may also happen when tracing where-prenance. This
section has described how our DLT approach for tracing whyrgvenance can
also be used for tracing where-provenance, so as to reduce thance of where-

provenance inequivalence occurring.
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5.8 Discussion

This chapter has given the de nitions of data lineage in theantext of AutoMed,
which we have termeda ect-pool and origin-pool. The a ect-pool includes all of
the source data that had some in uence on the tracing data, e the origin-pool
is the speci c data in the data sources from which the tracinglata is extracted.

We have introduced a subset of the full IQL query language, I3, which
incorporates the major relational and aggregation operats on collections; and
have used a subset of IQ, SIQL, for our data lineage tracing algorithms. Any
IQL® query can be decomposed into a series of transformationsm&IQL queries
on intermediate schema constructs. We have also discussdthtt the order of
traversing and decomposing an 1QLquery does not a ect the result of our DLT
process.

DLT formulae for SIQL queries and an algorithm for tracing déa lineage
over AutoMed transformation pathways have also been preded in this chapter.
A limitation of this algorithm is that transformation pathw ays need to be fully
materialised, i:e: all the constructs de ned by add transformations need to be
materialised. In the next chapter, we will present a methodof tracing data lin-
eage over general AutoMed transformation pathways wheretémmediate schema
constructs may or may not be materialised.

In Section 5.7, we have discussed the ambiguity of lineagetala For identi-
cal tracing data based on equivalent queries, inequivaletineage data may be
obtained if the queries involve , not memberor aggregation operations. In-
equivalent lineage data may also be obtained when tracing ete-provenance.
We observed that the process of tracing where-provenancendae handled by the
process of tracing why-provenance when AutoMed is used foodelling data, so

that the problem of inequivalent where-provenance can bedeced.
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Chapter 6

Generalising the Data Lineage

Tracing Algorithm

6.1 Motivation

In Chapter 5 we discussed how to trace the lineage of data indlglobal database
by applying the DLT formulae for SIQL queries to each transfonation step in
the transformation pathway from the data source schemas tdé global schema
in reverse, nally ending up with the lineage data in the orighal data sources.
However, in general transformation pathways not all schemeonstructs cre-
ated by add transformations will be materialised, and the above simpl®LT
approach is no longer applicable. In practice, transformain pathways may be
virtual or partially materialised, in which intermediate schema constructs may or
may not be materialised. Moreover, as described as in Seatid:2:2, a general
IQL® query is decomposed into a sequence of SIQL queries with samev inter-
mediate constructs, and it should not be necessary to matatlise these constructs

in order to apply DLT.
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In this chapter, we assume that a schema transformation patiay may con-
tain virtual intermediate constructs, but that all queries appearing within it are
SIQL queries. The DLT algorithm described in Chapter 5 canridhandle virtual
intermediate views and so cannot be applied in this situatio

One approach to solving the problem of virtual schema consicts would be
to use AutoMed's Global Query Processor to evaluate the quercreating the
virtual construct and compute its extent, so that the DLT approach of Chapter
5 could be applied. However, this approach is impractical @uto the space and
time overheads it incurs.

Instead, our approach for handling the problem of virtual dteema constructs is
that we use a data structure described in Section 6.2jneage to denote lineage
data in a schema construct. If the construct is materialisedLineagecontains
the actual lineage data. If the construct is virtual, Lineagecontains relevant
information for deriving the lineage data from the virtual @nstruct. Rather
than materialising the virtual construct, we use such virtal lineage data as the
tracing data for earlier transformation steps. Repeatinghis process, nally if
the data sources of a transformation step are all materiaéd, we can obtain the
materialised lineage data from these data sources.

In the rest of this chapter, Section 6.2 describes the datarsttures used by
our DLT algorithm. Section 6.3 presents our DLT procedure foa single trans-
formation step. DLT formulae for handling virtual intermedate constructs and
lineage data are developed in Section 6.4. Section 6.5 preseDLT algorithms
for tracing data lineage along a general transformation phtvay. Section 6.6
discusses the usage of queries beyond RQland of delete contract and extend
transformation steps for DLT. Section 6.7 discusses the ifgmentation of our
DLT algorithms described in this chapter. Finally, Section6.8 summarises and

discusses our DLT approach.
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6.2 Data Structures for Data Lineage Tracing

In order to handle virtual intermediate lineage data and sama constructs, we

use a data structure Lineageto denote lineage data in a schema construct. Each

Lineageobject has six attributes:

. data, which can be a collection storing materialised lineage dat, or, if the lineage

data is virtual, it will be the value null denoting virtual data;

. construct which is the name of the schema construct containing the lieage data;
. isVirtualData, stating if the lineage data is virtual or not;
. isVirtualConstruct stating if the construct is virtual or not;

. elemStruct describing the structure of the data in the extent of the screma con-

struct, e:g:; a 2-item tuple {x1,x2} , or a 3-item tuple {x1,x2,x3} ; this will be

null if the lineage data is materialised.

. constraint expressing a constraint which derives the lineage data frm the schema

construct if the construct is virtual; this will be null if the lineage data is mate-

rialised.

For example, supposing lineage data in a schema construzts derived from

the query fx,y}[{x,y}

D x=5], and Ip is a Lineageobject which expresses

this lineage data. I1fD=[{1,2},{5,1},{5,2},{3,1}] is materialised, thenlp will
be:

Ip:data = [{5,1}{5,2}]

Ip:construct = 0gypo

Ip:isVirtualData = false

Ip:isVirtualConstruct = false

Ip:elemStruct = null

Ip:constraint = null
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On the other hand, If Dis a virtual schema construct, thenlp will be:

Ip:data = null
Ip:construct = Ogypo
Ip:isVirtualData = true
Ip:isVirtualConstruct = true
Ip:elemStruct = Ofxy} ©°
Ip:constraint = 0%=500

For ease of exposition, we denote b§ddl a Lineageobject in which Ois the
name of the schema construct andl is the lineage data. If the lineage data is
materialised, dl will be the data itself. Otherwisedl will be the form of (S; C),
whereS denotes theelemStructand C the constraint For example, the above two
Lineageobjects are denoted byj[{5,1},{5,2}] and O({x,y},x=5 ), respectively.

In order to express a transformation step with a virtual resk or virtual data
sources, we use a data structurelransfStep to express transformation steps.

Each TransfStepobject has six attributes:

1. action, which can beadd®® °qel® %®ename®® %@xtend®and “¢ontract®®
2. query, showing the query used in this transformation step;

3. result which is the name of the schema construct created by this trasformation
step (if the action is °add”® ®Pename®or %8xtend®y, or the name of the construct

deleted by this step (if the action is °del®or %¢ontract®y:
4. vResult stating if the result construct is virtual or not;
5. sourcescontaining all schema construct schemes appearing in theuwgry;

6. vSourcesa Boolean array, showing which source constructs in thesourcescollec-

tion are virtual.

For example, supposings is a TransfStepobject, where

145



ts:action = @dd™

ts:query = Ofsta :namd ++ Hstudentnamd ++ Hhvisitor namd %°
tsrresult = Maculty; named %

ts:vResult = true

ts:sources = [Hsta ;namd ;Hstudent name ; hvisitor, name |

ts:vSources [false;true;false ]
This meansts is anaddtransformation creating a new virtual constructhfaculty,

name de ned by the query \hsta ; name ++ Hstudent nama ++ hvisitor, name ".
The data sources ofs are hista ; name , histudent namea and hvisitor, namae , in

which hstudentnama is virtual and the other two are materialised.

6.3 DLT for a Single Transformation Step

We now investigate how to obtain the lineage of the tracing da along a single
transformation step which may involve virtual data sources We only consider
add transformations here andextend transformations are discussed in Section
6.6.3. We assume all queries appearing in transformatioregs are SIQL queries.
Figure 6.1 gives our DLT procedure for a single transformatn step, DLT4AStep
where either the tracing data or the data sources may be virad. The output
of DLT4AStep(d,ts) is the lineage data of tracing datatd in the data sources
of transformation stepts, which is a list of Lineageobjects that may contain
materialised or virtual lineage data.

We see from Figure 6.1 that our DLT formulae need to handle fowcases:
MtMs | both the tracing data and the source data are materialised; MtVs | the
tracing data is materialised and the source data is virtualVtMs | the tracing
data is virtual and the source data is materialised; an¥tVs | both the tracing

data and the source data are virtual.
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Proc DLT4AStep(td;ts)
f
IpList = ;
case MtMs:
IpList DTL formulae for MtMs;
case MtVs:
IpList  DTL formulae for MtVs;
case VtMs:
if (ts:result is required)
mv  evaluatéts:query); /*recovering ts:result
td:data mvjtd:data; [*recovering td
IpList DTL formulae for MtMs;
else
IpList DTL formulae for VtMs;
case VtVs:
if (td must be materialised)
mv  GQR(ts:result); [*recovering ts:result
td:data mvjtd:data; [*recovering td
IpList DTL formulae for MtVs;
else
IpList  DTL formulae for VtVs;
return lpList ;

Figure 6.1: TheDLT4AStepAlgorithm

In some cases lineage data are untraceable if the tracing das virtual (see
Section 6.4 below for details). In such cases, expressed @sditions \(ts:resultis
required)” and \(td must be materialised)" in Figure 6.1, we have to recover the
tracing data by materialising the result of the transformaton step. In the case
of VtMs, we use the procedurevaluateto evaluate the query of the transforma-
tion step since all data sources are available, while in theage ofVtVs, we use
AutoMed's global query processor, GQP, to compute the resufom the original

data sources.
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6.4 DLT Formulae

This section gives our DLT formulae for tracing data lineagéor the four cases

discussed aboveMtMs, MtVs, VitMs and VtVs. The DLT formulae for the case of

MtMs are given in Table 6.1 which is a summary of the DLT formulae deribed

in Chapter 5. The DLT formulae in Table 6.1 either provide a devation tracing

guery specifying the lineage data of a tracing tuplé or, in some cases, give the

lineage data itself directly. If the DLT formula returns a deivation tracing query,

we need to evaluate the query to obtain the lineage data. If éhformula returns

the lineage data directly, no such evaluation is needed.

Since the results of queries of the forgroup Dand gc f D are a collection

of pairs, in the DLT formulae for these two queries we assumaédt the tracing

tuple t is of the formfa; by, wherea and b are patterns. In the last but one line,

the notation D,j denotes no lineage in the data sourceD;.

v DL AP (1) \ DL ©F(t)
group D [fx;yojfx;yg Dx= 73]
sort/distinct D Ot
max/min D D Ot
sum D D [Xjx Dx60]
count/avg D D
gc max/min D [fx;ygifx;yg Dx = q] Ot
gc sum D [fx;ygifx;yg Dx=13a] [fxygifx;yg D
X=ay60]
gc count/avg D [fx;yojfx;yg Dx= 73]
D++ D ++ i ++ Dy 8i:Djt
D D Dijt, D [ Dit, Djt
[Xjxt Dui;iinXe D g 8i:[xijxi  D;xi = ((lambdax:xj) 1)]
[Xjx  Di; member pPy] Dijt, [yily Dy = ((lambdax:y) t)]
[Xjx  Di; not(member py)] Dijt, D, \ Dijt, Dyj
map(lambda p,:p,) D [p1jpr  Dp2 = t]

Table 6.1: DLT Formulae for MtMs

From the formulae for MtMs we have derived the DLT formulae for the other

148



three cases below.

6.4.1 Case MtVs

Recall that there two kinds of DLT formulae in Table 6.1: traéng queries and
real lineage data. With MtVs the source data is virtual, so we cannot evaluate
tracing queries andLineageobjects are required to store the information about
these queries. For example, the tracing quefyx,y}{x,y} D;x=3] is expressed

asD|({x,y},x= @), and the corresponding.ineageobject, Ip, is

Ip:data = null
Ip:construct = 0gyo0
Ip:isVirtualData = true
Ip:isVirtualConstruct = true
Ip:elemStruct = 0@y} 0
Ip:constraint = 0%=300

In the case of real lineage data, the lineage data may be theating data,t,
itself or all the items in a source collectiorD If the lineage data ist, it is available
no matter whether D is materialised or not. If the lineage data is all items in
a virtual collection D, it is expressed byD|(any,true) , and the corresponding

Lineageobject, Ip, is:

Ip:data = null
Ip:construct = 0gypo
Ip:isVirtualData = true
Ip:isVirtualConstruct = true
Ip:elemStruct = null
Ip:constraint = null

Table 6.2 gives the DLT formulae for the case d¥itVs.
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v DL AP (1) \ DL ©F (1)
group D Dfx;ygx = a)
sort/distinct D Ot
max/min D D(any;true ) Ot
sum D D(any;true ) DO(x;x 6 0)

count/avg D

D(any;true )

gc max/min D DO(fx;yg;x = @) Ot
gc sum D Ofx;ygx=a) | DO(fxygx=3ay60)
gc count/avg D O(fx;yg;x = Q)
D++ D ++ i ++ Dy 8i:Djt
D D Dijt, Dj(any;true ) | Dijt, Djt
Xjxx DXy Dy QG 8i:Dj(xi; X = (( lambdax:Xxj) t))
[Xix  Di; member pPy] Dijt, Doj(y;y = ((lambdax:y) t))
[Xjx  Di; not(member Py)] || Dijt, Dyj(any;true ) | Dijt, Dyj

map(lambda p;:p,) D D(p1; P2 = t)

Table 6.2;: DLT Formulae for MtVs

We can see that, in Table 6.2, although data sources are vidl the lin-
eage data is materialised, and so not all computed lineagetadas virtual. For
example, the a ect-pool for aggregate functions are all thauples in the source
collection, i:e: D|(any,true) (virtual lineage data); the a ect-pool for group and
gc aggFunare all the tuples in the source collection whose rst compamt is g,
i;e: D|({x,y},x= @) (again virtual lineage data); while the a ect-pool forsort ,
distinct and ++ s the tracing data itself, i:e: Ot (materialised lineage data).
We note that, in the case oD, ++ D,++ :::++ D, if a data sourcel is virtual,
we need to computel) to determine if it contains the tracing datat or not. We
may materialise all data sources of#+ queries, so as to change the case into
MtMs and solve the problem. However, in some cases, tracing dateehge of++
gueries is possible with virtual data sources. For examplsupposev = vl1++ D
and vl = distinct D 5, in which v1 is a virtual schema construct andD, and D,
are materialised. In order to trace the lineage of the data i, we actually have

no need to materialisevl. In particular, we can obtain vljt's lineage inD, as
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XIx  Dyx=t].

In our approach, we retain the data source of+ as virtual and assume that
the lineage data in the virtual data source i$. Then, we use a DLT check process,
which is described below, to determine whether the virtualata source needs to
be computed.

SupposingS is a virtual data source of at++ query, then we rstly nd the
transformation step, ts, that createsS. Suppose the query irts is q.

If gis a++ query, then the virtual data sourceS can remain virtual, and we
have to further check if any of the data sources af are virtual ones.

If qis map sort or distinct with a materialised data source, thenS can
remain virtual. The materialised data source can lter the ineage created in the
virtual construct Sand remove extra lineage data, as shown in the above example.

If gis , aggFun group, gc group, comprehensionmembepr not membey
then S must be computed.

Otherwise, if g is map sort or distinct  with a virtual data source S', then
we cannot determine the situation ofS based on the current step. We have to
nd the transformation step ts' which creates virtual constructS', and repeat
the above check steps to examine the query is'. If S' is able to be virtual,
then S can also be virtual; ifS' is not, that means we actually have to compute
construct S rather than S' itself. Recursively, the nal situation of construct S
can be determined.

The same problem as fot+ may occur for . In particular, the situation
of tracing the origin-pool in the second argument of the qugrD, D,, i:e: in
D, is similar to the above and we use the same DLT check processdetermine

whether D, can be virtual or not.

1The computed data source may or may not be materialised. For he purpose DLT, we
use the computed data source once and have no need to matelis it in persistent storage.
However, for the purpose of future use, we may materialise ito avoid repeated computations.
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6.4.2 Case VitMs

Virtual tracing data can be created by the DLT formulae if dat sources are
virtual. In particular, there are three kinds of virtual lineage data created in
Table 6.2: (any,true) , ({x,y},x= @), and (pl;p2=t). Note that, the lineage
data (Xi;X = ((lambda x:x7) t)) and (y;y = ((lambda x:y) t)) in the cases of
a comprehension (11th line) and a comprehension withemberlter (12th line)

are not virtual. Sincet is materialised data and tuplex contains all variables
appearing inX;, the expression lambda X:X;) t returns materialised data too.

Tables 6.3, 6.4 and 6.5 illustrate the DLT formulae folVtMs. These can
be derived by applying the above three kinds of virtual tracig data, Vt; =
(any,true) , Vt, = ({x,y} ;x=a) and Vtz = (pl;p2=t), to the DLT formulae for
MtMs given in Table 6.1. In particular, Table 6.3 gives the DLT fomulae for
tracing the a ect-pool and Tables 6.4 and 6.5 give the DLT fanulae for tracing
the origin-pool. In this case ofVtMs, since all source data is materialised, there
is no virtual intermediate lineage data created.

For example, suppose is de ned by the querygroup D. If the virtual tracing
tuple t is Vt;, the a ect-pool of t is all data in D. If t is Vt,, the a ect-pool of
t is all tuples in D with rst component equal to a. If t is Vts, the a ect-pool
of t is all tuples in Dwith rst component equal to the rst component of the
tracing data t. We can see that the virtual view,v, is used in this query. Since
the source data is materialised, we can easily computeand evaluate the tracing
guery. However, once the virtual view is computed, the virtal tracing datat can
also be materialised. In practice, this situation revertsd the case oMtMs which
we discussed earlier.

Although all computed lineage data can be materialised in thcase oVtMs,
we may leave it as virtual lineage data. For example, if the ¢dined lineage data

is all data in a collectionD, rather than bring all Ds data items into memory to
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v t DL AP (1)
Viq D
group D Vi, [fx;ygifx;yg Dx= g]
Vtz | [Fxygifx;yg D membeffirst pijpr v;p2 = t] X]
Viq D
sort/dinstinct D Vi, [fx;ygifx;yg Dx= g]
Vi3 [pijp1  Dp2=t]
Viq D
aggFun D Vi, n/a (t cannot be a tuple)
Vis D
Vi1 D
gc aggFun D Vi, [fx;ygifx;yg DX = a
Vtz | [Fxygifx;yg D membeffirst  pijpr v;p2 = t] X]
D ++ D Viq 8i:D
++ 4+ Dy Vi, 8i:[fx;ygifx;yg D;x = q]
Vi3 8i:[pyjpr  DO;p2=t]
Vit Dujv, D
Dy D Vi, Dijfx;ygifx;yg v;x=al, B
Vi3 Dijlpypr vip2=1t], D
Vi, 8i:[xijxi  DO;membermap(lambda X:Xi) V) Xi]
Xixx D Vi, 8i:[xijxi  DO; membermap(lambda X:X7)
oXa ;g [Xjx v;first X = a]) xi]
(Cé) Vi3 8i:[xijxj D;
membeimap(lambda X:Xi) [p1jp1 Vi p2 = t]) Xi]
Vi, Dijv, [vyjy  D; member(map(lambda X:y) v) y]
[Xjx D Vit [Xjx  Di;member py; first X = allyjy D
member Py] membermap(lambda x:y) [xjx  v;first x = a]) y]
Vta [Xjx  Di;member Py;e= tllyjy D
membeirmap(lambda Xiy) [pajp1  Vvip2 = t]) y]
Vit Dujv, D
[Xjx D Vit Dijlf x;ygifx;yg  v;x=al; B
not (member Py)] || Vt3 Dijlpypr vip2=1t], D
Viq D
map(lambda #:p9) D || Vt, %Y  D(first pd) = a]
Vi3 PlipY  Dp2 =]

# Vt1 = (anytrue), Vi = (fx;yg;x = a), Vtz = (p1;p2 = t)

Table 6.3: DLT Formulae for Tracing the A ect-Pool of VtMs
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v t DL P (1)
Vit D
group D Vi, [fx;ygifx;yg Dx= g]
Vtz | [Fxygifx;yg D membeffirst  pijpr vip2 = t] X]
Vit D
sort/distinct D Vi, [fx;ygifx;yg Dx= g]
Vi3 [pijp1  Dp2 =]
Viq QV
max/min D Vi, n/a (t cannot be a tuple)
Vis QV
Vi, [Xjx Dx60]
sum D Vi, n/a (t cannot be a tuple)
Vij [Xjix Dx60]
Vit D
count/avg D Vi, n/a (t cannot be a tuple)
Vi3 D
Viq QV
gc max/min D || Vi, Olfx;yojfx;yg v;x = a]
Vi3 Dlpypr  Vv;p2 = 1]
Vit [fx;ygifx;yg Dy#60]
gc sum D Vi, [fx;yojfx;yg Dx=a;y60]
Vts [fx;ygifx;yg D
membeiffirst  pijpr v;p2 = t] x;y 6 0]
Vit D
gc count/avg D || Vi, [fx;yoifx;yg Dx= q]
Vis | [fx;y0jfx;yg D membeiffirst  pijpr v;p2 = t] X]

# Vty = (anytrue), Vto = (fx;yg;x = a), Vtz = (p1;p2 = t)

Table 6.4: DLT Formulae for Tracing the Origin-Pool of ViMs (1)
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D++ D Vit 8i:D
++ 4+ Dy Vi, 8i:[fx;ygjifx;yg D;x= 4]
Vi3 8i:[pypr  Dip2=1t]
Vi, Dijv, Djv
D D Vit Dijlf x;ygifx;yg  vix = aj,
[fx;ygjfx;yg Dp;member vix;yg;x = a]
Vi3 Dijlpupr vip2 =t
[p1jp1  D;member vpy;pp = t]
Vi 8i:[x;jxi  DO;membermap(lambda X:Xj) v) X;]
[Xjixx1 D Vi, 8i: [XijXi D; member
oXe Dy g (map(lambda x:X7) [XjXx  v;first X = a]) X{]
(C6) Vi3 8i:[xijxi D
membermap(lambda X:X7) [pijpr = V;p2 = t]) Xi]
Vi Dijv, [vyjy  D; membe(map(lambda X:y) v) y]
Xjx D Vit [Xjx  Di;member Py; first X = a], [yjy Dy
member Py] membermap(lambda x:y) [xjx  v;first x = a]) y]
Vi3 [p1jp1  Du;member Py;pz = tllyjy Dy
membeirmap(lambda Xiy) [p1jp1  Vvip2 = t]) y]
Vit Dujv, Dyj
Xjx D Vi, Dijlf x;ygifx;yg  v; x = aj; Dy
not (member Py)] || Vi3 Dijlpypr  vip2 = t], Dyj
Vit D
map(lambda @:p9) D || Vt, PIip? D (first pd) = a)]
Vig [Pl Dp2= 1]

# Vty = (any;true), Vto = (fx;yg;x = a), Vtz = (p1;p2 = t)

Table 6.5: DLT Formulae for Tracing the Origin-Pool of ViMs (2)
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continue the DLT process, we may use virtual lineage datd)|(any,true) , for
the subsequent DLT steps. The materialised lineage data cdre extracted from
the data sources at the end of the DLT process. This can saveethime and
memory overheads of the DLT process.

Thus, in practice, we use virtual lineage data even if the datsource is mate-
rialised and lineage data are materialised only at the end tie DLT process, or,
in the case of lineage data that must be materialised in someittaceable cases
when the tracing data and data sources are all virtual (the & ofVtVs discussed

below).

6.4.3 Case VtVs

The DLT formulae for VtVs are similar to the formulae forVtMs but in this case
the source data are unavailable. Thus, we udeéneageobjects to store the virtual
intermediate lineage data. However, since data sources arnetual, we cannot
compute the virtual view by evaluating the query. Thus, if the virtual view is
used in a DLT formula, the lineage data is untraceable withducomputing the
virtual view. Table 6.6 gives the DLT formulae for the case o¥/tVs.

For example, suppose the query ig = group Dwhere Dis a virtual data
source. If the virtual tracing tuple t is (any,true) , the virtual a ect-pool is
O(any,true) . If tis ({x,y},x= @), the virtual a ect-pool is O({x,y},x= Q). If
t is (pl; p2=t), based on the formulae in Table 6.3, the virtual a ect-poolin D
can be expressed af({x,y} ; member [first p1 jpl  v;p2=t] x). However,
we cannot computev by just evaluating the query group D de ning v sinceDis
virtual. In this case, AutoMed's Global Query Processor cabe used to compute
v. Oncev is computed, the virtual tracing datat can also be computed and this

situation reverts to the case oMtVs which we discussed earlier.
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v t DLAP (1) | DL ©P (1)
Vi, D(any;true )
group D Vit Dfx;ygx = a)
Vits untraceable
Vi, D(any;true )
sort/distinct D Vi, O(fx;yg;x = a)
Vis O(p1;p2 = t)
max/min D Vt1.23 D(any;true ) untraceable
sum D Vti1:23 DO(any;true ) O(x;x 6 0)
count/avg D V.23 O(any;true )
Vi, DO(any;true ) untraceable
gc max/min D Vi, | O(fx;yg;x = a) untraceable
Vij untraceable
Vit D(any; true ) O(fxygy60)
gc sum D Vi, | O(fx;ygx = a) O(fx;yg;x = a;y 6 0)
Vij untraceable
Vi, O(any;true )
gc count/avg D Vi, D(fx;yg;x = a)
Vij untraceable
Vi, 8i:Dj(any;true )
D++ D ++ i ++ Dy Vit 8i:Dj(fx;yg; x = a)
Vi3 8i:Dj(p1;p2 = 1)
Dy D Vti1:23 untraceable
[Xixt Dy X Dy g Vti123 untraceable
(Cé )
[Xjx  Di; member pYy] Vti123 untraceable
[Xjx  Dr; not(member PYy)] || Vti23 untraceable
Vi, O(any;true )
map(lambda #:p9) D Vi, D(Y; (first  pY) = a)
Vts D(pf;p2 = 1)

# Vty = (any;true ), Vi, = (fX yg; x =

a), Vtz = (p1;p2 = 1)

Table 6.6: DLT Formulae for VtVs
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Alternatively, the view de nition of v could be propagated through the remain-
ing DLT steps until the end of the process. So far we have onljnplemented the
rst approach and it remains to implement the second approdcand to investigate

their trade-o s.

6.5 DLT for General Transformation Pathways

Having obtained the DLT formulae for the above four cases,neage data based
on a single transformation step is obtained by procedurBLT4AStetd;ts) as

described in Section 6.3, and its output is the lineage d¢d in ts's data sources
ice: a list of Lineageobjects which may contain either materialised or virtual
lineage data.

In our DLT algorithms for a general transformation pathway,there are two
further procedures: tracing the lineage of a single tuple @ig a transformation
pathway and tracing the lineage of a set of tuples along a traformation pathway.
This is because the lineage of oriéneageobject based on a single transformation

step may be a list ofLineageobjects, if the step has multiple data sources.

6.5.1 The DLT Algorithms

Figure 6.2 presents our DLT algorithms for tracing data linage along a gen-
eral transformation pathway: oneDLT4APatlitd; [ts,;:::;t,]) traces the lineage
of a single tracing tupletd along a transformation pathway {si;:::;t,], and
listDLT4APath([td4; :::; td ], [tse; 5 tsy]) traces the lineage of a list of tracing
tuples along a transformation pathway.

oneDLT4APath rstly nds the transformation step, ts;, which creates the
schema construct containingd and then callsDLT4AStepto obtain the lineage

of td based on this transformation step. DLT4AStepreturns a list of Lineage
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Proc oneDLT4APath(td; [ts1;:::;tsn])
f

IpList = ;
for i = n downto 1; do
if (td:construct= ts;:resul)
Num = i;

IpList = DLT4AStep(td; ts;);
continue; //* End the for loop
restTP =[tsy;::: tSnum |;
return listDLT4APath(lpList; restTP );
g

Proc listDLT4APath([tdq;:::;tdm]; [ts1; 5 tSn])
f
IpList = ;
for i=1to m; do
IpList = mergdlpList; oneDLT4APath(td;; [tsq;:::;tSn]));
return IpList ;
g

Figure 6.2: DLT Algorithms for a General Transformation Pahway

objects. After that, oneDLT4APathcalls the procedurdistDLT4APathto further
trace the lineage of this list ofLineageobjects along the rest of the transformation
pathway (i:e: the steps prior tots;). oneDLT4APathalso returns a list ofLineage
objects. listDLT4APathitself calls oneDLT4APathfor each itemtd; in the tracing
data list to nd the entire lineage of the whole list based on lte transformation
pathway.

The mergefunction in the procedurelistDLT4APathis used to avoid duplica-
tion of lineage data (as in Chapter 5, Section:8:2).

The algorithms in Figure 6.2 are correct in the sense that tlyegive the same
result as the DLT algorithms given in Section %:2 in Chapter 5. This is be-
cause the DLT formulae described in Section 6.4, which areadsin the proce-
dure DLT4AStepcomputing lineage data based on onadd transformation, can

be derived from the DLT formulae described in Section:&, while procedures
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oneDLT4APathand listDLT4APath obtain the nal lineage data by checking all
transformation steps along a transformation pathway in resrse.

Similarly to the DLT algorithms described in Chapter 5, the &act complexity
of the overall DLT process in this chapter iO(n  m) wheren is the number of
add transformations relevant to the tracing data in the transfemation pathway

and m is the number of di erent schema constructs in the computedreage data.

6.5.2 Example

Suppose that constructtCourseSurmAvg is generated by the following transfor

mation steps:

hHCourseSumAvgi = [{X,y,z}|{X,y,z} gc avg
([{{k1,k2},x}{k1,k2,k3,x} hh Details marki ])]
hbetails Marki = [{1S'k1,k2x}|{k1,k2,x} hh IStab; Marki ]
++ [{'MA'k1,k2,x}{k1,k2,x} hh MAtab; Marki ]

where constructshCourseSurmvgi , HMAtab; Marki and HiStalh Marki are ma-
terialised and constructhiDetails Marki is virtual. The transformation pathway

generatinghtCourseSurAvg construct consists of the following sequence of view

de nitions, where the intermediate constructsvl, :::, v4 and hiDetails Marki are
virtual:

vl =[{1S",k1,k2,x}|{k1,k2,x} hh 1Staly Marki ]

V2 =[{'MA'k1,k2,x}|{k1,k2,x} hh MAtab; Marki ]

Hbetails Marki = vl++ v2

v3 = map(lambda {k,k1,k2,x} :{{k,k1},x} ) hbDetails Marki
v =gc avg v3

HCourseSunmAvgi = map(lambda {{x,y},z} :{x,y,z} ) v4
Supposetd = {MA''MAC01',81} is a tuple in construct HCourseSunAvai .

Traversing the above transformation pathway in reverse, webtain td's lineage
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data, dI, with respect to each view as follows:

td = hCourseSumAvgij {MA','MAC01',81}
MYS vl = V4{{MA''MACO01%},81}
Mvs - v3ldl = v3j({x.y}x={MA''MACO1} )
YYS th Details Markij dl = hDetails Markij
({k.k1,k2,x},{k='"MA"k1="MACO1} )
s yv2qdl = v2j({k.k1,k2,x},{k='"MA"k1="MACO1} ):
vi|dl = vij({kk1,k2x},{k="MA K1I="MACO1} )
WS th MAtab; Markij dl = HMAtab; Markij
({k1,k2,x}{MA'='MA"k1="MACO1} )
HStab; Markij dl = HMStab; Markij

({k1,k2,x} {1S'='MA";k1="MACO1"} )
In conclusion, we can see that the lineage frohiiStaly Marki is empty and

the lineage fromHMAtab; Marki is obtained by evaluating the tracing query
[{k1,k2,x}| {k1,k2,x} hh MAtab; Marki ; 'MA'='"MA" ; k1="MACO01].

6.5.3 Performance of the DLT Algorithms

In this section, we study the performance of our DLT algoritms by compar-
ing their running times with respect to the number of relevan add steps in the
transformation pathway, and with respect to the number of deema constructs
in the computed lineage data. Experiments were set up based @an exten-
sion of the example given in Section:2:3, where the source schem@Scontains
several relations of the formdeptNamegempid; empname salary, and the tar-
get schemaGScontains two relationspersoifempid; empname salarydep) and
deptSum(deptNamavgSalary)

In Figure 6.3, the tracing data is in the constructipersonsalary of the global
schemaG$ and only one construct in the source schem@Sis computed in the

data lineage. In order to set up transformation pathways cdaining increasing
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Figure 6.3: Running Time vs. Num-  Figure 6.4: Running Time vs. Num-
ber of Relevantadd Transformations  ber of Schema Constructs

numbers ofaddtransformations, we create transformation pathways trarfsrming
SSand GSto each other repeatedly;:e: transformation pathways are created in
the form of SS!' G§! SS! GS! :::! S§! GSinwhich SS(i =1::n)is
identical to SSand GH(i = 1:::n) is identical to GS but only the schemasSSand
GSare materialised. Figure 6.3 illustrates the running time®f our DLT process
based on these transformation pathways

In Figure 6.4, the transformation pathway creating the targ@t schemaGSis
xed (and has 16 relevantadd transformations). In order to obtain di erent
numbers of constructs in the computed lineage data, we varyhé tracing data
from containing only one tracing tuple in one global schemaonstruct into a set
of tracing tuples from multiple global schema constructs. igure 6.4 illustrates
the running times of our DLT process in this scenario.

We can see that, as expected the running times of our DLT proge increase

linearly according to the number of relevanaddtransformations and the number

2The implemented algorithm does not include the DLT check pracess described in Section
6.4.1. We do not expect signi cant changes of the performane if it is extended to include the
DLT check process, since the DLT check process only examinegiery types of transformation
steps, which has a much lower consuming time than DLT process. However, this still remains
to be veri ed as future work.
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of schema constructs in the computed lineage data.

6.6 Extending the DLT Algorithms

In the above algorithms, we only consider IQtqueries andaddand renamerans-
formations. In practice, queries beyond IQL and delete contract and extend
transformations may appear in the transformation pathwaysntegrating ware-
house data. We now consider how these transformations cars@lbe used for

data lineage tracing.

6.6.1 Using Queries beyond IQL ¢

Our DLT algorithms handle IQLC® queries inaddtransformations. Referring back
to the Figure 35 in Section 33 which illustrates the data transformation and
integration processes in a typical data warehousagdd transformations for single-
source cleansing may contain built-in functions which camt be handled by our
DLT formulae given earlier. In order to go back all the stepsa the data source
schemasDSSn the staging area, the DLT process may therefore need to hadie
gueries beyond IQE.

In particular, suppose the constructc is created by the following transforma-
tion step, in which f is a function de ned by means of an arbitrary IQL query
and s;;:::; s, are the schemes appearing in the query:

addT(c; f(s1;:::580));

There are three cases for tracing the lineage of a tracing tept 2 c:

1. f is an IQL® query, in which case the DLT formulae described in this chapt

can be used to obtairt's lineage;
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2. n= 1andf is of the formf (s;) =[h xjx  s1;Q for someh and C in which

case the lineage df in s; is given by:
[X|x s1; G (h x) = t]

3. For all other cases, we assume that the data lineagetah the data source

si isalldatains;, foralll i n.

6.6.2 Using delete Transformations

The query in a delete transformation speci es how the extent of the deleted
construct can be computed from the remaining schema constts.

deletetransformations are useful for DLT when the construct is unailable.
In particular, if a virtual intermediate construct with vir tual data sources must be
computed during the DLT process, normally we have to use theudoMed Global
Query Processor to derive this construct from the originalata sources. However,
if the virtual intermediate construct is deleted by adeletetransformation and all
constructs appearing in thedeletetransformation are materialised, then we can
use the query in thedeletetransformation to compute the virtual construct. Since
we only need to access materialised constructs in the data mhouse, the time
of the evaluation procedure is reduced.

This feature can make a viewself-traceable That is, for the data in an inte-
grated view, we can identify the names of the source consttaccontaining the
lineage data, and obtain the lineage data from the view itdelrather than access

the source constructs.

6.6.3 Using extend Transformations

An extendtransformation is applied if the extent of a new construct canot be

precisely derived from the source schema. The transformaiti extendTc; ql; qu)
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adds a new construct to a schema, where quergl determines from the schema
what is the minimum extent of ¢ (and may beVoid) and qu determines what is
the maximal extent of ¢ (and may be Any) [MPO3b].

If the transformation is extendT(c; Void; Any), this means that the extent ofc
is not derived from the source schema. We simply terminate éhDLT process for
tracing the lineage ofc's data at that step.

If the transformation is extendT(c; gl; Any), this means the extent ofc can be
partially computed by the querygl. Using ql, we can obtain a part of the lineage
of c's data.

However, we cannot simply treat the DLT process via such aextendtrans-
formation as the same as via aadd transformation by using the DLT formulae
described in Section 6.4. Since in aaddtransformation, the whole extent of the
added construct is exactly speci ed, while in arextendtransformation it is not.
The problem that arises is that extra lineage data may be ded because the
tracing data contains more data than the result of the querygl, in the extend
transformation.

For example, transformationextendTc; Dy Dy; Any), where Dy = [1;2; 3],
D, = [2;3;4]. Although the query result is list [1], the extent ofc may be [Z 2],
in which 92%is derived from other transformation pathways. If we diredy use
the DLT algorithm described above, the obtained lineage datof 22 ¢ are Dyj[2]
and D,j[2; 3; 4]. While in fact, the data °2°°has no data lineage along thigxtend
transformation.

Therefore, in practice, in order to trace data lineage alongn extendtransfor-
mation with the lower-bound query, gl, the result of the query must be recom-
puted and be used to lIter the tracing data during the DLT process.

If the transformation is extendTc; Void; qu), this means that the extent of

¢ must be fully computed in the result of the queryqu. Although extra data
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may appear inqu's result, it cannot appear in the extent ofc. We use the same
approach as described foadd transformations to trace lineage ot's data based
on gu. However, we have to indicate that, extra lineage data may bereated.
Finally, if the transformation is extendT(c; ql; qu), we rstly obtain the lineage
of c's data based on these two queries, and then return their intgection as the
nal lineage data, which would be much more accurate but stilmay not be the

exact lineage data.

6.6.4 Using contract Transformations

A contract transformation removes a construct whose extent cannot bergs
cisely computed by the remaining constructs in the schema.h& transformation
contractT(c; gl; gu removes a constructc from a schema, whereyl determines
what is the minimum extent of ¢, and qu determines what is the maximal extent
of c. As with extend gl may be Void and qu may be Any.

If the transformation is contractT(c; Void; Any), we simply ignore thecontract
transformation in our DLT process.

Otherwise, we use thecontract transformation similarly to the way we use
deletetransformations described above. However, we also have talicate that
if using ql, only partial lineage data can be obtained; if usingju, extra lineage
data may be obtained; and if using the intersection of the ra#is of both gl and

gu, we can also only obtain an approximate lineage data.

6.7 Implementation

This section describes a set of data warehousing packagegtie AutoMed toolkit,
which implement the generalised DLT algorithm described ithis chapter. These

packages use java and the AutoMed Repository API.
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dataWarehousing.dltI

Class Lineage » ClassDemoDLT ClassDLTGUI
Class TransfStep T T
- Class DataLineageTracing I i
Class DemoDLT , ,
| ClassDataLineageTracing
| I' | transformationSteps: ArrayList
. . DatalineageTracing(Schema s1, Schema s2)
| dataWarehousmg.unI DLT4AStep(Lineage tt, TransfStep ts)
| oneDLT4APath(Lineage tt, ArrayList tp)
Class QueryDecomposer listDLT4APath(ArrayList tts, ArrayList tp)
I |Class IQLEvaluator4DW getTransformationSteps()
getDatalineageOf(Lineage LP)
I |Class Tools4DW getDatalineageOf(ArrayList IpList)
... | |
| T r' 1
| - é ! R ClassTransfStep
| ' action: String
L ClassLineage query: String
- —D . lineageData: ASG result: String
AutoMed Toolkit construct: String vResult:boolean
isVirtualData: boolean sources: ArrayList
) isVirtualConstruct: boolean vSources: boolean(]
eleStruct: String getAction()
| | constraint: String[ ] getQuery()
dataWarehousing.DWExample getLineageData() getResult()
- - getConstruct() isVRes ult()
Class DefineRepository isVirtualData() getSources()
Class DefineSchemas isVirtualConstruct() 98:¥30Uffcsets() (Stiing s1. String 52)
. . etEleStruct getTransfSteps(String s1, String s
Class DefineTransformations getConstrain(l() getSimpleTransfSteps(String s1, String sp

Figure 6.5: The Diagram of the Data Warehousing Toolkit

Currently, there are three packages available in the data wahousing toolkit:
dataWarehousing.dltdataWarehousing.utiind dataWarehousing.DWExampl&ll
packages have the pre xed hierarchy dk.ac.bbk.automed The diagram in Fig-
ure 6.5 shows the relationships of the three packages and tiest of the AutoMed
toolkit, as well as the relationships of the classes in thdataWarehousing.djpack-
age. Solid arrowed lines indicate the classes contained hetdataWarehousing.dlt
package, and dashed arrowed lines indicate the dependenekationships between
classes or packageslataWarehousing. DWExampe/es an example of creating the
AutoMed metadata for a data warehousei.e: creating the schemas of the data

warehouse and AutoMed transformation pathways expressimgappings between
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the schemas. dataWarehousing.utincludes the utilities used in the data ware-
housing toolkit. dataWarehousing.dttontains the clasd.ineagewhich is the data
structure storing lineage data; the clas§ransfStep which is the data structure
storing transformation steps; the clasdatalineageTracingwhich is the imple-
mentation of the generalised DLT algorithm descried in thichapter; and the
classDemoDLT, giving an example of using the DLT package. Appendi< gives

greater details of this data warehousing toolkit.

6.8 Discussion

AutoMed schema transformation pathways can be used to exme data trans-
formation and integration processes in heterogeneous datarehousing environ-
ments. This chapter has discussed techniques for tracingtddineage along such
pathways and thus addresses the general DLT problem for hedgeneous data
warehouses.

We have developed a set of DLT formulae using virtual argumento handle
virtual intermediate schema constructs and virtual lineag data. Based on these
formulae, our algorithms perform data lineage tracing alana general schema
transformation pathway, in which eachaddtransformation step may create either
a virtual or a materialised schema construct. In practice, &vuse virtual data for
expressing intermediate lineage data even it is availabl&his can save the time
and memory costs of the DLT processes.

One of the advantages of AutoMed is that its schema transforation pathways
can be readily evolved as the data warehouse evolves. In tlsisction we have
shown how to perform data lineage tracing along such evolalbpathways.

Furthermore, the Lineagedata structure described in Section 6.2 can be used

to express the data in the extent of a virtual global schema ostruct. This
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extends our DLT method to a virtual data integration framewak, where the
integrated database is virtual.

Although this chapter has used IQL as the query language in which transfor-
mations are speci ed, our algorithms are not limited to onefgeci ¢ data model or
guery language, and could be applied to other query languag@volving common
algebraic operations on collections such as selection, j@ation, join, aggregation,
union and di erence.

Finally, since our algorithms consider in turn each transfonation step in a
transformation pathway in order to evaluate lineage data ira stepwise fashion,
they are useful not only in data warehousing environments,ub also in any data
transformation and integration framework based on sequees of primitive schema
transformations. For example, [ZamO04, ZP04] present an aggach for integrating
heterogeneous XML documents using the AutoMed toolkit. A sema is auto-
matically extracted for each XML document and transformatn pathways are
applied to these schemas. Reference [MP0O3b] also discussms AutoMed can
be applied in peer-to-peer data integration settings. Thysthe DLT approach
we have discussed in this chapter is readily applicable in greto-peer and semi-

structured data integration environments.
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Chapter 7

Using AutoMed Transformation
Pathways for Incremental View

Maintenance

Data warehouses integrate information from distributed, atonomous, and pos-
sibly heterogeneous data sources. When data sources are atpd, the data
warehouse, and in particular the materialised views in theada warehouse, must
be updated also. This is the problem ofiew maintenancein data warehouses.

Materialised warehouse views need to be maintained eitheh@an the data of
a data source changes, or if there is an evolution of a data so&l schema. Chap-
ter 4 discussed how AutoMed schema transformations can beedsto express
the evolution of a data source or data warehouse schema, eittwithin the same
data model, or a change in its data model, or both; and how thexisting ware-
house metadata and data can be evolved so that the previousatrsformation,
integration and data materialisation e ort can be reused.

In this chapter, we focus on refreshing materialised warehee views when the

data of a data source changes, and we present an incrementevw maintenance
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(IVM) approach based on AutoMed schema transformation pathkays. Section
7.1 discusses related work on view maintenance. Section pr2sents our IVM
formulae and algorithms over AutoMed schema transformatiopathways. Sec-
tion 7.3 discusses methods for avoiding materialisations our IVM algorithms.

Section 7.4 discusses how queries beyond FQdand extendtransformations can

be used in our IVM process. Finally, Section 7.5 gives our adading remarks.

7.1 Related Work

The problem of view maintenance at the data level:e: when the database schema
does not change) has been widely discussed in the literatur€omprehensive
surveys of this problem are given in [GM99, Don99], as well asdiscussion of
applications, problems and techniques for maintaining matialised views.

The work of Blakeleyet al: in [BLT86, BCL89] presents the notion ofrrelevant
update denoting updates applied to source relations that have no ect on the
state of the derived relations. They discuss a mechanism oétdcting irrelevant
updates. As to relevant updates,:e: updates over source relations that may
have an e ect on the state of the derived relations, an appreh for maintaining
select-project-join (SPJ) views is presented.

Reference [QW91] presents a set of propagation rules for iggrg incremental
expressions which compute the changes to SPJ views based tgelaraic opera-
tions. This work also indicates that these derived increméal expressions are not
always cheaper to evaluate than recomputing the views froncraitch.

Ceri and Widom's work in [CW91] presents an approach for deting pro-
duction rules for maintaining SQL views, but does not conset duplicate data
items, aggregate functions, and di erence operations. Thialgorithm determines

the key of the source relation that is updated in order to e cently maintain the
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views, but cannot be applied if a view does not contain the keagttributes from
the source relation.

Gupta et al:'s work [GMS93] presents a deferred view maintenance algbm,
counting, applying to SQL views which may or may not have duplicate datitems
and can be de ned by aggregate functions, andNIONand di erence operators.
This algorithm works by storing the number of the derivatiors of each tuple in
the materialised view.

References [GL95, CGL96, Qua96] present propagation formulae based on
relational algebra operations for incrementally maintaimg views with duplicates
and aggregations. In particular, reference [CG196] describes propagation for-
mulae based on post-update source tables, that is source e available in the
state where changes have already been applied.

Reference [PSCP02] discusses the problem of incrementatigintaining views
of non-distributive aggregate functions. An aggregate function idistributive if
the refreshed view can be computed by only using the originalew and the
changes to the source tables, such &im and Count . In order to maintain
non-distributive aggregate function views, such agdvg , Max and Min views
after a DELETE operation, not only the changes to the sourceable, but also
the source table itself has to be used in the maintenance pess.

The problem of view maintenance in data warehousing envirorents has been
discussed by Zhuget al: in [ZGMHW95, ZGMW96, ZGMW98]. In particular,
reference [ZGMHW95] considers the IVM problem for a singksurce data ware-
house and references [ZGMW96, ZGMW98] for a multi-source tdawarehouse.
Four consistency levels of warehouse data are consideredhiase works:conver-
gence| after the last update and all activity has ceased, the view is consistent
with the source relations;weak consistency every state of the view corresponds

to some valid state of the source relations, but possibly nah a corresponding
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order: for example, supposing that the state and j of the view corresponds
to the state p and g of the source relations, it may be thati < j but p > q;
strong consistency| every state of the view corresponds to a valid state of the
source relations, and in a corresponding order; ammbmpletenesq there is a
1-1 order-preserving mapping between the sates of the viewdathe states of the
data sources.

The problem of IVM for multi-source data warehouses has alg®en discussed
in other literature. For example, reference [MS01] presentchange propagation
rules for IVM of multi-source views which can involve one or ore base relations
belonging to one or more data sources. Reference [AASY97¢sents two IVM
algorithms, namely the SWEEP and Nested SWEEP algorithms,otusing on
views de ned by SPJ expressions. Based on the two SWEEP alghms, reference
[DZR99] develops the MRE Wrapper for incrementally maintaiing warehouse
views.

In addition, reference [QW97] presents a concurrency coatralgorithm, 2VNL,
for maintaining on-line data warehouses and allowing useugries and warehouse
maintenance transactions to execute concurrently withoublocking each other.
References [GGMS97, AFPO03] discuss the view maintenancelgem in the con-
text of object-oriented database systems, where views cae de ned by object
guery languages such as OQL. In particular, reference [AFBPdescribes an ap-

proach to immediate IVM for OQL views by storing object IDs ofsource objects.

7.2 IVM over AutoMed Schema Transformations

Our IVM algorithms use the individual steps of a transformabn pathway to

compute the changes to each intermediate construct in the travay, and nally
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obtain the changes to the view created by the transformatiopathway in a step-
wise fashion. Since no construct in a global schema is cohtried by deleteand

contracttransformations, we ignore these transformations in our IM algorithms.

In addition, computing changes based on a transformatiaenameTO; OY is sim-

ple | the changes to O°are the same as the changes @. Thus, we only consider
addtransformations here. In Section 7.4.2 we discuss using@kxtendtransfor-

mations.

We develop a set of IVM formulae for each kind of SIQL query thamay
appear in anadd transformation. These IVM formulae can be applied on each
addtransformation step in order to compute the changes to the ostruct created
by that step. By following all the steps in the transformation pathway, we thus
compute the intermediate changes step by step, nally endghup with the nal
changes to the global schema data.

Referring back to Figure 35 in Section 33 which illustrates the data transfor-
mation and integration processes in a typical data warehoesin this chapter we
assume that the data source updates input to our IVM procesgeawith respect
to the single-cleansed schem&S. Thus, our IVM process can be used to main-
tain those materialised schemas which are downstream frorhet single-source
data cleansing, including the multi-cleansed schemas, @atvarehouse schemas

and data mart schemas.

7.2.1 IVM Formulae for SIQL Queries

We useMC=0C to denote a collection of data items inserted into/deletedrém a
collection Ct. There may be many possible expressions feIC and OC but not alll
are equally desirable. For example, we could simply IC = Cand MC=MC"%,

but this is equivalent to recomputing the view from scratch Qua96]. In order

1For the purposes of this chapter, all collections are assunikto be bags.
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to guard against such de nitions, we use the concept ghinimality [GL95] to

ensure that no unnecessary data are produced.

Minimality Conditions Any changes MC=0C) to a data collection C, includ-
ing the data source and the view, must satisfy the following mimality conditions:
(i) OC C: We only delete tuples that are inC,
(i) MC\ OC= : We do not delete a tuple and then reinsert it.

We now give the IVM formulae for each kind of SIQL query, in with v
denotes the view,D denotes the updated data sourcdyw=0Ov and MD=OD denote
the collections inserted into/deleted fromv and D, and D'*¥ denotes the data
source after the update. We observe that these formulae gaatee that the above
minimality conditions are satis ed by Mv and Ov provided they are satis ed by

VD and OD

IVM formulae for  distinct, map and aggregate functions

Table 7.1 illustrates the IVM formulae for these functions.We can see that the
IVM formulae for distinct/max/min/avg require access to the post-update data
source and using the view data; the formulae faount/sumneed to use the view

data; and the formulae formap use only the updates to the data source.

IVM formulae for grouping functions

Grouping functions, such asgroup D and gc f D, group a bag of pairsD on
their rst component, and may apply an aggregate functionf to the second
component. In order to incrementally maintain a view de nedby a grouping
function, we rstly nd the data items in Dwhich are in the same groups as the

updates,i:e: have the same rst component as one or more of the updates. The
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\Y

IVM Formulae

distinct D Mv

distinct [xjx MD not (member k)]

Ov

distinct [xjx  OD not (member D" x)]

map (lambda pl.p2) D|| W

map(lambda pl.p2) MD

Ov

map(lambda pl.p2) OD

max D Mv

et r1 = maxMD; r2 = max OD
< maxMD, if (v<rl);

. ; if (v rl1)&(ve r2)
g max P, if (v>rl)&(v = r2).

Ov

< v, if(v<rl);
; if (v rl)&(v 6 r2);
v, if(v>rl)&(v=r2).

min D Mv

et r1 = min MD; r2 = min OD
< minMD if (v>rl);

. ; if (v rl1)&(ver2)
g min D" if (v < r1)&(v = r2).

Ov

< v, if(v>rl);
; if (v rl)&(v 6 r2);
v, if(v<rl)&(v=r2).

count D Mv

v+ (count MD (count OD

Ov

\Y

sum D v

v+(sumMD (sumOD

Ov

\Y

avg D W

avg DV

Ov

\Y

Table 7.1: IVM Formulae for distinct, map and Aggregate Functions
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this smaller data collection can be used to compute the chaggto the view, so
as to save time and space. Table 7.2 illustrates the IVM forntae for grouping

functions.

Y, IVM Formulae
group D || Mv | group [fx;ygjfx;yg D*®%;
membeipif p;qg  (MD++ OD)] x]
Ov | [fx;ygifx;yg  v;membefpjf p;aqg  (MD++ OD] X]
gc fD | W |gcf [fxygifx;yg D°;
membeipf p;aqg  (MD++ OD] x]
Ov | [fx;ygifx;yg  v;membefpjf p;aqg  (MD++ OD] X]

Table 7.2: IVM Formulae for Grouping Functions

We can see that the IVM formulae for grouping functions requeé access to

the updated data source and using the view data.

IVM formulae for bag union and monus

Table 7.3 illustrates IVM formulae for bag union and monus (erived from [GL95]),
in which \ is an intersection operator with the following semanticsD1\ D2=
D1 (D1 D2 = D2 (D2 D). The IVM formulae for bag union only
use the changes to the data sources, while the formulae forgomonus have to
use the view data and require an auxiliary viewD2 D1 This auxiliary view
is similarly incrementally maintained by using the IVM fornulae for bag monus
with D1 D2

IVM formulae for comprehensions

We rst discuss IVM formulae for a comprehensionqjx; DZ:::;X; DnCy;
C,; ::1; Ck] without memberand not memberexpressions appearing in the lters.
For ease of discussion, we use the join operatdr to express this com-

prehension. In particular, ©1 /. D2 = [fX;ygjx D1y D2 c] where
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Y, IVM Formulae
D1++ D2|| W (MD1I OD2 ++ (MD2 OD)
Ov (OD1 MD2 ++ (OD2 MD)
D1 D2 W | ((MD1 MDJ++ (OD2  ODJ) (D2 D)
Ov ((OD1 OD2++ (MD2 NMDD)\ v

Table 7.3: IVM Formulae for Bag Union and Monus

c = Cy;:5;C. More generally, O1/ ¢, D2/ ¢, ::: /¢, D) = [X|X7
DI:::: X, Dncy; ¢; k6] in which ¢ is the conjunction of those predicates
from Cg; :::; C¢ which contain variables appearing irx; but without any variable
appearing inxj, j >1i .

We rstly give the IVM formulae of a view v = D1/ . D2 The justi cation of

these formulae is given in AppendiB.
M/ = (DIeV /. MD2 NMD1/ MDJ ++ MD1/ ;. D2eW

Ov (OD1/ . D2W OoD1/ .MD2 ++ (DI™W / .0D2 MD1l/ .0D2
++ OD1/ . OD2

More generally, the IVM algorithm, IVM4Comp for incrementally maintaining
the viewv = (D1/ ., D2/ ¢, ::: [ ¢, D) is given in Figure 7.1. This algorithm
needs to access all the post-update data sources. It rsthyomputes the changes
to the intermediate viewD1/ (.., D2based on the updates to the data sourdel
and D2 and then checks the rest of data sourcd33:::Dnin turn. If there are
updates to D, a temporary viewtempView= D1/ .., D2/ :::/ o o Qi 1 is
created in order to compute the changes to the intermediateéew D1/ ,.., D2/
11/ ¢ D. After checking all data sources of the view, the changes tov have
been computed.

The IVM4Compalgorithm is similar to the IVM algorithms discussed in ref-
erences [ZGMW98] and [AASY97]i.e: the Strobe and SWEEP algorithms, in
the context of maintaining a multi-source data warehouse. @h the Strobe and

the SWEEP algorithm perform an IVM process for each update ta data source
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Algorithm IVM4Compg)
Begin:
Mv = DIV [ ¢1.oMD2  MD1/ ¢3.coMD2 ++ MD1/ ¢p.cp D2V
Ov=(0D1/ cl;c2 D2ew OoD1/ Cl;CQNDZ ++ OD1/ cl;c2 OD2
++ (DI'®W / .. OD2  MD1/ 1.2 OD2
tempView= DI'®V;
for i =3 to n; do
if (MO or OD is not empty)
tempView= tempView/ ¢; D(‘iewl);
Ov=(0v/Dnw Ov / (MD)++ Ov/ 4 OD
++ (tempView/ . OD W [/ ¢ OD);
Mv = (tempView/ MD Mv / MD)++ Mv /[ o D&Y,
else
Mv =M / D&V,
Ov = Ov/ i Dnew;
return Mv and Ov;
End

Figure 7.1: ThelVM4CompAlgorithm

SO as to ensure the data warehouse is consistent with the upeld data source.
For both algorithms, the cost of the messaging between the dawarehouse and
the data sources for each update ®(n) where n is the number of data sources.
However, in practice, warehouse data are normally long-terand just refreshed
periodically. Our IVM4Compalgorithm is able to handle a batch of updates and
is speci cally designed for a periodic view maintenance poy. The message cost

of our algorithm for a batch of updates to any of the data souss isO(n).

IVM formulae for membemnd not member

For ease of discussion, we uge and Z to denote expressions withmemberand
not memberoperators, for exampleD1” D2 denotes kjx D1 member DX]
and D1Z D2 denotes Xjx DI not (member DX)]. The IVM formulae for
v =[xjx DL;member Px] are given below, in which the functiorcountNum a D

returns the number of occurrences of the data itera in D i:e: countNum a B
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count [x|x D;x=a], and the priorities of * and Z operators are higher than

++ and operators.

Mv = (MD1” D2 MDA rl) ++ DLW A r1

Ov = (D1"®W A r2 MD1” r2) ++ (OD1M D2"eW OD1” r1) ++ OD1” r2
where

rl = [xjx MD2(countNumx MD2 = ( countNumx D2"¢W)]

r2 = 0OD2Z D2"eW

The IVM formulae for v =[xjx  DL;not(member Px)] are as follows:
Mv = (MD1ZD2"®W  NMD1M r2) ++ DL"eWA 12

Ov = (DI"™WArl  MD1Mrl)++ (OD1ZDZ®Y  ODI1” r2) ++ OD1~ rl
where

rl = [xjx MD2(countNumx MD2 = ( countNumx D2"¢W)]

r2 = 0OD2z D2"ew

We can see that all post-update data sources are required metIVM formulae.

The justi cation of these formulae is given in AppendixB.

7.2.2 IVM over Schema Transformation Pathways

Having de ned the IVM formulae for each kind of SIQL query, tle update to a
construct created by a singleddtransformation step is obtained by applying the
appropriate formula to that step's query. Our IVM process foa single transfor-
mation step is IVM4AStefcd; ts) and its output is the change to the construct
created by transformation stepts based on the changed, to ts's data sources.
As discussed above, the post-update data sources and thewigself are re-
quired by some IVM formulae. In a general transformation pdwvay, some inter-
mediate constructs may be virtual. If a required data colldon is unavailable,
i-e: not materialised, thelVM4AStepprocedure cannot be applied. Thus, we have

to precheck eactaddtransformation in the pathway. If a virtual data collection is
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required by the IVM formula for a transforation step, we mustrstly materialise
this data collection and store it in the data warehouse. Thigrecheck only needs
to be performed once for each transformation pathway, unkeshe transformation
pathway evolves due to the evolution of a data source schemghis materialisa-
tion increases the storage overhead of the data warehousat does not increase
the message cost of the IVM process since these materialisedstructs are also
maintainable by using the same IVM process along the trangfoation pathway.

Alternatively, we could use AutoMed's Global Query Process (GQP) to
evaluate the extent of a virtual construct during the IVM process so as to avoid
increasing persistent storage overheads. However, sintades post-update data
sources, the GQP can only recover a post-update view. If a watself is used in
an IVM formula, i:e: the view beforethe update, this cannot be recovered by the
GQP.

We now give an example of prechecking a transformation pathy The trans-
formation pathway generatingiCourseSurAvgi in the global schema in Section

5:5:2 can be expressed as the following sequence of view de misp where the

intermediate constructsvl, :::, v4 and hDetails Marki are virtual:
vl = [{1S'k1,k2x}|{k1,k2,x} hh IStab; Marki ]
V2 = [{MA'k1,k2 x}{k1,k2,x} hh MAtab; Marki ]
Hbetails Marki = vl++ v2
v3 = map(lambda {k,k1,k2,x} :{{k,kl1},x} ) hiDetailsMarki
v4 = gc avg v3
hHCourseSumAvgi = map(lambda {{x,y},z} :{x,y,z} ) v4

In order to incrementally maintain hCourseSunAvgi , the intermediate views
v3 and v4 must be materialised (based on the IVM formulae for groupinfunc-
tions). For example, suppose that an update to the data souss is a tuple in-
serted into Staly Marki , MiStaly Marki = {ISC01','ISS05',80} . Following

181



the transformation pathway, we obtain the changes to the imrmediate views as

follows:
M1 = {1S''1SC01','ISS05',80}
MhiDetails Marki = {1S','ISC01",'1ISS05',80}
M3 = {{1S',1SC01},80}

Since the extents o¥/3 and v4 are materialised, changes te4 can be obtained
by using the IVM formulae for grouping functions, and then beaised to compute
changes tonCourseSurAvgl by using the IVM formula for map expressions.

However, the post-update extent of/3 can be recovered by AutoMed's GQP,
and using the inverse query omap(lambda {{x,y},z} :{x,y,z} ) v4, the pre-
update extent ofv4 can also be recovered agl = map(lambda {x,y,z} {{x,y},

z}) hCourseSunAvgi . Thus, in practice, no intermediate view needs to be ma-

terialised for incrementally maintaining hCourseSurAvgi along the pathway.

7.3 Avoiding Materialisations in IVM

The above example shows that some materialisations in the W process are
avoidable so reducing the storage overhead of a data warebkeu In this section,
we will investigate these avoidable materialisations mormgenerally, so as to apply
them in our IVM process.

We consider ve methods to avoid materialisations in our IVMprocess: using
AutoMed's GQP; using view de nitions; using inverse quer& IVM formulae for
virtual schema constructs; and rede ning view de nitions.We now discuss these

in turn in Section 7:3:1 { 7:3:5 below.
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7.3.1 Using AutoMed's Global Query Processor

As described above, AutoMed's Global Query Processor (GQREan be used to
evaluate the extent of a virtual construct during the IVM process so as to avoid
increasing persistent storage overheads. However, usihg IGQP will have higher
time overheads than other methods discussed below since B&P uses data
source wrappers to access data sources for evaluating geeriAlso it will require
more memory than the other methods to store the result of the @GP evaluation.
Furthermore, the GQP cannot be used to recover a view beforkd update since

it uses post-update data sources.

7.3.2 Using View De nitions

Instead of using the GQP for recovering a virtual constructywe can use the view

de nition to replace the construct in our IVM formulae so tha the query can be

pushed to data sources to be evaluated rather than being ewated by the GQP.
For example, the view de nition of the virtual construct v3 in Section 7.2.2

is as follows:
v3 = map(lambda {k,k1,k2,x} :{{kkl},x} ) hbetailsMarki

map(lambda {k,k1,k2,x} {{k,k1},x} )
([{1S',k1,k2,x}{k1,k2,x} hh 1Stab; Marki ]++
[{'MA"k1,k2,x}|{k1,k2,x} hh MAtab; Marki ])

([{{1S",k1},x}{k1,k2,x} hh I1Stab; Marki ]++

{{'MA" k1},x}{k1,k2,x} th MAtab; Marki ])

Then the IVM formula for computing Mv4 can be transformed into:
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M4 = gc avg [fx;ygjfx;yg — v3™%;
membelfpjf p;agg (M3 ++ Ov3)] X]
= gc avg [fx;ygifx;yg
([{{"1s",k1},x}{k1,k2,x} hh I1Stab; Marki ]
++ [{{MA' k1},x}{k1,k2,x} hh MAtab; Marki ]);
membelfpjf p;agg (M3 ++ Ov3)] X]
= gc avg
([{{"1s",k1},x}{k1,k2,x} hh I1Stab; Marki ;
membelpjf p;og (M3 ++ Ov3)] {IS' k1} ]
++ [{{MA' k1},x}{k1,k2,x} hh MAtab; Marki ;
membeifpjf p;og (M3 ++ Ov3)] {MA'k1} ])
Thus, the two sub queries,[{{'IS' k1},x}|{k1,k2,x} hh IStab; Marki ; member
[pif p;ag (Mv3++ Ov3)] {I1S',k1} ] and [{{MA'k1},x}|{k1,k2,x} hh MAtab,

Marki ; membefpif p;gg  (Mv3++ Ov3)] {MA'k1} ], can be pushed into the materi-
alised data sourceiStaly Marki and HiMAtab; Marki respectively to be evaluated

locally.

7.3.3 Using Inverse Queries

Some virtual intermediate schema constructs can be recoedrfrom the constructs
in the global schema using theénverse query such as virtual constructv4 in the
example in Section 7.2.2. Suppose thaj is an IQL® query, andv = q(D). If
there is a queryq ! such that D = g?*(v), we term g ! the inverse query ofq.

The recovered constructs are pre-update ones since the irse queries are
based on the view constructs before the update. Thus, the amach of using
inverse queries complements the approach of using AutoMedSQP and view
de nitions which are based on post-update data sources.

However, not all queries have inverse queries. In SIQL, only = group D
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always has an inverse queryD = maplambda {x,xI} :[{x,y} j{y} XlI]) v.
The queryv = map (lambda pl.p2) Dalso has an inverse query if and only if all
variables appearing inpl are contained inp2: the corresponding inverse query is

D = map (lambda p2.pl) v Otherwise, Dcannot be recovered fronv.

7.3.4 IVM Formulae for Virtual Schema Constructs

We can develop IVM formulae for virtual schema constructs sas to avoid ma-
terialisations in our IVM process along AutoMed transformaon pathways.
Considering a viewv de ned by a SIQL queryq over data sourceS, v = q(S),
it is necessary that our IVM formulae can handle the followig four casesMvMs
| both the view and the source data are materialised; MvVs | the view is
materialised and the source data is virtualVvMs| the view is virtual and the
source data is materialised; and/vVs| both the view and the source data are
virtual.
The IVM formulae for the case ofMvMs were given in Section 7.2.1, and we
now present the IVM formulae for the other three cases. Notéat, we assume

that updates to data sources and the update to the view are matialised.

Case MvVs

The IVM formulae for the case ofMvMs given in Section 7.2.1 show that IVM
formulae for distinct , max min, avg, grouping functions and comprehensions
are using the data sources. We now consider each of these kind SIQL queries.
The IVM formulae for the other kinds of SIQL queries do not usthe data sources

as arguments, and thus do not need to be considered.

1. v = distinct D

If Dis virtual, Ov is not obtainable if there are deletions©D, from the data
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source.

2. v = max/min D
If Dis virtual, v is not maintainable if there are deletions©D, from the data

source.

3.v=avg D
If auxiliary views v_s = sum [@andv_c = count Dare available,v is main-

tained by following IVM formulae.

Mv=(v_s+(sum MD (sumOD)=(v_c+(count MD (count OD)

Ov=v

4. v = group D

let r1 = group MD
r2 = group OD
Ov = [{xy}{xy} v;

membermap(lambda {p,q}.p ) (r1 ++ r2)) x]

let r3 = [{xy ai{x.y} Ov; {p.q} r2;x=p|
r4 = [{xy ++ q}{x.y} r3;{p.a}  rl;x=p|
W = rd ++ [{X,y}{Xy} rl;

not (member (map(lambda {p,q}.p ) r4) x)]

5. v = gc max/min/avg D

Vv is not maintainable if Dis virtual.

6. v = gc sum/count D
let r1 = gc sum/count NMD

r2
Ov

gc sum/count OD

[{xy}H{x.y} v;
membermap(lambda {p,q}.p ) (r1 ++ r2)) X]
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let r3 = [{X(y - @H{xy} Ov; {p.a} r2;x=pj
r4 = [{x(y + QH{xy} r3;{p,q} rl; x=p]
W = 4 ++ [{X,YH{X,y} r1;

not (member (map(lambda {p,q}.p ) r4) x)]

7. v is de ned by comprehensions, includingnemberand not memberfunc-

tions. If the data source is virtual,v is not maintainable.

Case VvMs

The IVM formulae for the case oMvMs, show that IVM formulae for distinct
aggregate functions, grouping functions and bag monus areing pre-update
views. Here, we are not concerned with the situation of aggate functions if
the views are virtual, since the view of an aggregate functias a number which
does not incur signi cant cost overheads. If such a materiged view is required
for our IVM algorithms, we can store it in the data warehouse.

We now consider the IVM formulae for the SIQL queries listedtmve, except

for aggregate functions, if the view is virtual but the soure data is materialised:

1. v = distinct D
Mv = distinct  [x|]x  MD (countNum x P*V) = ( countNum x MVD)|

Ov = distinct  [x|x OD not (member ¥V x)]

2.v = group D
let r1 =[{x,y}H{xy} D'*"; membermap(lambda {p,q}.p ) (MD++ OD)) X]
Mv = group rl
Ov=group (r1 ++ OD MDD

3.v=g9c fD
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let rl =[{x,y}{x.,y} D**%; membel(map(lambda {p,g}.p ) (MD++ OD)) X]
r2 = group rl
r3 =group (rl ++ OD MD)
r4 =r2\ r3
M = r2 r4
Ov=r3 r4

4. v = D1 D2
Suppose thatv and the auxiliary view D2 Dlare all unavailable.

let r1 = MD1++ ODI++ MD2++ OD2

r2 =[x|x D1I"®W: member rl %

r3 =[x|x D2'®W:member rl %
r4 =r2 ++ OD1 MD1

r5 =r3++ OD2 MD2

r6 =r2 r3

7 =r4 rs

Mv = r6 r7

Ov=r7 ré

Case VvVs

In the case ofVvVs only views de ned by map functions or ++ expressions
are incrementally maintainable. The changes to the view arm@btained from the

updates to the data sources (see Section 7.2.1).

7.3.5 Rede ning View De nitions

In our IVM process, materialisations may be avoided if we redhe the view
de nition. For example, suppose thatv = [X|x (D1++ D2; member D3 ]x

in which data sourcesD], D2and D3are materialised. In order to incrementally
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maintain the view v, we decompose the view de nition into the following SIQL

gueries, by using the rules for decomposing IQlgueries given in Chapter 5:
vl = DI1++ D2

v = [x|X v1; member D3 Jx

Then, the intermediate viewvl must be materialised since it is a data source of
a comprehension.

However, consider the view de nitionv' = [x|X D1 member D3 ]x+
[X]x D2 member D3 ]x Obviously, viewsv and v' are equivalent. The de ni-

tion of v®can be expressed as follows:
V' = vl' ++ v2'
vl [ x|x D1 member D3 Jx
v2' [ X]|x D2 member D3 Jx

We can see that no intermediate view is required to be matehised for computing

the updates to the viewv' .

The above example illustrates that if a comprehension corites ++ expres-
sions as sub-queries, we can rede ne the comprehension bylipg the ++ oper-

ators outside the comprehension, using the general equeate h|Q1;:::;X;

Qn, so as to avoid materialising the intermediate results ohese++ expressions.
In practice, there two limitations of applying this kind of rede nition. One, if
the source data of a-+ expression are virtual, for exampl®i, and Di, are virtual,
applying the rule cannot save the storage overhead of matalisation. Since we
have to either materialise the intermediate viewDi; ++ Di,, or materialise Di,
and Di, individually.
Two, applying the rule will increase the number of comprehaions in a trans-

formation pathway hence decreasing the e ciency of the IVM pmcess. If the
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number of ++ expressions in a comprehension rsand the number of the data
sources in eacht+ expression isa(1 | n), then the number of compre-
hensions created after applying the rule isy, a ::: a,. From the IVM

formulae for comprehensions given in Section 7.2.1, we cae $hat the time and
temporary storage overheads of maintaining comprehensgare normally expen-
sive, since we have to access each post-update source dath@eate temporary
intermediate views if the number of generators in a comprehsion is greater than
2. Thus, if the number of generators in a comprehension is gter than 2, we do

not apply the rede nition rule.

7.4 Extending the IVM Algorithms

7.4.1 Using Queries beyond IQL ¢

Our IVM algorithms above handle IQL® queries inaddtransformations. However,
add transformations for single-source cleansing may contairuitt-in functions
which cannot be handled by our IVM formulae above. In order tanaintain
materialised single-cleansed schemas, the IVM process ntagrefore need to
handle queries beyond IQL

In particular, suppose the constructc is created by the following transforma-
tion step, in which f is a function de ned by means of an arbitrary IQL query
and s;;::1; s, are the schemes appearing in the query:

addT(c; f (sq1;:::58n);

We consider the IVM process propagating the changes ¢op Mc=Oc, according

to the data source updatedvs,;=0s;; :::; M5,=0s,, in the following three cases:

1. f is an IQL® query, in which case the DLT formulae described in this chapt

can be used to computdvc=Cc;
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2. n= 1andf is of the formf (s;) =[h xjx  s1;Q for someh and C in which

case the changes to are computed by the following formulae:

Mc=[h x|x Ms;;Q

Oc=[h x|x Os;;qd

More generally, if the following hold forf

f(S++ T) = op f(s) £(T)

f(s 1= op’f(s) f(T)

for some pair of operatorop and op' such that (a op b) op' b = a for

all a,b (e.g. ifop= +andop' = -, orop= ++andop' = --), then, we
can incrementally computec if s; changes.

In particular, if the operator op is ++ andop' is , the changes toc are
given by:

Mc = f (Msy)

Oc = f (Osy)

Otherwise, the new extent ofc, c"™", is incrementally computed by the

following formula:
c" = op’(op ¢ f(Msy)) f(Osy)
and the changes tac are given by:
Mc = cev C
Oc=c chew
3. For all other cases, the new extent of, c™" is fully recomputed from
scratch and the changes t@ are given by:

Mc = cev C

Oc=c chew
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7.4.2 Using extend transformations

So far, we have considered onlgdd and renametransformations. In this section,
we discuss how to utiliseextendtransformations in our IVM process.

We recall from Chapter 3 that an extend transformation is applied if the
extent of a new construct cannot be precisely derived from ¢hsource schema.
The transformation extendTc; ql; qu adds a new constructc to a schema, where
the query gl determines from the schema what is the minimum extent af (and
may beVoid) and the query gu determines what is the maximal extent ot (and
may be Any).

If the transformation is extendT{c; Void; Any), this means that no information
about the extent of c can be derived from the source schema. We terminate the
IVM process for computing changes to construat at that step.

If the transformation is extendT(c; gl; Any), this means the extent ofc can
be partially recovered by the querygl. Using gl, we can compute the changes,
Mc=Oc, to construct c. Sinceql is a lower bound on the extent ofc, we can
insert Mc into c safely. However, we cannot simply delet®c from ¢, because
Cc may contain more data than the result ofgl. Similarly, if the transformation
is extendT(c; Void; qu), the result of the query qu may contain more data than
construct c. Oc computed based orgu can be simply deleted fromc, but Mc
cannot be inserted intoc safely.

Finally, if the transformation is extendTc;qgl;qu), we rstly compute the
changes toc based on these two queries, and selebtc based onqgl and Oc
based onqu to update c. However, we have to indicate to the data warehouse

users that such updates may not be the exact changes to the wieonstruct c.
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7.5 Discussion

AutoMed schema transformation pathways can be used to expme data trans-
formation and integration processes in heterogeneous datarehousing environ-
ments. This chapter has discussed techniques for incremainview maintenance
along such pathways. We have developed a set of IVM formulaBased on these
formulae, our algorithms perform an IVM process along a sama transformation
pathway. We also have discussed approaches for avoiding evélisations in our
IVM algorithms so as to save storage overheads.

One of the advantages of AutoMed is that its schema transforation pathways
can be readily evolved as the data warehouse evolves. In tloisapter we have
shown how to perform IVM along such evolvable pathways.

Although this chapter has used IQL as the query language in which transfor-
mations are speci ed, our algorithms are not limited to onepgeci ¢ data model or
guery language, and could be applied to other query languagi@volving common
algebraic operations on collections such as selection, j@ation, join, aggregation,
union and di erence.

Finally, since our algorithms consider in turn each transfonation step in a
transformation pathway in order to compute data changes in atepwise fash-
ion, they are useful not only in data warehousing environmés) but also in any
data transformation and integration framework based on segnces of primitive
schema transformations, such as peer-to-peer and semustured data integra-

tion environments.
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Chapter 8

Conclusions and Future Work

This thesis has discussed the use of the both-as-view (BAVat@& integration
approach and the AutoMed toolkit for data warehousing. Thesx are three main
advantages in using BAV and AutoMed for data warehousing:i) the data source
wrappers translate each data source schema into its equisat AutoMed repre-
sentation; any necessary inter-model translation then hagns explicitly within
the AutoMed transformation pathways, under the control of he data warehouse
designer; {i) if the data warehouse is to be redeployed on a platform with a
di erent data model, it is easy to reuse the previous data trasformation and
implementation e ort; (iii ) evolutions of the data source schemas and the data
warehouse schema are readily supported. Poirif (vas discussed in Chapter 3 of
this thesis, and points (i) and (iii ) were discussed in Chapter 4.

In order to use AutoMed for heterogenous data warehousing.eveonsidered
the following four research problems in this thesis: how AoMed metadata can
be used to express the schemas of a data warehouse and presessch as data
cleansing, transformation and integration; how schema eaion can be handled;
how AutoMed metadata can be used for data lineage tracing; drhow AutoMed

metadata can be used for incremental view maintenance.
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Our solutions to these problems are in the context of a hetegeneous data
warehouse environment where evolutions of the data sour@emas and the data
warehouse schema may occur, including changes in the datadals in which these
schemas have been represented.

In Chapter 2, we have given an overview of the major issues iratd ware-
housing, which include the de nition of a data warehouse, da warehouse archi-
tecture, data warehouse modelling, and data warehouse pesses.

In Chapter 3, we have discussed how AutoMed metadata can beedsin a
data warehousing environment. We have shown how AutoMed nastata can be
used to express the schemas of the data sources and of the da#sehouse, and
to represent data warehouse processes such as data cleaypsiransformation,
integration, summarisation and creating data marts.

In Chapter 4, we have described how AutoMed schema transfoations can be
used to express the evolution of schemas in a data warehougée have shown how
the existing warehouse metadata and data can be evolved sathhe previous
transformation, integration and data materialisation e ort can be reused.

In Chapters 5 and 6, we have addressed the problem of data ge tracing
(DLT), i:e: nding the derivation in the data sources of the tracing datain the
global database. In particular, Chapter 5 has given the deitions of data lineage
in the context of AutoMed, presented a method for tracing dat lineage along
a materialised AutoMed transformation pathway and discugsl the problem of
derivation ambiguity in data lineage tracing. Chapter 6 haghen generalised the
DLT algorithms to handle virtual intermediate transformation steps, so that our
DLT process can be applied along a general transformation thbavay. The main
contributions of our DLT approach are as follows:

Firstly, we have considered both why- and where-provenanasing bag seman-

tics and have given the de nition of a ect-pool and origin-pool for data lineage
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in the context of AutoMed. In contrast, the previous work of @i et al only
considered why-provenance.

Secondly, we have developed a set of DLT formulae using vigitarguments to
handle virtual intermediate schema constructs and virtualineage data. Based on
these formulae, we have presented algorithms which perfodata lineage tracing
along a general schema transformation pathway.

In practice, we use virtual lineage data to express the interediate lineage
data even if it is available. This can save in time and memorysage of the DLT
process, and makes our DLT process applicable in both matdised and virtual
data integration scenarios.

Although we have used IQE as the query language in which transformations
are speci ed, our algorithms are not limited to one speci c dta model or query
language, and could be applied to other query languages ihwiog common al-
gebraic operations on collections such as selection, pwijen, join, aggregation,
union and di erence.

Thirdly, since our algorithms consider in turn each transfomation step in a
transformation pathway in order to evaluate lineage data ira stepwise fashion,
they are useful not only in data warehousing environments,ub also in any data
transformation and integration framework based on sequees of primitive schema
transformations.

In Chapter 7, we have developed a set of incremental view mtanance (IVM)
formulae. Based on these formulae, we have presented altforis which perform
an IVM process along a schema transformation pathway. We hawalso discussed
approaches for avoiding materialisations in our IVM algotihms so as to reduce
storage overheads.

The major results of Chapter 3 have been published in [FPO3khd those of
Chapter 4 in [FP04]. The DLT algorithm of Chapter 5 has been pulished in
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[FP0O2, FP03a] and that of Chapter 6 in [FP0O5]. The major restg of Chapter 7
have been published in [Fan05].

Although developed in the context of AutoMed and a data waredusing envi-
ronment, the techniques described in this thesis can be apgal in any materialised
data integration environment in which the data transformaton and integration
logic is expressed by sequences of schema transformatioiis approach is
likely to be bene cial in situations involving data transfamation and integra-
tion across multiple data models and where both source andiégrated schemas
may frequently evolve. Grid, peer-to-peer and semi-strugted data integration
environments are likely to have these characteristics bagse they involve hetero-
geneous, distributed, autonomous data sources which arecassed and integrated
across a network. Both the metadata and the data of these datources may au-
tonomously evolve. Also, di erent integrated schemas wilbe needed to meet the
needs of di erent end-users and applications, and these @grated schemas may
be dynamic and evolving e.g. new schemas created for new ussguirements
and existing schemas changed for updated user requirements

In more static and homogeneous data integration environmes) traditional
approaches using one common data model with GAV or LAV viewsalikely to
be more appropriate because they have simpler metadata to nage | just one
common data model, and a set of view de nitions rather than aet of schema
transformation pathways. Also, if there is not a requiremento support frequent
schema evolutions, processes such as global query evabmtipopulating inte-
grated schemas and maintaining materialised views may be rece cient using
a set of view de nitions directly compared with using a set oéchema transfor-
mation pathways.

We are currently pursuing several directions of research itding on the results

of this thesis:

197



1. Implementation of data warehouse maintenance

Materialised data warehouse views need to be maintained whéhe data
sources change, and much previous work has addressed thishgm at the
data level, as did this thesis in Chapter 7. However, as disssed in Chapter
4, materialised views may also need to be modi ed if there ismia&volution of
a data source schema. We have discussed methods for handéngh schema
evolutions in that chapter. We now need to develop detailedlgorithms.
We will then combine our view maintenance approaches at theath level
(from Chapter 7) and at the schema level (from Chapter 4), inroler to
develop a toolkit to handle the general view maintenance potem of a data

warehouse.

2. Extension of our DLT & IVM approaches

The DLT and IVM approaches described in this thesis assume LQ as the
guery language. However, our approaches can be easily medi to handle
other query languages involving common algebraic operati® on collec-
tions such as selection, projection, join, aggregation, iom and di erence.
Furthermore, our DLT and IVM approaches are both performedn a step-
wise fashion, and so any data transformation and integratio framework
based on sequences of schema transformations can use thg@ggoaches,
e:g:[SKRO1, YLTO3]. In particular, we wish to extend our approakes to
handle multiple query languages and to apply to web-based tdantegration

environments.

3. Extension to peer-to-peer environments

So far, we have assumed a single global schema for the DLT andv

approaches described in this thesis. However, AutoMed cafs@ be used

198



in peer-to-peer data integration settings [MP03b]. We plao extend our

DLT and IVM algorithms to be applicable in peer-to-peer envonments.

4. Application in biological data integration

It is planned to apply the results of this thesis in the ongoig projects
BioMap! and ISPIDER?. BioMap is developing a warehouse integrating
protein family, structure, function and pathway/process @ta with gene ex-
pression and other experimental data, which aims to providen integrated
sequence/structure/function resource that supports angsis, mining and
visualisation of functional genomics data. ISPIDER aims tgrovide an
integrated platform of proteomic data resources enabled &rid and Web
services for the storage, dissemination and management obfgomic data,
and to produce appropriate middleware technologies for digouted query-
ing, work ows and other integrated data analysis tasks acss this range of

proteome databases.

Reference [MZR 05] gives an initial discussion of how the AutoMed toolkit
can be used for integrating heterogeneous biological datausces, both for
materialised integration as in BioMap and for virtual integation as in ISPI-
DER. Biological data sources typically have a very high dege of hetero-
geneity in terms of the type of data model used, the schema s within
a given data model, as well as incompatible formats and nangrof val-
ues. Reference [MZRO05] identi es that the particular strengths of using
AutoMed for biological data integration are that it supports reversible, ex-
tensible transformations from data source schemas to an @grated schema,

and enables both virtual and materialised integration.

1Seehttp://www.biochem.ucl.ac.uk/bsm/biomap/index.html
2Seehttp://www.ispider.man.ac.uk/
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It is expected that the results of this thesis, and also extaions 1-3 above,
will bene t the above two projects by enabling incremental iew mainte-
nance for the BioMap warehouse and by enabling data lineageating for
both BioMap and ISPIDER. Moreover, this will be in a context where evo-
lutions of the data source schemas and the integrated schesnare readily
supported, thus accommodating future changes of the BioMagnd ISPI-

DER data sources and of their integrated schemas.

200



Bibliography

[AASY97]

[AFPO3]

[Alb91]

[ALP91]

[AMGFO5]

Divyakant Agrawal, Amr El Abbadi, Ambuj K. Singh, and Tolga
Yurek. E cient view maintenance at data warehouses. InProc. of
ACM SIGMOD'97, pages 417{427. ACM Press, 1997.

M. Akhtar Ali, Alvaro A. A. Fernandes, and Norman W. Paton.
MOVIE: An incremental maintenance system for materializeab-
ject views. Data & Knowledge Engineering47(2):131{166, 2003.

J. Albert. Algebraic properties of bag data types. n Proc. of
International Conference on Very Large Data Bases (VLDB'9},
pages 211{219. Morgan Kaufmann, 1991.

J. Andany, M. leonard, and C. Palisser. Managemenbf schema
evolution in databases. InProc. of International Conference on
Very Large Data Bases (VLDB'91) pages 161{170. Morgan Kauf-
mann, 1991.

M. B. Al-Mourad, W. Alex Gray, and N. Fiddian. Sematrtically rich

materialisation rules for integrating heterogeneous daleses. In
Proc. of British National Conference on Databases (BNCOD®),

LNCS 3567 pages 60{69, 2005.

201



[BB99]

[BCDSO01]

[BCL8Y]

[BCRP98]

[Bek99]

[Bel96]

[Ben99]

P. A. Bernstein and T. Bergstraesser. Meta-data sujgpt for data
transformations using microsoft repositorylEEE Data Engineering
Bulletin, 22(1):9{14, 1999.

Angela Bonifati, Fabio Casati, Umeshwar Dayal, ahMing-Chien

Shan. Warehousing work ow data: Challenges and opportunds.

In Proc. of International Conference on Very Large Data Base
(VLDB'01), pages 649{652, 2001.

Jox A. Blakeley, Neil Coburn, and PerAke Larson. Updating
derived relations: Detecting irrelevant and autonomouslycom-
putable updates.ACM Transactions on Database Systems (TODS)
14(3):369{400, 1989.

G.S. Blair, G. Coulson, P. Robin, and M. PapathomasAn archi-
tecture for next generation middleware. IrProc. of the IFIP Inter-
national Conference on Distributed Systems Platforms andp@n

Distributed Processing London, 1998. Springer-Verlag.

Lars Bekgaard. Event-Entity-Relationship modetig in data ware-
house environments. InProc. of International Workshop on Data
Warehousing and OLAP (DOLAP'99), pages 9{14. ACM, 1999.

Z. Bellahsene. View mechanism for schema evolution object-
oriented DBMS. In Proc. of British National Conference on Data-

bases (BNCOD'96), LNCS 1094pages 18{35, Springer, 1996.

B. Benatallah. A uni ed framework for supporting dypamic schema
evolution in object databases. IProc. of ER'99, LNCS 1728 pages
16{30, Springer, 1999.

202



[BGF02] M. Burgess, W. Alex Gray, and N. Fiddian. Establismg a tax-
onomy of quality for use in information Itering. In Proc. of
British National Conference on Databases (BNCOD'02), LNCS
2405 pages 103{113, 2002.

[BIG94] J. M. Blanco, A. lllarramendi, and A. Goni. Building a federated
database system: An approach using a knowledge base system.
International Journal of Intelligent and Cooperative Infeamation
Systems 3(4):415{455, 1994.

[BKL *04] M. Boyd, S. Kittivoravitkul, C. Lazanitis, P.J. McBrien, and N. Ri-
zopoulos. AutoMed: A BAV data integration system for heterge-
neous data sources. IfProc. of International Conference on Ad-
vanced Information Systems Engineering (CAISE'04), LNCS@@4,
pages 82{97, Springer-Verlag, 2004.

[BKTOO] P. Buneman, S. Khanna, and W.C. Tan. Data provenancesome
basic issues. IProc. of 20th Conference in Foundations of Software
Technology and Theoretical Computer Science, (FST TCS) New
Delhi, India, LNCS 1974 pages 87{93. Springer, 2000.

[BKTO1] P. Buneman, S. Khanna, and W.C. Tan. Why and Where: A
characterization of data provenance. IrProc. of 8th International
Conference in Database Theory - ICDT'01, London, UKLNCS
1973 pages 316{330. Springer, 2001.

[BLT86] Jox A. Blakeley, PerAke Larson, and Frank Wm. Tompa. E -
ciently updating materialized views. In Carlo Zaniolo, edor, Proc.
of ACM SIGMOD'86, pages 61{71. ACM Press, 1986.

203



[BMTO02]

[BSHO9]

[BTMO1]

[Bun94]

[CBO2]

[CD97]

[CEMO1]

M. Boyd, P. McBrien, and N. Tong. The AutoMed schema n-
tegration repository. In Proc. of British National Conference on
Databases (BNCOD'02), LNCS 2405pages 42{45. Springer, 2002.

M. Blaschka, C. Sapia, and G. He ing. On schema ewdtion in
multidimensional databases. InProc. of Data Warehousing and
Knowledge Discovery (DaWaK'99), LNCS 1767pages 153{164,
Springer, 1999.

Nguyen Thanh Binh, A. Min Tjoa, and Oscar Mangisengi Meta
Cube-X: An XML metadata foundation for interoperability search
among web data warehouses. IRroc. of Design and Management
of Data Warehouses (DMDW'01) page 8, 2001.

P. Bunemanet al. Comprehension syntax. SIGMOD Record
23(1):87{96, 1994.

Liane Carneiro and Angelo Brayner. X-META: A methodtogy for
data warehouse design with metadata management. IAroc. of
Design and Management of Data Warehouses (DMDW'02)ages
13{22, 2002.

S. Chaudhuri and U. Dayal. An overview of data wareh@ing and
OLAP technology. SIGMOD Record 26(1):65{74, 1997.

L. Capra, W. Emmerich, and C. Mascolo. Re ective midleware
solutions for context-aware applications. IrProc. of Metalevel Ar-
chitectures and Separation of Crosscutting Concerns, Tlirlnter-

national Conference, REFLECTION 2001 LNCS 2192 pages 126{
133. Springer, 2001.

204



[CGL* 96]

[CGL*99]

[Cui01]

[CWO1]

[CWO00a]

[CWOOb]

[CWO01]

L. S. Colby, T. Grin, L. Libkin, I. S. Mumick, and H. Trick ey.
Algorithms for deferred view maintenance. IrProc. of ACM SIG-
MOD'96, pages 469{480, 1996.

D. Calvanese, G. D. Giacomo, M. Lenzerini, D. Nardi, and
R. Rosati. A principled approach to data integration and reoncili-
ation in data warehousing. InProc. of Design and Management of

Data Warehouses (DMDW'99) page 16, 1999.

Y. Cui. Lineage tracing in data warehouse$’hD thesis, Computer

Science Department, Stanford University, 2001.

S. Ceri and J. Widom. Deriving production rules for inremental

view maintenance. InProc. of International Conference on Very
Large Data Bases (VLDB'91) pages 577{589. Morgan Kaufmann,
1991.

Y. Cui and J. Widom. Practical lineage tracing in daa ware-
houses. InProc. of International Conference on Data Engineering
(ICDE'00), pages 367{378. IEEE Computer Society, 2000.

Y. Cui and J. Widom. Storing auxiliary data for e cie nt mainte-
nance and lineage tracing of complex views. Froc. of Design and
Management of Data Warehouses (DMDW'0Q)age 11, 2000.

Y. Cui and J. Widom. Lineage tracing for general data are-

house transformations. InProc. of International Conference on
Very Large Data Bases (VLDB'01) pages 471{480. Morgan Kauf-
mann, 2001.

205



[CWWOO]

[Don99]

[DZR99]

[ECLO3]

[EmmOO0]

[Eng02]

[Fan05]

Y. Cui, J. Widom, and J.L. Wiener. Tracing the lineag of view
data in a warehousing environment.ACM Transactions on Data-
base Systems (TODS)25(2):179{227, 2000.

Guozhu Dong. Incremental maintenance of recursiveews: A sur-
vey. In A Gupta and I. S. Mumick, editors, Materialized Views:
Techniques, Implementations, and Applicationspages 159{162.
The MIT Press, London, 1999.

Lingli Ding, Xin Zhang, and Elke A. Rundensteiner. he mre
wrapper approach: Enabling incremental view maintenancef o
data warehouses de ned on multi-relation information sowes. In
Proc. of International Workshop on Data Warehousing and OLR
(DOLAP'99) , pages 30{35. ACM, 1999.

H. Engstrom, S. Chakravarthy, and B. Lings. Mainteance pol-
icy selection in heterogeneous data warehouse environmgenta
heuristics-based approach. IfProc. of International Workshop on
Data Warehousing and OLAP (DOLAP'03), pages 71{78. ACM
Press, 2003.

W. Emmerich. Software engineering and middlewar& roadmap.
In Proc. of 22th International Conference on Software Engineag
(ICSE2000), pages 117{129. ACM Press, 2000.

Henrik Engstrom. Selection of Maintenance Policies for a Data

Warehousing Environment PhD thesis, University of Exeter, 2002.

H. Fan. Using schema transformation pathways for egnemental
view maintenance. InProc. of Data Warehousing and Knowledge

Discovery (DaWaK'05), LNCS 3589 pages 126{135, 2005.

206



[FIS97]

[FKPO4]

[FPO2]

[FP03a]

[FPO3b]

[FPO4]

C. Faloutsos, H.V. Jagadish, and N.D. SidiropoulosRecovering
information from summary data. In Proc. of International Confer-

ence on Very Large Data Bases (VLDB'97)pages 36{45. Morgan
Kaufmann, 1997.

R. Fagin, P.G. Kolaitis, L. Popa, and W.C. Tan. Compaing
Schema Mappings: Second-Order Dependencies to the Rescue.
In Proc. of ACM Symposium on Principles of Database Systems
(PODS'04), pages 83{94, ACM, 2004.

H. Fan and A. Poulovassilis. Tracing data lineage usj schema
transformation pathways. In Proc. of Workshop on Knowledge
Transformation for the Semantic Web (with ECAI'02), Lyon 2002.

H. Fan and A. Poulovassilis. Tracing data lineage iy schema
transformation pathways. In B.Omelayenko and M.Klein, edors,
Knowledge Transformation for the Semantic Webvolume 95 of
Frontiers in Arti cial Intelligence and Applications , pages 64{79.
IOS Press, 2003.

H. Fan and A. Poulovassilis. Using AutoMed metadatan data
warehousing environments. IrProc. of International Workshop on
Data Warehousing and OLAP (DOLAP'03), pages 86{93. ACM
Press, 2003.

H. Fan and A. Poulovassilis. Schema evolution in dateaarehousing
environments | a schema transformation-based approach. IrProc.
of International Conference on Conceptual Modeling (ER'Q4 vol-
ume 3288 ofLNCS, pages 639{653, Springer, 2004.

207



[FPO5]

[GFS'01a]

[GFS* 01b]

[GFSS00]

[GGMS97]

[GIMO6]

[GLO5]

H. Fan and A. Poulovassilis. Using schema transforrian path-
ways for data lineage tracing. InProc. of British National Con-
ference on Databases (BNCOD'05), LNCS 356pages 133{144,
2005.

H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.8aita.
Declarative data cleaning: Language, model, and algorithsn
In Proc. of International Conference on Very Large Data Bases
(VLDB'01) , pages 371{380. Morgan Kaufmann, 2001.

H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.A.
Saita. Improving data cleaning quality using a data lineagda-
cility. In Proc. of Design and Management of Data Warehouses
(DMDW'01) , page 3, 2001.

Helena Galhardas, Daniela Florescu, Dennis Shashnd Eric Si-
mon. AJAX: An extensible data cleaning tool. InProc. of ACM
SIGMOD'00, volume 29, page 590. ACM, 2000.

D Gluche, T. Grust, C. Mainberger, and M. H. Schollincremental
updates for materialized ogl views. IrProc. of International Con-
ference on Deductive and Object-Oriented Databases (DOQ®3),

pages 52{66. Springer, 1997.

Ashish Gupta, H. V. Jagadish, and Inderpal Singh Mumk. Data
integration using self-maintainable views. InExtending Database
Technology pages 140{144, 1996.

T. Grin and L. Libkin. Incremental maintenance of vi ews with
duplicates. In Proc. of ACM SIGMOD'95, pages 328{339. ACM
Press, 1995.

208



[GM99] Ashish Gupta and Inderpal Singh Mumick. Maintenanceolices.
In A Gupta and I. S. Mumick, editors, Materialized Views: Tech-
niques, Implementations, and Applicationspages 9{11. The MIT
Press, London, 1999.

[GMS93] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrananian.
Maintaining views incrementally. In Proc. of ACM SIGMOD'93,
pages 157{166. ACM Press, 1993.

[GR98] M. Golfarelli and S. Rizzi. A methodological framewd for data
warehouse design. IrProc. of International Workshop on Data
Warehousing and OLAP (DOLAP'98), pages 3{9. ACM, 1998.

[HAO1] H. Hinrichs and T. Aden. An ISO 9001: 2000 compliant cality
management system for data integration in data warehouse sy
tems. In Proc. of Design and Management of Data Warehouses
(DMDW'01) , page 1, 2001.

[HLVOO] Bodo Hasemann, Jens Lechtenberger, and Gottfregk Vossen. Con-
ceptual data warehouse modeling. IRroc. of Design and Manage-
ment of Data Warehouses (DMDW'00) page 6, 2000.

[HMTOO] Thanh N. Huynh, Oscar Mangisengi, and A. Min Tjoa. Méadata
for object-relational data warehouse. IrProc. of Design and Man-
agement of Data Warehouses (DMDW'0Q)page 3, 2000.

[HQGW9O3] N. I. Hachem, K. Qiu, M. A. Gennert, and M. O. Ward. Managing
derived data in the Gaeas scientic DBMS. InProc. of Interna-
tional Conference on Very Large Data Bases (VLDB'93) pages
1{12. Morgan Kaufmann, 1993.

209



[Huy97] Nam Huyn. Multiple-view self-maintenance in data arehousing
environments. InProc. of International Conference on Very Large

Data Bases (VLDB'97), pages 26{35. Morgan Kaufmann, 1997.

[INnmO02] W. H. Inmon. Building The Data Warehouse John Wiley & Sons,
third edition, March 2002.

[JPZ03] E. Jasper, A. Poulovassilis, and L. Zamboulis. Pressing 1QL
queries and migrating data in the AutoMed toolkit. Technicd Re-

port 20, Automed Project, 2003.

[JTMPO4]  E. Jasper, N. Tong, P. McBrien, and A. Poulovass#i. View genera-
tion and optimisation in the AutoMed data integration framework.
In Proc. of 6th Baltic Conference on Databases and Information
Systems 2004.

[KLM *97]  Akira Kawaguchi, Daniel F. Lieuwen, Inderpal Singh Munuk, Dal-
lan Quass, and Kenneth A. Ross. Concurrency control theory
for deferred materialized views. IrProc. of International Confer-
ence on Database Theory - ICDT '97LNCS 1186 pages 306{320.
Springer, 1997.

[KRO2] A. Koeller and E. A. Rundensteiner. Incremental maienance of
schema-restructuring views. InProc. of EDBT'02, LNCS 2287,
pages 354{371, Springer, 2002.

[Lan02] Paul Lane.Oracle9i Data Warehousing Guide, Release 2(9.2pDr-
acle Corporation, March 2002.

210



[Len02]

[LevOO]

[LLLOO]

[LLLO1]

[LLWO99]

[LNE89]

[LSS93]

M. Lenzerini. Data integration: A theoretical perpective. In Proc.
of ACM Symposium on Principles of Database Systems (PODS)02
pages 233{246, ACM, 2002.

A. Levy. Answering queries using views: A survey. [fhe VLDB
Journal, 10(4), pages 270{294, 2001.

Mong-Li Lee, Tok Wang Ling, and Wai Lup Low. Intelliclean: a
knowledge-based intelligent data cleaner. IKnowledge Discovery
and Data Mining, pages 290{294, 2000.

Wai Lup Low, Mong Li Lee, and Tok Wang Ling. A knowledg-
based framework for duplicates eliminationinformation Systems:
Special Issue on Data Extraction, Cleaning and Reconciliah,
28(8), December 2001. Elsevier Science.

W. Liang, H. Li, H. Wang, and M. E. Orlowska. Making nultiple
views self-maintainable in a data warehouseData & Knowledge
Engineering 30(2):121{134, 1999.

J.A. Larson, S.B. Navathe, and R. Elmasri. A theory b at-
tribute equivalence in databases with application to scheminte-
gration. IEEE Transcations on Softerware Engineering15(4):449{
463, 1989.

L. V. S. Lakshmanan, F. Sadri, and I. N. SubramanianOn the
logical foundations of schema integration and evolution iheteroge-
neous database systems. IRroc. of the Third International Con-
ference in Deductive and Object-Oriented Databases (DOCI3),
LNCS 76Q pages 81{100, Springer-Verlag, 1993.

211



[LSS99]

[LSS01]

[MHO3]

[Mil98]

[MKOO]

[MPO8g]

[MP99a]

L. V. S. Lakshmanan, F. Sadri, and S. N. SubramaniarOn ef-
ciently implementing SchemaSQL on an SQL database system.
In Proc. of International Conference on Very Large Data Bases
(VLDB'99) , pages 471{482. Morgan Kaufmann, 1999.

L. V. S. Lakshmanan, F. Sadri, and S. N. SubramaniaBchemasql:
An extension to sqgl for multidatabase interoperability. InACM
Transactions on Database Systems (TODS),Volume 26 , Issue 4
pages 476 { 519. ACM Press, 2001.

J. Madhavan and A.Y. Halevy. Composing mappings amgndata
sources. InProc. of International Conference on Very Large Data
Bases (VLDB'03), pages 572{583, Morgan Kaufmann, 2003.

Reree J. Miller. Using schematically heterogenes structures. In
Proc. of ACM SIGMOD'98, pages 189{200. ACM Press, 1998.

D. L. Moody and M. A. R. Kortink. From enterprise modek to
dimensional models: a methodology for data warehouse andtala
mart design. InProc. of Design and Management of Data Ware-
houses (DMDW'00) page 5, 2000.

P. McBrien and A. Poulovassilis. A formalisation of emantic
schema integration.Information Systems 23(5):304{334, 1998.

P. McBrien and A. Poulovassilis. Automatic migraton and wrap-
ping of database applications - a schema transformation aggach.
In Proc. of International Conference on Conceptual Modeling
(ER'99), LNCS 1728 pages 96{113. Springer, 1999.

212



[MP99b]

[MPO1]

[MPO2]

[MPO03a]

[MPO3b]

[MS01]

P. McBrien and A. Poulovassilis. A uniform approacho inter-

model transformations. InProc. of International Conference on Ad-
vanced Information Systems Engineering (CAISE'99), LNCSGR6,

pages 333{348. Springer, 1999.

P. McBrien and A. Poulovassilis. A semantic approacho inte-
grating XML and structured data sources. InProc. of Interna-
tional Conference on Advanced Information Systems Enginaeg
(CAISE'01), volume 2068 oLLNCS, pages 330{345. Springer, 2001.

P. McBrien and A. Poulovassilis. Schema evolution iheteroge-
neous database architectures, a schema transformation apach.
In Proc. of International Conference on Advanced Information
Systems Engineering (CAISE'02) LNCS 2348 pages 484{499.
Springer, 2002.

P. McBrien and A. Poulovassilis. Data integration  bi-directional
schema transformation rules. IrProc. of International Conference
on Data Engineering (ICDE'03), pages 227{238, IEEE Computer
Society, 2003.

P. McBrien and A. Poulovassilis. De ning peer-to-per data inte-
gration using both as view rules. InProc. of Databases, Informa-
tion Systems, and Peer-to-Peer Computing International W&shop
(DBISP2P), LNCS 2944 pages 91{107, Springer, 2003.

G. Moro and C. Sartori. Incremental maintenance of ntiirsource
views. In Proc. of Australasian Database Conference (ADC'0])

pages 13{20, 2001.

213



[MSR99]

[MZR* 05]

[PMO8]

[Pou04]

[PS97]

[PSCP02]

[QGMW96]

Robert Maller, Thomas Stehr, and Erhard Rahm. An ntegrative
and uniform model for metadata management in data warehous-
ing environments. InProc. of Design and Management of Data
Warehouses (DMDW'99) page 12, 1999.

M. Maibaum, L. Zamboulis, G. Rimon, C. Orengo, N. Martin,
and A. Poulovassilis. Cluster based integration of heteregeous
biological databases using the AutoMed toolkit. InProc. of Data
Integration in the Life Sciences (DILS'05), LNCS 3615pages 191{
207, 2005.

A. Poulovassilis and P. McBrien. A general formal frmework
for schema transformation. Data and Knowledge Engineering
28(1):47{71, 1998.

A. Poulovassilis. A Tutorial on the IQL Query Languge. Technical

Report 28, Automed Project, 2004.

A. Poulovassilis and C. Small. Formal foundations faptimis-

ing aggregation functions in database programming languag. In

Proc. of Database Programming Languages, International Wio

shop (DBPL'97), Springer-Verlag LNCS 1369 pages 299{318,
1997.

T. Palpanas, R. Sidle, R. Cochrane, and H. Pirahesimcremental
maintenance for non-distributive aggregate functions. IfProc. of
International Conference on Very Large Data Bases (VLDB'0R
LNCS 259Q pages 802-813, 2002.

D. Quass, A. Gupta, I.S. Mumick, and J. Widom. Makimg views

self-maintainable for data warehousing. InProc. of Conference

214



on Parallel and Distributed Information Systems (PDIS'96)pages
158{169, 1996.

[Qua9ge6] D. Quass. Maintenance expressions for views withgaggation. In
Proc of Workshop on Materialized Views: Techniques and Ajqa-
tions (VIEW'96) , pages 110{118, 1996.

[QWI1] X. Qian and G. Wiederhold. Incremental recomputatio of active
relational expressionsKnowledge and Data Engineering3(3):337{
341, 1991.

[QW9I7] Dallan Quass and Jennifer Widom. On-line warehouséew main-
tenance. In Joan Peckham, editorProc ACM SIGMOD'97, pages
393{404. ACM Press, 1997.

[RDOOQ] Erhard Rahm and Hong Hai Do. Data cleaning: Problemsnd
current approaches.|IEEE Data Engineering Bulletin, 23(4):3{13,
2000.

[RHO1] Vijayshankar Raman and Joseph M. Hellerstein. Potts Wheel:

An interactive data cleaning system. InThe VLDB Journal, pages
381{390, 2001.

[Riz04] N. Rizopoulos. Automatic discovery of semantic raionships be-
tween schema elements. IfProc. of International Conference on

Enterprise Information Systems (ICEIS'04) pages 3{8, 2004.

[SG97] L. Serani and C. Ghidini. Context based semantics fanforma-
tion integration. In Sasa Buvac and Lucia Iwanska, edita's, Work-

ing Papers of the AAAI Fall Symposium on Context in Knowledge

215



[SKRO1]

[SL90]

[TBCO9]

[The02]

[TKSO1]

[Ton03]

Representation and Natural Languagepages 152{160, Menlo Park,

California, 1997. American Association for Arti cial Intelligence.

H. Su, H. Kuno, and E. A. Rudensteiner. Automating tke transfor-
mation of XML documents. InProc. of International Workshop on
Web Information and Data Management (WIDM'01) pages 68{75.
ACM, 2001.

Amit P. Sheth and James A. Larson. Federated databasgstems
for managing distributed, heterogeneous, and autonomoustd-
bases.ACM Computing Surveys 22(3):183{236, 1990.

Nectaria Tryfona, Frank Busborg, and Jens G. Borch Hris-
tiansen. starER: A conceptual model for data warehouse dgasi In
Proc. of International Workshop on Data Warehousing and OLR
(DOLAP'99) , pages 3{8. ACM, 1999.

D. Theodoratos. Semantic integration and queryin@f hetero-
geneous data sources using a hypergraph data model. Pmoc.
of British National Conference on Databases (BNCOD'02), LES
2405 pages 166{182, 2002.

A. Tsois, N. Karayannidis, and T. K. Sellis. MAC: Cormreptual data
modeling for OLAP. In Proc. of Design and Management of Data
Warehouses (DMDW'01) page 5, 2001.

N. Tong. Database schema transformation optimisiin techniques

for the AutoMed system. InProc. of British National Conference

on Databases (BNCOD'03), LNCS 2712pages 157{171, Springer,
2003.

216



[VM97]

[VMPO3]

[VSS02]

[VVSKOO]

[Wid95]

[WS97]

[YLTO3]

M. W. Vincent and M. Mohania. A self-maintainable viev mainte-
nance technique for data warehouses. Rroc. of International Con-
ference on Management of Data (COMAD'97)pages 7{22, 1997.

Y. Velegrakis, R.J. Miller, and L. Popa. Mapping adatation under
evolving schemas. InProc. of International Conference on Very
Large Data Bases (VLDB'03) pages 584-595, Morgan Kaufmann,
2003.

P. Vassiliadis, A. Simitsis, and S. Skiadopoulosoficeptual model-
ing for ETL processes. IrProc. of International Workshop on Data
Warehousing and OLAP (DOLAP'02), pages 14{21. ACM, 2002.

Panos Vassiliadis, Zografoula Vagena, Spiros &#bpoulos, and
Nikos Karayannidis. ARKTOS: A tool for data cleaning and trans-
formation in data warehouse environmentdEEE Data Engineering
Bulletin, 23(4):42{47, 2000.

Jennifer Widom. Research problems in data warehang. In Proc.

of CIKM '95, the International Conference on Information ard

Knowledge Management, Baltimore, Maryland, USApages 25{30.
ACM, 1995.

A. Woodru and M. Stonebraker. Supporting ne-graired data lin-

eage in a database visualization environment. IRroc. of Interna-

tional Conference on Data Engineering (ICDE'97) pages 91{102.
IEEE Computer Society, 1997.

X.Yang, M.L. Lee, and T.W.Ling. Resolving structural con icts in

the integration of XML schemas: A semantic approach. Ifroc. of

217



[ZamO04]

[ZGMHWO5]

[ZGMW96]

[ZGMW98]

[ZP04]

International Conference on Conceptual Modeling (ER'03)LNCS
2813 pages 520{533, 2003.

L. Zamboulis. XML data integration by graph restruturing. In
Proc. of British National Conference on Databases (BNCODZ),
LNCS 3112 pages 57{71, Springer, 2004.

Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widm. View
maintenance in a warehousing environment. IRroc. of ACM SIG-
MOD'95, pages 316{327, 1995.

Yue Zhuge, Hector Garcia-Molina, and Janet L. Wieer. The strobe
algorithms for multi-source warehouse consistency. Rroc. of the
Fourth International Conference on Parallel and Distribuéd Infor-
mation Systems (PDIS'96) pages 146{157. IEEE Computer Soci-
ety, 1996.

Yue Zhuge, Hector Garcia-Molina, and Janet L. Wieer. Con-
sistency algorithms for multi-source warehouse view magmance.

Distributed and Parallel Databases6(1):7{40, 1998.

L. Zamboulis and A. Poulovassilis. Using AutoMed foXML data
transformation and integration. In proc. of International Workshop
on Data Integration over the Web (DIWeb'04) pages 58{69, 2004.

218



Appendix A

Proof of Theorem 1

For a tracing tuple t in the viewv = (D) over a sequence of bad3 = hD;; :::; Dy,
the tracing queriesT@P (t) and T@P (t) in Theorem 1 satisfy De nition 1 and 2
respectively. That is, letting g5” = hI°; ;T2 and 9P = HT7®; ::; TOPi denote
the results of TQ" (t) and TQP (t) respectively, then the following hold:

1. T DpandT® D, foralll i n.

2. gq(gA”) and q(gS7) evaluate to a bag, vjt, consisting of all copies oft in v!

(this corresponds to condition (a) of De nition 1 and 2).

3.8t 2 TP (T o Tt o TRP) 6 5 and
8t 2 TP, q(T9% i TPt 5o TRP) 6
(this corresponds to condition (c) of De nition 1 and 2).

8
% (@) 8hrY;::; T satisfying 1-3 T TP foralll i n

(corresponding to condition (b) of De nition 1); and
4. (b 8t 2T
% t 2(D TP) and q(TP%; s [xjx TP x 6 t ] Ta') 6 vit

(corresponding to conditions (b) and (d) of De nition 2) :

1We usevijt to denote all copies oft in v.
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Proof of t1 :
If q = D++ i++ Dy
then TQP (t)

|
_|
&2
e
I
S
o

1. Clearly, ;, Dforalll i n;
2. q(T)= a(Ty;sTy) = (D) ++ s++ (Dhjt) = Vit

3.8t 2T, q(Ty; Tt 5 unTy) = Ty++ i+ T +4 4+ T
= (Dyjt) ++ o ++ (Dyjt) 8 , since t2v;

4. (a) 8T ? satisfying 1-3, if T 2* T, for somei, then:
Either there exists t°2 T 0 such that t°6 t,
) t02 q(Ty; T io; 5 Th) ) a(Ty s T io; 5 T,) 6 vit, violating 2;
Or (countNumt T IO) > (countNumt T;) 2 and since
(countNumt T;) = ( countNumt OQ),
) (countNumt T 9 > (countNumt Q), violating 1.
ThereforeT? T foralll i n.
(b)D T, =0 Djt=[xjx D;x61]
Therefore, 8t 2 T,,t 2 (D T).
Also, [xjx T;x6t]=[xjx T;;x61t]=.
Supposev' = q(Ty;nxjx Tsx 6t ]anTy)= a(Tes s in T,
then countNumt v = (countNumt v) (countNumt T;)
) (countNumt v' ) < (countNumt v), if countNumt T, > 0.

Therefore, in general,q(Ty; 5 [Xjx T;;x 6 t ];::5T,) 6 vjt

Proof of t2 :
If q = b D
then TQ@" (t) = hDijt; Dy
and TQP(t) = HDijt; Dyjti

2Function countNum a Dreturns the number of occurrences of the data itema in the bag
D i:e: countNum a B= count [xjx Dx= a]:
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Let gp” = HTY"; T°i = tDijt; D
and 5" = HI{P; TP = hDyjt; Dyjti

1. Clearly, T’ DandTP® Dforalll i n;

2.q(@f°)=Djt D=(D  Djt = vijt
q(gS”) = Dijt  Djt=(D  Dy)jt = vjt;

3. 8t 2 T, it must be the case thatt = t,
) Tit = TPjt = Dijt
Therefore q(T:Pjt ; T5°) = Dijt D=(D D)jt=vjté
Similarly, 8t°2 T5, we haveq(T5"; ToPjt9 = Dijt Djt°6

For gSP, the proof is similar.

4. (a) For any hTi‘pO;TZ‘poi satisfying 1-3,
becauseT® = Djt and T D,
if 2% T2, then there existst®2 T2 such that t°6 t.
Becauseq(hT; T2%) = % 12°° = yjt,
therefore t02 Tgp" and q(h[t‘];Tgpoi) =[t9 T%po = , violating 3.
Therefore % T2,

BecauseTe® = D, and T Dy, we haveT T2,

(b) 8t 2 T, we havet =t.

BecauseT* = Djt,

D TP=D0 Djt=[xix D;x6t]

Thereforet 2 (D TP).

Also, becauset = t,

Xjx  TP®x6t]=[xjx T";x61t]=

Thereforeq([xjx THx 6t ;T =q( ;TP = 6 vijt

and (TP [xjx ~ To";x 8 t )= q(TP”; )= TP = Dijt 6 vjt in general.
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Proof of t3 :
If q
then T@P(t) = TQP(t) =[xjx Dfirst x= first t{]
Let T = g5” = g5 =[xjx Dfirst x= first t]

group D

1. Clearly T D

2. (T )= group [xjx Dfirst x = first t]
=[xjx group D;x = t] = vjt

3.8t 2T,;q(Tjt)=group (Tjt)6

4. (a) SupposeT ©satis es 1-3.
If TO* T, then there existst °2 T %such that (first t 9 & (first t)
) there existst®2 (T 9 = group T %such that (first t9 6 (first t)
) q(T 9 6 vjt; violating 2
ThereforeT® T
(b) BecauseD T =[xjx Dfirst x 6 first t], then
8t 2T;t 2[xjx Dfirst x=first tlandt 2 (D T)
Again, becauseq([xjx T ;x6 t])= group (T Tjt)6 group T
then q([xjx T ;x61]) 6 vjt

Proof of t4
If: q = sort D =distinct D
then TQ@P(t) = TQP(t) = Ot
Forq= sort D:
1. T=0gf =" =0t D
2. (T )= sort Djt = vijt;

3.8 2Tt =t, and therefore
aq(Tjt)=sortT jt6 ;
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4. (a) SupposeT satis es 1-3.
If T2 T, then there existst®2 T °such that t°6 t
) 92 q(TY=sortT ©
) q(T 9 6 vjt; violating 2
ThereforeT® T
(b) BecauseD T =[xjx Dx6tland8t 2T ;t =1,
thereforet 2 (D T).

Also, because
aqxjx T;x61t])=q(T Tjt )= sort (T Tjt)6 sortT
Thereforeq([xjx T ;x6t]) 6 vjt

The proof ofg = distinct D is similar.

Proof of t5 :
If: q = max D=min D
then T@°(t) = D
and TQP(t) = Ot

Forq= max D
1. g" =D DandqgS” =Dt D.

2. q(gd”) = q(D =t
a(aSP) = q(Ot) = maxt =t

3.8t 2057;q(gR"jt )= max [t &
8t 2957;q(aSPjt )= max it 6

4. (a) Clearly, g5” = Dis the maximal subset ofD.

(b) BecauseD  SP =[xjx Dx6tland8t 2q3P;t =t
thent 2(D gSP)and q(xjx qSF;x61t))=q() 6t

The proof of g = min Dis similar.
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Proof of t6 :

If: q = sumD
then T@°(t) = D
and T@P(t) = [xjx Dx60]

1. g" =D DandgS” =[xjx Dx60] D.

2. q(gf”)=q(D =t
q(gSP) = sum[xjx Dx 60]= sum D=t

3.8 2057;q(gA"jt )= sumpx &
8t 2937;q(g8%jt ) = sum[xjx [xjx Dx60];x=1t]6

4. (a) Clearly, g5” = Dis the maximal subset ofD.

(b) BecauseD  gSF =[xjx Dx=0]= DOand8t 2qS";t 60
thent 2(D  q39F)

Also, because

axjx gS%;x 6 t )= sum[xjx qgS”;x6t]6 sum " (t 60)
then g([xjx  qSP;x 6 t ]) 6 vjt

Proof of t7 :
If: q = countD=avg D
then T@°(t) = TQ () = D
Clearly, T = g5’ = g9 = Dsatises 1,2,3.

4. (a) T = Dis the maximal subset ofD

(b) BecauseD T=D D=

then8t 2T ;t 2(D T).

Also,

count [xjx T ;x61t]=count[xjx Dx6t]6 countD, and
avg [xjx T;x6t]=avg[xjix Dx6t]6 avgD

Therefore q([xjx q3P;x 6 t]6 v
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Proof of t8 :

If: q = gc max BD=gc min D
then T@P(t) = [xjx Dfirst x=first t]
and TQ@P(t) = DOt

For q= gc max D
1. g =[xjx Dfirst x=first t] DandqgS” =0t D

2. q(g5”) = gc max[xjx  Dfirst x = first t]=[t]
q(a8”) = gc max [t = [t]

3.8t 2057;q(g3"jt )= gc maxt 6
8t 2997t =t) q(aSPjt )= gc max §°jt =[t] 6

4. (a) SupposeT ?satis es 1-3.
If TO* gA®, then there existst °2 T such that (first t 9 6 (first t)
) there existst®2 (T 9 = gc max Tsuch that (first t9 =(first t 9
) (first t9 6 (first t)) q(T9Y 6 vijt; violating 2

Therefore T®  giP

(b) BecauseD  SF =[xjx Dx6t]land8t 2q3P;t =t
thent 2(D  qSF)
Also, q([xjx qS7;x 6 t])= q() 6 vijt

The proof ofg = gc min Dis similar.
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Proof of t9 :

If: q = gc sumD
then T@P(t) = [xjx Dfirst x=first t]
and TQ@P(t) = [xjx Dfirst x=first t;secondx 6 0]

1. gf” =[xjx Dfirst x=first t] D

aoP =[xjx Dfirst x=first t;secondx 60] D

2. q(g5”) = gc sum[xjx  Dfirst x=first t]=t

q(qu): gc sum|xjx Dfirst x = first t;secondx60]=t

3.8t 2087;q(gh"jt )= gcsum ¢Pjt 6
8t 2 aS";a(aS"jt ) = gc sum @°jt &

4. (a) SupposeT ©satis es 1-3.
If T % gA?, then there existst °2 T ®such that (first t 9 6 (first t)
) there existst®2 q(T 9 = gc sum T%such that (first t9 =(first t9
) (first t9 6 (first t)) q(T9Y 6 vijt; violating 2

Therefore T®  g5P

(b) BecauseD qu =[xjx D(first x 6 first t) or (secondx =0)]
thengS” * (D gSP))8 t 2g3P;t 2(D  o3P)

Also, because ¢econdt ) 6 0

then q([xjx  q3P;x 6 t J)= gc sunfxjx qgS7;x 6 t ]) 6 gc sum @°
Therefore q([xjx  gS”;x 6 t ] 6 vjt

Proof of t10 :
If: q
then TQP (t)

gc count D=gc avg D
TQP(t) =[xjx Dfirst x= first t]

The proof of T =[xjx Dfirst x = first t] satisfying 1, 2;3 and 4 is similar

to abovegc f functions.
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Proof of t11 :
If:  q(D

then TQP (t)

[Xjx1  Di::ioiXn D Conn G
TQP(t) = Hxijx:  Dixg = (lambda X:X7) t];:::;

SupposeTl = hly; 5T, = HXijx: D xp = (lambda X:X7) t]; 10 [XnjXn
Dv; Xn = (lambda x:X3) t]i

1. Clearly, T, D, foralll i n;

2. Supposex = fX7;:::; Xng (without loss of generality), and
t = fty;::;thg wheretj = (lambda X:Xj t).
aT) = a(TyusTy) =[XiXs  TyiinXn o ToiCoii; Gl
= [fXmisxagixs  xjxo Duxo= t]o
Xn  [Xjx  Dh;x = tg];Cq;i; Cl
Becauset = fty;:::;t g satis es predicatesCq; :::; Ck, then

T ) =[fx5 i %a0iXs  DyiiisXn Dy fXgiiXng = fta;intag] = vit

3. Because8t 2 T,,t =t
qQ(Ty; o Tt o Ty) = [Xxs Toin Xy Tt ;i Xe T, Cqs i Gl
Therefore q(Ty; 5 T, jt ;5 T,) 6 5
4. (a) SupposeT %= Hhrd;::; T0i satis es 1-3.
If T2 T, for somei, then there existst 22 T ? such that t 26 t;
) q(Ty; st s Ty) 6 vit
Also, becauseq(Ty; [t iOJ;:::;Tn) q(T ), and (T ) = vjt
) a(Ty; ot ﬂ;:::;Tn)z , Violating 3
ThereforeT® T
(b) BecauseT, = Djt; ,then 8t 2 T,,t =t; and
D T,=D0 Djti=[xjx D;x8t]
Thereforet 2 (D T)
Also, [xjx T;;x6 t]=[xjx T;;x6 tj]=, therefore
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q(Ty; o Xix Tsx 6t LanTy) = q(Ty s 5onT)

=[XjxT  TunXe o ; unXn o ThiCapinCyl

Proof of t12 :
. g = [Xjx  Diymember Dy]

then TQP (t) TQP(t) = Mjt; lyjy Dy = (lambda x:y) t]i
Supposex = y (without loss of generality), and lethT;; T,i = HDjt; Dyjti

1. Clearly, T, D andT, D.
2. q(hTy; Toi) = [xjx  Dijt; member gt x] = vjt

3.8 2Tt =t) Tjt =Tjt=T,
Therefore q(hT,jt ; T,jt i) 6

4. (a) Supposehryd; Ti satis es 1-3.
If TO* T, then there existst°2 TP such that t°6 t.
If 92 79 and t°2 719, then t°2 q(HTY; T3i) ) q(HTY; T9i) 6 vit, violating 2;
else ift°2 T9 and t°2 19, then q([t9; T9) = , violating 3;
else ift°2 T9 and t°2 T9, then q(T9;[tY) = , violating 3.
Therefore 9 T,
(b)Because8t 2 T;;t =t, then
D T, =[xjx D;x 6 t] and
tz{d T)
Also, becauseXjx T,;x61t]=

then q(T;; [xjx Ty x6 t])=q(xjx T;;x6t]T,)= 6 vjt
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Proof of t13 :

If:  q = [Xjx  DO;not(member Dy)]
then TGP (t) = HOjt; D
and TQ@P(t) = HDjt; i

Let gf” = hT3"; T°i = HDyjt; D
and g3 = h1{"; TP = MDyjt; i

1. Clearly, T D and T* D, fori=1.2;

2. q(gA”) =[xjx  Dijt;not (member Px)] = vjt
q(aSP) =[xjx  Dijt;not (member x)] = vjt

3. 8t; 2 To"t, = tand TPt = TPjt = T
Therefore q(T{%jty; T5°) = a(T7”: T5°) = a(gy) = vit &
Becauset 2 D, ) 8 t,2 To";t, 6 t
then q(T5"; ToPjt,) = [xjx  Dijt;not (member B}t, x)] = Dijt 6

For g§°, the proof is similar.

4. (a) Supposehr?; T9i satis es 1-3.
If T9* TP, then there existst§ 2 T9 such that t 6 t.
If t9 2 T then t? 2 q(hTY; T9i) ) q(KTS; T9i) 6 vijt, violating 2;
else ift 2 T3, then q([t9]; T9) = , violating 3
Therefore T T3°
BecauseT,” = D, then T3 T3\,

(b)st; 2 %ty =tand (O TP)=[xjx D;;x6t]
Thereforet, 2 (D, T9")

Also, becausefjx  T";x 6 t;]=[xjx T x 6 t]=
Therefore q([xjx T x 6t ], To9) = 6 vjt

There is no need to consideS® since it is by de nition.
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Proof of t14 :
If: q
then TGP (t) = TQ(t)=[pijpr Dp2=t]
Let T = qg5° = d5° =[pipr  Dp2 = ]

map(lambda pl.p2) D

1. Clearly, T D
2. (T )= map(lambda p1:p2) [p1jpr D p2 = t] = vijt

3.8t 2T ;((lambda py:pp) t )=t
Therefore q(T jt ) = map(lambda p1:p2) [pijpr Tijt ;p2=t]=1t 6

4. (a) SupposeT’ satis es 1-3.
If TO¢ T, then there existst®2 T%such that ((lambda p1:p,) t9 6 t
) o(T9t9Y = map(lambda pa:pp) [pajpr  TYtSp2 = t] = , violating 3
Therefore 0 T
(b)) Forany t 2T,
becauseD  T)=[pijpr Dp16t]=[pijpr Dp26 t]
thent 2 (D T)
Also,
becausefijpr T p18& t ]=[pijpr T ;((lambda pi:pz) t ) 6 t] =
Thereforeq([xjx T ;x6t])= 6 vjt
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Appendix B

Justi cations of IVM Formulae

B.1 Justi cation of IVM Formulae for D1/ . D2

Suppose thatv = D1/ . D2 Then
Vnew = DlneW/ c D2’]9W

(Dx+ MD1  ODJ] /. D2*W

D1/ . D2*W++ MD1/ . D2"®W OD1/ . D2¢W

D1/ . (D2++ MD2 OD2 ++ MD1/ .D2¢"  OD1/ . D2*€W

(D1/ . D2++ D1/ .MD2 D1/ .0D2 ++ MD1/ .D2*"¥ OD1/ . D2*V
(v++ D1/ .MD2 D1/ .0D2++ MD1/.D2®"  OD1/ . D2eV

Because D1/ . OD2 v,
yhew (v++ D1/ .MD2++ MD1/ . D2'®W OD1/ . D2¢W D1/ . OD2

(v++ (DI"*W++ OD1 MDY]) / MD2++ MD1/ . D2*W
OD1/ ; DZ*"  (DI'"W++ OD1 MDJ) /. OD2

(v++ (DI®V/ .MD2 MD1/ :MD2J ++ OD1/ .MD2++ MD1/ . D2®W
(OD1/ . DZ®V++ (DI®W/ .OD2 ND1/ . OD2 ++ OD1/ . OD2

Because OD1/ :MD2 (OD1/ . D2'®¥),
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view = (v++ (DT*V/ .MD2 MD1/ :MD2J ++ ND1/ . D2V
(OD1/ . D2®W  OD1/ ;MD2 ++ (DI"®V/ .0OD2 NMD1/ .OD2
++ OD1/ . OD2

Therefore,
Ww = (DI"*VW/ .MD2 WMD1l/ . MD2 ++ NMD1/ . D2®W

Ov = (OD1/.D2®"  OD1/ :MD2 ++ (DI*W/ . OD2 ND1/.OD2?
++ OD1/ . OD2
B.2 Justi cation of IVM Formulae for D1M D2
Suppose thatv, rl and r2 are de ned as follows:
v = DIrDe
rli = [xjx MD2(countNumx MD2 = ( countNumx D2"¢W)]
r2 = 0D2z[e"ew

The following equivalences hold for thé operator since the data items ofl are
from MD2and do not appear inD2 and the data items ofr2 are from OD2and

do not appear inD2after the deletion:

DL~ (R2++ rl r2) DLN D2++ DLMrl DL™r2

(Dl++ MD1 OD)~ 2

DLA De++ MDIMN D2 OoD1M 2

Then,
Vnew — DlneW/\ D21ew

DI'eWA (D2++ rl r2)

DI'®WA D2++ DI®WA r1 DI®WA r 2

(D1™ D2+ MD1M D2 OD1M D2 ++ DI®WA r1 DIeWA 2
(v++ MDIM D2 OD1M D2 ++ DI®WA r1 DIeWA 2

Because OD1” D2 v,
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vieW = (v++ MDI1N D2++ DI'®WA r1) DIeWA 2 OD1M D2
(v++ MDIN D2++ DI®WA r1) (DI*WA r2++ ODI1M D2
(v++ MD1N (D2W ri++ r2)++ DI'®WA r1)
(DIWA r2++ ODI1M (D2'&W ri++ r2))
(v++ (MD1” D2%W  NMDIN r1++ MDI1N r2) ++ DI'®WA r1)
(DTWA r2++ (ODIN D2 OD1M r1++ ODI1N r2))

Because VD1” r2) (DI'®WA r2),
VW = v+ ((MD1M DZSW  MDIA rl1)++ DI®VWA i)
(DI*WA r2  MD1M r2) ++ (OD1” D2®W  OD1” r1) ++ OD1” r2)

Therefore,
W = (MD1N D2"eW MDIN rl) ++ DI"W A rl
Ov = (D1"™WAr2 MD1” r2) ++ (OD1N DR"eW OD1” rl) ++ OD1M r2

B.3 Justi cation of IVM Formulae for D1Z D2
Suppose thatv, rl and r2 are de ned as follows:

v = D1z

rli = [xjx MD2(countNumx MD2 = ( countNumx D2"¢W)]

r2 = 0OD2zZ[p"ew

The following equivalences hold for th& operator since the data items ofl are
from MD2and do not appear inD2 and the data items ofr2 are from OD2and

do not appear inD2after the deletion:

DLZ(D2++ rl r2) DLz ++ DLMr2 DA rl

(bD1++ MD1  OD) zZre DLz e++ MD1Z 2 OoD1z

Then,
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Vnew

DIeWZ D2¢W

DI'eWZ (D2++ r1l r2)

DI*WZ D2 ++ DI®WA r2 DIeWA r1

(DLZD2++ MD1ZD2  ODI1ZDR)++ DIeWA 2  DIewa ]
(v++ MD1Z D2 OD1Z 2) ++ DI"®WA r2 DIeWA r1

Because ©OD1Z2D2 v,
VW = (v++ MD1Z D2++ DI'®WA r2) DI®WA r1 OD1Z D2

= (v++ MD1ZD2++ DI®WA r2) (DT*WA r1++ OD1Z D2
= (v++ MD1Z (D2®W rli++ r2)++ DIV~ r2)
(DI'WA r1++ ODI1N (D2&W rl++ r2))
= (v++ (MD1ZD2®V  NDIN r2++ NDI1M rl) ++ DI'€WA r2)
(DT*WA r1 ++ (OD1zZ D2*%  OD1” r2 ++ ODI1” rl))

Because VD1 r1) (DI®WA rl1),
VW = yv++ ((MD1ZDZ®V  MDIM r2) ++ DIV r2)

(DI'®WA 11 MDI1~rl) ++ (OD1ZD2®W  ODI1 r2) ++ OD1” rl)

Therefore,
Mv (MD1Z Dehew MD1M r2) ++ DI"&WA r2

Ov = (DI™Arl  MD1rl)++ (OD1ZDZ®"  ODI1” r2) ++ ODI1A rl
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Appendix C

Implementation of Data
Warehousing Packages and API
for the AutoMed Toolkit

This appendix describes the data warehousing packages anélAor the AutoMed
toolkit. In particular, it is the implementation of the generalised DLT algorithm
described in Chapter 6. The packages and API use java and theidMed Repos-
itory API as the basic programming toolkits. Section C.1 disusses the structure
of the data warehousing packages, Section C.2 gives a GUI paging our DLT

process, and Section C.3 gives a summary of this appendix.

C.1 Package Structure

Currently, there are three packages available in the data wehousing toolkit:
dataWarehousing.dltdataWarehousing.utiind dataWarehousing.DWExampl&ll

packages have the pre xed hierarchy tik.ac.bbk.automed
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C.1.1 Package uk.ac.bbk.automed.dataWarehousing.DWExample

This package gives an example of creating the AutoMed metadafor a data
warehousej:e: creating the schemas of the data warehouse and AutoMed trans
formation pathways expressing mappings between the schesnaAs described
in Section 33, there are four steps to create the AutoMed metadata: creag
AutoMed repositories, specifying data models, extractingata source schemas,
and de ning transformation pathways. The following three tasses are used to

perform these steps.

Class De neRepository

This class is provided by the AutoMed API, which uses JDBC to @ess an
underlying relational database and de nes schemas of thepmsitories storing
AutoMed metadata. We recall from Chapter 2 that the AutoMed epositories
can be implemented using any DBMS supporting JDBC. If the DB of the
data warehouse supports JDBC, then the AutoMed repositorsecan be part of
the data warehouse itself.

In order to specify the URL of the DBMS and de ne the schema ote reposi-

tories, there are two associated con g les, flata_source_repository.cfg and

\reps_schema.cfg", located in an assigned folder.

Class De neSchemas

The classDe neSchemasas two functionalities, specifying the data models used
for expressing the schemas of the data warehouse, and extirag schemas from

the data sources.
Di erent wrapper objects are created for di erent kinds of data sources, for ex-
ample anOracleWrapper is created for Oracle databases andRostgresWrapper
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for PostgreSQL databases. The following code shows howPastgresWrapper

object is created:

PostgresWrapperFactory pwf = new PostgresWrapperFactory ();

PostgresWrapper pw = (PostgresWrapper)PostgresWrapper. newAutoMedWrapper
(username,password,"org.postgresql.Driver”,
"jdbc:postgresql://dbURL:5432/dbName”,

source_schema_name,pwf);

Here, usernameand password give the username and password for accessing the
PostgreSQL database’jdbc:postgresql://dbURL:5432/dbName”  speci es the
database URL and name, andource_schema_name the name of the AutoMed
schema extracted from the database, which is nominated byelprogrammer.

Note that, source_schema_namegiven above is the name of theource-level
schemaof the database. The AutoMed toolkit de nes two levels of s@mas for
relational databases:source-level schemaand AutoMed-level schemasSource-
level schemas are derived directly from relational databes and are used by the
DBMS wrappers to query the data source data. AutoMed-levelckemas are the
relational schemas as described in Chapter 3. They are autatically derived
from the source-level schemas by the AutoMed wrappers, andrcbe used by
data warehouse builders as the staring point for transfornian pathways. All
algorithms described in this thesis are based on AutoMedvie schemas.

For example, suppose a relational database contains a tabtemarks(sid ,
sname,mark). The source-level schema of the database contains a conetru
htsmarks3; sid snamemarki , while the AutoMed-level schema includes the con-
structs htsmarks , hesmarkssid , htsmarkssname and hitsmarksmarki .

The created PostgreSQLWrapperobject pwcan then be used to extract the

schemas of the PostgreSQL database. In particular, the code

pw.getSchemay();
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is used to obtain the source-level schema, named bgurce_schema_ nameand

the code

pw.newAutoMedSchema(automed_schema_name);

is used to create the AutoMed-level schema, named lytomed_schema _name

Class De neTransformations

AutoMed transformation pathways are created over the AutoMd-level schemas
of the data sources. The clasPe neTransformationss used to de ne the trans-
formation pathway from the AutoMed-level schemas of the datsources to the
AutoMed-level schema of the global database.

Suppose thatSchemaobject s is the source schema. The code given below is

used to implement the following transformations ors:

addRel (<<dept>>, [comp','math']);
addAtt (<<dept,d_name>>, [{x,x} | x <- <<dept>>]);
addAtt (<<dept,avgSalary>>[{'comp',avg[s|{n,s}<-<<c omp,salary>>1},

{'math’,avg[s|{n,s}<-<<math,salary>>]}]);

We rstly create a Model object sgl_2 specifying the relational data model sup-
porting the SQL-2 query language, and tw&€onstruct objectstable andcolumn
specifying the table and column constructs of this data motleThen, the method
applyAddTransformation is used to add instances dfable and column to the

schemas:

Model sqgl_2 = Model.getModel("sql_2");
Construct table = sqgl_2.getConstruct("table");
Construct column = sql_2.getConstruct("column™);

Schema cs = s.applyAddTransformation(table, new Obiject][] {"dept'},
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"['comp’,'math’");
SchemaObject dept= cs.getSchemaObject("<<dept>>");
Schema ts = cs.applyAddTransformation(column,
new Object[] {dept,"d_name"},
Txx} | x <- <<dept>>]");
Cs=ts;
SchemaObject d_name= cs.getSchemaObject("<<dept,d_nane>>");
ts = cs.applyAddTransformation(column,
new Obiject[] {dept,"avgSalary"},
"[{'comp’,avg[s|{n,s}<-<<comp,salary>>]}," +

"{'math’,avg[s|{n,s}<-<<math,salary>>]}]");

C.1.2 Package uk.ac.bbk.automed.dataWarehousing.util

This package includes the utilities used in the data warehsing toolkit. It has

three main classesQueryDecomposglQLEvaluator4DWand Tools4DW

Class QueryDecomposer

QueryDecomposasiass is the implementation of the rules used to decompose a
general IQL® query into a sequence of SIQL queries, as described in Settho?.
The public static methodqueryDecomposer(Strin@Lquery, int queryNumbey
is used to decompose the string argumem@Lquery (an IQL® query represented
as a string) and returns anArrayListobject containing the sequence of resulting
SIQL queries which are also string objects. The argumegueryNumber(an in-
teger) is used to generate unique query identi ers when we eighis method to
decompose successive IQlqueries. This method creates variables of the form
$Query_queryNumber _ito express the sub-queries of an I@Lquery.

For example, the list of IQL® queries:
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vl = distinct (D3 D4)
v2= (D1 D2)++ vl

is decomposed into following SIQL queries:
$Query 1 1 = D3 D4

vl = distinct $Query_1 1
$Query 2 1 = D1 D2
v2 = $Query 2 1++ vl

Class IQLEvaluator4DW

As described in Section 2:3, AutoMed's Global Query Processor (GQP) can
be used to evaluate an IQEt query over a global schema in the case of a virtual
data integration scenario. The process of evaluating a queover a virtual global
schema includes: Query Reformulation, Query OptimisatigrQuery Annotation
and Query Evaluation. There are two limitations of using theAutoMed GQP in
our data lineage tracing algorithms:

Firstly, in a data warehouse environment, the global schemaill be materi-
alised. The AutoMed GQP is designed for virtual data integréon scenarios and
does not consider materialised data. Whether the global ssma is materialised
or not, the AutoMed GQP recomputes the extent of the global $&ma constructs
from the data sources. Using the Query Evaluator directly omaterialised data
is achieved by thelQLEvaluator4DW\tlass.

The second limitation of the AutoMed GQP is that it can evalude queries over
the constructs of just one schema. For example, the GQP cartrevaluate an IQL°®
guery hmath; name ++ htompg nama if the construct hhmath; name appears in a
source schema and the construtitomp namae in the global schema. However, in
our DLT algorithms, constructs of the source and intermedia schemas frequently

appear in the same tracing query. Evaluating IQt queries involving constructs
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from multiple schemas is also achieved b@QLEvaluator4DWElass.

The approaches to achieve above two functionalities are aslbws:

Firstly, a new Query Reformulation classQueryReformulator4DWhheriting
the QueryReformulatoclass in the AutoMed API has been created. IIQueryRe-
formulator4DW we gather all materialised schema constructs (in the datasrces
and in the intermediate and global schemas) into a list cordgred by the refor-
mulation procedure so that it does not replace materialisecbnstructs within the
GAV view de nitions over the source schema constructs.

Secondly, if there is a virtual construct of an intermediateschema appearing
in an IQL® query, we use theQueryReformulatosuper class in the AutoMed API
to compute its extent by treating the virtual intermediate schema as the global

schema.

Class Tools4DW

This class consists of several lower-level methods used hg tdata warehousing
packages. For exampleGetlQLSourcebtains the names of the schema constructs

appearing in an IQL° query andgetQueryTypeabtains the action type of an IQL*
query.

C.1.3 Package uk.ac.bbk.automed.dataWarehousing.dlt

This package contains the clagsineagewhich is the data structure storing lineage
data; the classTransfStep which is the data structure storing transformation
steps; the clas®atalLineageTracingvhich is the implementation of the generalised
DLT algorithm descried in Chapter 6; and the clas®emoDLT, giving an example

of using the DLT package.
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Class Lineage

The Lineageclass has six private attributes which are used to store thaformation
of the lineage data (note thatASG(Abstract Syntax Graph) is the data structure
used in the AutoMed GQP for representing IQL queries):

(ASGJineageData , can be a collection storing materialised lineage data,

or, if the lineage data is virtual, it will be null ;

(String)construct , the name of the schema construct containing the lineage

data;
(booleanisVirtualData , stating if the lineage data is virtual or not;
(booleanisVirtualConstruct , stating if the construct is virtual or not;

(String)eleStruct , describing the structure of the data in the extent of the

schema construct; and

(String[])constraint , expressing the constraints to derive the lineage data

from the schema construct if the construct is virtual.

Public non-static methods in this class such agetLineageData() getCon-
struct(), isVirtualData() isVirtualConstruct() getEleStruct() and getConstraint()

are used to obtain the content of the above private attributs.

Class TransfStep

The TransfStepclass contains six private attributes storing the informabn of the

transformation steps:

(String)action , which may be®add®? °del 0 %fenamé? ®xtend®®and °¢on-

tract %
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(String)query, the query used in the transformation step;

(String)result , the name of the schema construct created or deleted by the

transformation step;
(booleanyResult , showing if the result construct is virtual or not;

(ArrayListsources, containing all schema construct names appearing in the

query; and

(boolean[]ySources, showing which source constructs in theources col-

lection are virtual.

Public non-static methods such agetAction(), getQuery() getResult() isVRe-
sult(), getSources(and getVSources(are used to obtain the content of the above
private attributes.

In addition, there are two static methods available in this lass which can be
used to obtain thetransfStepobjects between a given source and global schema.
In particular, the method ArrayList getTransfSteps(StringName String gNamg
results in anArrayListcollection containingtransfStepobjects expressing the gen-
eral transformation pathway (may contain general IQE queries) between the two
schemas,sNameand gName The method ArrayList getSimpleTransfSteps(String
sName String gNamg results in an ArrayList collection containing transfStepob-
jects expressing the decomposed transformation pathwayl(@eneral IQL® queries
in the general transformation pathway have been decomposedo SIQL queries)

between the schemaNamend gName
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Class DataLineageTracing

In the DatalLineageTracinglass, the methodDLT4AStep(Lineagdt , TransfStep
ts ) is used to obtain the lineage of a single tracing tuplé along a single trans-
formation step ts, while the methodsoneDLT4APath(Lineagét , ArrayListtp)
and listDLT4APath(ArrayListtts , ArrayListtp) are respectively used to obtain
the lineage of a single tracing tupldt or a bag of tracing tuplestts along the
transformation pathway tp .

The constructor of this class isDataLineageTracing(Schensgbschemgchema
tSchem3, in which sSchemaand tSchemaare two Schemaobjects denoting the
source and target schemas. OncelratalineageTracingbject, dit , is created, the
simple transformation steps between the source and targathemas are also gen-
erated and stored. The public non-static methodllt .getTransformationSteps(s
then used to obtain the generated simple transformation gbs between the given
source and target schemas, and the public non-static methedlt .getDataLineage-
Of(Lineagdp ) anddlt .getDataLineageOf(ArrayLifpList ) are used to obtain the

lineage of the tracing data.

Class DemoDLT

The DemoDLT class gives an example of using the DLT toolkit for tracing da
lineage along an AutoMed transformation pathway. In partialar, after creating
the AutoMed metadata, the DLT process is accomplished by thllowing three

steps:

1. Getting the source and global schemas by using tBehema.getSchema(String

schemaNamanethod provided by the AutoMed API. For example:

Schema s_sou = Schema.getSchema('rel_source");

Schema s_tar = Schema.getSchema("rel_global®);
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2. Creating aDatalLineageTracingbject, dlt:

DatalLineageTracing dIt = new DatalLineageTracing(s_sou,s _tar);

3. Giving the tracing tuple and tracing its data lineage. Forexample, for
tracing tuple {M01',1000} in the construct hpersonsalary of the target

schema'rel_global" , the necessary code is :

Lineage tt = new Lineage(

new ASG("{'M01',1000}"),"<<person,salary>>");
ArrayList lineageData = new ArrayList();
lineageData = dlt.getDataLineageOf(tt);

Lineage.printLineageList(lineageData);

C.2 Data Lineage Tracing GUI

In this section, we describe a GUI supporting our data lineagtracing process,
and show how our DLT process can be applied in both materiadid and virtual
data integration scenarios. We also show how the DLT GUI canebused as a tool

for browsing schemas, data and lineage information.

C.2.1 The DLT GUI

Figure C.1 illustrates the DLT GUI. Given the names of the soice schemase:g:
sl ands2, and target schemag:g:ss, the °Check Input Scheni®utton is used to
check whether the input schema names are de ned in the AutoMeSchemas and
Transformations Repository (STR). Then the®DLT Initializatior?°button is used
to initialise the DLT process, which consists of three maintsps: obtaining the
source and target schemas from the AutoMed STR and listing éir constructs;

obtaining the transformation pathway between the source ahtarget schemas,
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Figure C.1: The Data Lineage Tracing GUI
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decomposing it into a simple transformation pathway and lithng the pathway

(illustrated in Figure C.1); and initialising a DatalLineageTracing object.

Figure C.2: The Extent of Selected Construct

After DLT initialisation, the °Show Exterfi®utton can be used to extract the
extent of the selected construct in the target schema and shdt in the °Extent
of Selected Construteld (as in Figure C.2). The displayed data items can then
be selected as the tracing tuples of the DLT process.

More generally, four kinds of tracing tuples that may be inptt: RealData
which is one or more data items selected from the extent of tharget schema
construct (as in Figure C.1);vAll, where the tracing data is all data in the selected
target construct (as in Figure C.3);vPair, where the tracing data is a pair such
as{x,y} where the extent ofx is indicated (as in Figure C.4); andvExist where
the tracing data is an arbitrary pattern, such as{{d,c},x} , and constraints over
its variables can also be speci ed, such ag3=) x 67" (as in Figure C.5).

Once a tracing tuple is selected, théCheck Input Tracing Dafdbutton se-
mantically checks the input tracing tuple, and the’Data Lineage Tracirfbutton

nally computes the lineage of the tracing tuple.

1These correspond to real lineage data and the three kinds of itual lineage data,
fany;true g, (fx;yg;x = a) and (p1;p2= t), described in Chapter 6.
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Figure C.3: Tracing Data Lineage oWAll

Figure C.4: Tracing Data Lineage oWPair

C.2.2 DLT in Materialised Data Integration

In materialised data integration scenarios, both the souecand target schemas are
materialisede:g:in the example of Section 4.2 the data source schensdss2 and

the global schemass are all materialised. The gures of Section C.2.1 illustragd
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Figure C.5: Tracing Data Lineage oWEXist

how the DLT GUI can be used in a materialised data integratiorscenario.

C.2.3 DLT in Virtual Data Integration

In virtual data integration scenarios, the target and all inermediate schemas are
virtual. Figure C.6 illustrates how the DLT GUI can be used ina virtual data
integration scenario, in which the input target schemaus is a virtual one. We
assume the same framework described as in the example of Bactl.2 and use
the virtual schema USas the target schema. In Figure C.6, the lineage of the
vEXxisttracing data, Husta marlj ({{d,c,s},m}, (=) m 80) ,is computed. The
lineage of other kinds of tracing data such aRealData VAIl and vPair are also

traceable in this virtual data integration scenario.
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Figure C.6: Tracing Data Lineage with a Virtual Schema
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C.2.4 A Tool for Browsing Schemas, Data and Lineage

Information

The DLT GUI can be used to browse the extent of both materialesd and virtual
target schemas, as well as the constructs of these schemad e lineage of their
data.

If we de ne the input source and target schemas as being thersa schema, the
DLT GUI can be used as a simple query engine over this schemar Example, in
Figure C.7, both the input source and target schemas ass. If the tracing data is
vExistdata, Hgstabh themadj ({{d,c},x},[(=) d 'MA',(>=) x 80]) , the com-
puted lineage data is actually equivalent to applying the IQ° query f{d,c},x} |
{{d,c},x} hh gstathema ; (=) d 'MA";(>=) x 80 ] to the schemass.

C.3 Discussion

In this appendix, we have discussed a set of data warehousimackages and API
for the AutoMed toolkit, which implement the generalised DI algorithm de-
scribed in Chapter 6. Currently, the data warehousing tooik consists of three
packages: dataWarehousing.dltdataWarehousing.utiand dataWarehousing.DW-
Example

We have given a data integration scenario and example to istrate how our
DLT process and GUI can be applied, both in materialised andirtual data
integration settings. We have also discussed how the DLT Gldgan be used as a
tool for browsing schemas, data and lineage information.

In Section 66:1 of Chapter 6 and Section A:1 of Chapter 7, we discussed
how to extend our DLT and IVM algorithms to handle queries begnd IQLC.

This would allow our DLT process to go back all the way to the da source
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Figure C.7: Browsing Schemas and Data Information
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schemas before single-source cleansing, and would sirhylatlow our IVM process
to maintain materialised warehouse data according to updas to the data source

schemas. The implementation of these extensions is an ardduiure work.
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Glossary

BAV Both-as-view data integration approach, 17
CDM Conceptual data model, 44
DLT Data lineage tracing, 100

GAV Global-as-view data integration approach, 16

GQP Global Query Processor, 59
HDM Hypergraph-based data model, 45

IQL Intermediate query language, 54
IQL ¢ A subset of IQL, 100

IVM Incremental view maintenance, 171
LAV Local-as-view data integration approach, 16
MDR The AutoMed Model De nitions Repository, 61

SIQL Simple intermediate query language, 105

STR The AutoMed Schemas and Transformations Repository, 61
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