
Event�Condition�Action Rules on RDF Metadata in P�P

Environments

George Papamarkos� Alexandra Poulovassilis� Peter T� Wood

fgpapa���ap�ptwg�dcs�bbk�ac�uk

School of Computer Science and Information Systems� Birkbeck College� University of London

Abstract

RDF is one of the technologies proposed to realise the vision of the Semantic Web
and it is being increasingly used in distributed web�based applications� The use of
RDF in applications that require timely noti�cation of metadata changes raises the
need for mechanisms for monitoring and processing such changes� Event�Condition�
Action �ECA� rules are a natural candidate to ful�ll this need� In this paper� we study
ECA rules on RDF metadata in P�P environments� We describe a language for de�ning
ECA rules on RDF metadata� including its syntax and execution semantics� We develop
conservative tests for determining the termination and con�uence of sets of such ECA
rules� We describe an architecture supporting such rules in P�P environments� and our
current implementation of this architecture� We also discuss techniques for relaxing the
isolation and atomicity requirements of transactions�

� Introduction

This paper concerns the support of Event�Condition�Action rules on RDF metadata in
peer�to�peer environments� RDF �	
� 	�� is one of the technologies proposed to realise
the vision of the Semantic Web� and it is being increasingly used in distributed web�
based applications in e�learning� e�business� e�science� e�government etc� Many such
applications need to be reactive� i�e� to be able to detect the occurrence of speci�c
events or changes in the RDF descriptions� and to respond by automatically executing
the appropriate application logic�

Event�condition�action �ECA� rules are one way of implementing this kind of func�
tionality� An ECA rule has the general syntax

on event if condition do actions
The event part speci�es when the rule is triggered� The condition part is a query which
determines if the information system is in a particular state� in which case the rule �res�
The action part states the actions to be performed if the rule �res� These actions may
in turn cause further events to occur� which may in turn cause more ECA rules to �re�
We refer the reader to �	� 
�� for a general discussion of ECA rules in databases� where
they are more commonly known as triggers and where they are used for activities such
as incremental maintenance of materialised views and replicas� constraint enforcement�
and maintaining audit trails and database usage statistics� More broadly� ECA rules

�



�

have also been used in work�ow management� network management� personalisation�
and publish�subscribe technology ��� ��� ��� ��� 
� 	�� ��� ���

There are several advantages in using ECA rules to implement an application�s
reactive functionality� rather than encoding it in application code� Firstly� ECA rules
allow this functionality to be speci�ed and managed within a rule base rather than
being dispersed in diverse programs� thus enhancing the modularity� maintainability
and extensibility of applications� Secondly� ECA rules have a high�level� declarative
syntax and are thus amenable to analysis and optimisation techniques which cannot be
applied if the same functionality is expressed directly in application code� Thirdly� ECA
rules are a generic mechanism that can abstract a wide variety of reactive behaviours� in
contrast to application code that is typically specialised to a particular kind of reactive
scenario�

The work presented here has been motivated by our work in the �SeLeNe� Self e�
Learning Networks� project �see http���www�dcs�bbk�ac�uk�selene��� The aim of
this project is to investigate techniques for managing evolving RDF repositories of ed�
ucational metadata and for providing a wide variety of services over such repositories�
including syndication� noti�cation and personalisation services� Peers in a SeLeNe �Self
e�Learning Network� store RDF�S descriptions relating to learning objects registered
with the SeLeNe� and also RDF�S descriptions relating to users of the SeLeNe� A Se�
LeNe may be deployed in a centralised or in a distributed environment� In a centralised
environment� there is just one �peer� server which manages all of the RDF�S descrip�
tions relating to learning objects �LOs� and users� In a distributed environment� each
peer manages some fragment of the overall RDF�S descriptions�

SeLeNe�s reactive functionality provides the following aspects of the user require�
ments discussed in ��	��

� automatic noti�cation to users of the registration of new LOs of interest to them�

� automatic noti�cation to users of the registration of new users who have informa�
tion in common with them in their personal pro�le�

� automatic noti�cation to users of changes in the description of resources of interest
to them�

� automatic propagation of changes in the description of one resource to the de�
scriptions of other� related resources� e�g� propagating changes in the description
of a LO to the description of any composite LOs de�ned in terms of it�

Outline of this paper� Section � gives an overview of related work in ECA rule
languages� Section � describes RDFTL� our ECA rule language for providing reactive
functionality over RDF metadata stored in RDF repositories� Section 
 develops con�
servative tests for determining the termination and con�uence of sets of RDFTL rules�
Section 	 then describes our architecture for supporting RDFTL in P�P environments�
We describe how rules are registered at peers and propagated through the network� and
we discuss rule execution in P�P environments� Section � describes our current imple�
mentation of this architecture� It also discusses techniques for relaxing the isolation and
atomicity requirements of transactions� We give our concluding remarks in Section ��

� Related Work

Developing ECA rule support for RDF in a large�scale distributed application such
as SeLeNe was a major motivation for the evolution of our RDFTL language� One
precursor of the work presented here is the XML ECA Language described in ��� ����
This language uses a fragment of XPath for querying XML documents within the event



�

and condition parts of rules� and an XML update language for specifying the rule
actions� Techniques are developed in ��� ��� for determining the triggering and activation
relationships between pairs of rules� which can be �plugged into� existing frameworks
for ECA rule analysis� This XML ECA language could be used for operating on RDF
which has been serialised as XML� The RDFTL language that we describe below on
the other hand operates directly on the graph�triple representation of RDF and also
takes explicit advantage of the available RDFS schema information� To our knowledge�
RDFTL is the �rst ECA rule language developed speci�cally for RDF�S�

A number of other ECA rule languages for XML have been proposed� Reference ����
discusses extending XML repositories with ECA rules in order to support e�services�
Reference ���� discusses a more speci�c application of this approach to push technology
where rule actions are methods that cannot update the repository� and hence cannot
trigger other rules� Reference ��	� de�nes an active rule language for XML whose
syntax is based on the SQL� triggers standard� This language is more complex than
that of ��� ��� as it allows full XPath in the event parts of rules� and full XQuery in the
condition and action parts� However� analysing the behaviour of ECA rules expressed
in this more complex language is not considered� and there is in general a trade�o�
between complexity of an ECA language on the one hand and the ease of analysing
rules expressed in it on the other�

ARML ���� provides an XML�based rule description for rule sharing among di�erent
heterogeneous ECA rule processing systems� conditions and actions are de�ned ab�
stractly as XML�RPC methods which are later matched with system�speci�c methods�
GRML �	�� is a multi�purpose rule markup language for de�ning integrity� derivation
and ECA rules� it uses an abstract syntax based on RuleML� leaving the mapping to a
real language for each underlying system implementation�

Other related work is ��� 
�� which discusses monitoring and subscription in Xyleme�
an XML warehouse supporting subscription to web documents� A set of alerters monitor
simple changes to web documents� A monitoring query processor then performs more
complex event detection and sends noti�cations of events to a trigger engine which
performs the necessary actions� including creating new versions of XML documents�
The focus of this reactive functionality is highly tuned to this speci�c application�

Active XML ��� provides similar functionality to that provided by XML ECA rules
by embedding calls to web services within XML documents via special tags� When a
web sevice in an Active XML document is invoked� the document is expanded with the
results returned� The aim is to integrate distributed data and distributed computation
in a peer�to�peer architecture�

In the commercial arena� triggers on XML data are now supported by all the major
relational DBMS vendors and also by some native XML repository vendors� However�
this is con�ned to document�level triggering� and only events concerning the insertion�
deletion or update of an XML document can be caught� In relational DBMS it is how�
ever possible to decompose XML documents into a set of relational tables� potentially
allowing developers to exploit existing relational triggering functionality in order to
de�ne �ner�grain triggers over XML data�

An extensive survey of other candidate techniques for providing reactivity in Web
applications and the Semantic Web can be found in �
��� including a discussion of logics
for reasoning about state changes and updates� update languages for the Web� and
rule�based agent frameworks� Other related work includes ��
� which discusses using
ECA rules in P�P systems in order to encode policies for the exchange of data between
the peer databases�

A complementary technology to ECA rules are content�based publish�subscribe sys�
tems ����� In such systems� publishers are information providers� or producers of events�



�

subscribers express their interest in particular events� and the system noti�es subscribers
of every event occurrence matching their criteria� P�P networks that support pub�
lish�subscribe� such as ���� for example� support more sophisticated distributed event
de�nition and detection than the ECA rules approach we propose in this paper� On the
other hand� our approach allows the de�nition and execution of more complex actions
than just simple noti�cations�

� The RDFTL Language

��� RDFTL Syntax

RDFTL �RDF Trigger Language� operates over RDF graphs and complies with the
current RDF standards of syntax� semantics and datatypes �	
� 		� 	��� RDFTL assumes
that RDF graphs conform to one or more RDFS schemas� as follows�

�a� every resource in the RDF graph belongs to an RDFS class �in addition to be�
longing to the default rdfs�Resource class��

�b� every property in the RDF graph is declared in the RDFS schema� along with
domain and range constraints�

�c� the subject and object of every property in the RDF graph are of the declared
subject and object type of the property in the RDFS schema�

����� RDFTL Path Expressions

When de�ning an ECA rule in RDFTL� it is necessary to specify the portion of metadata
that each part of the rule deals with� for example� the RDF nodes that will be a�ected
by an event� or the value of an RDF literal used to evaluate a condition� RDFTL uses
a path�based query sublanguage for de�ning queries over an RDF graph� The abstract
syntax of this path�based sublanguage is as follows� where e is a query� p is a path
expression� q is a quali�er� uri is a URI� arc name is a predicate and s is a string�

e ��� �resource��uri��� ����p��

p ��� p���p j p���q��� j �target��arc name��� j �source��arc name���

q ��� q �and�q j q �or� q j �not� q j p j p � � � s j p� �� � s

The above syntax is similar to that for XPath �	��� except that� resource�uri�
matches the resource given by uri in the RDF graph being queried� target�arc name�
returns the set of object nodes related by the predicate arc name to the set of subject
nodes given by the context� and source�arc name� returns the set of subject nodes
related by the predicate arc name to the set of object nodes given by the context� The
path expressions of RDFTL also resemble those of RDFPath ���� except that the graph
navigation functions in RDFPath are child and parent instead of target and source�

We give below the denotational semantics of RDFTL�s path expressions� We write
SJpKx to indicate the set of nodes selected by path expression p starting from the node
x as context node� and we write QJqKx to denote whether the quali�er q is satis�ed
when the context node is x�� In the denotational speci�cation below� the value func�
tion returns the value of its argument URI in the form of a string� The targets function
takes an RDF predicate p and an RDF subject x as arguments and returns the set S

�By convention� when specifying the denotational semantics of a language� arguments of the semantic

functions which are expressions in the language are delimited by J and K�



�

of RDF objects such that� for each y � S� �x� p� y� is a triple in the RDF graph� The
argument p may be the wildcard symbol in which case targets� � x� returns the set of
RDF objects y such that �x� p� y� is a triple in the RDF graph for any p� Similarly� the
sources function takes an RDF predicate p and an RDF subject x as arguments and
returns the set S of RDF objects such that� for each y � S� �y� p� x� is a triple in the
RDF graph� The argument p may be the wildcard symbol in which case sources� � x�
returns the set of RDF objects y such that �y� p� x� is a triple in the RDF graph for any p�

S � Expression� Node� Set�Node�
S Jresource�uri�K x � fy j value�y� � urig
S Jp��p�K x � fz j y � S Jp�K x � z � S Jp�K yg
S Jp�q�K x � fy j y � S JpK x � Q JqK y g
S Jtarget�arc name�K x � fy j y � targets�arc name� x�g
S Jsource�arc name�K x � fy j y � sources�arc name� x�g

Q � Qualifier� Node� Boolean
Q Jq� and q�K x � Q Jq�K x �Q Jq�K x
Q Jq� or q�K x � Q Jq�K x �QJq�K x
Q Jnot qK x � � Q JqK x
Q JpK x � S JpK x �� �
Q Jp � sK x � fy j y � S JpK x� value�y� � sg �� �
Q Jp �� sK x � fy j y � S JpK x� value�y� �� sg �� �

����� RDFTL Rule Syntax

Having described the path expressions RDFTL uses for querying RDF metadata� we
now describe the RDFTL ECA language as a whole� considering in turn the event part�
condition part and action part of a rule�

There is an optional preamble to each rule� This preamble may contain one or more
clauses of the form USING NAMESPACE name uri which associate a local name with a
namespace URI� The preamble may also contain a set of let�expressions of the form let

variable �� e which associate a variable name with a path expression e�
The event part of a rule is an expression of one of the following three forms�

�� �INSERT � DELETE� e �AS INSTANCE OF class�

This detects insertions or deletions of resources speci�ed by the expression e� e is
a path expression� which evaluates to a set of nodes� Optionally� class is the name
of the RDFS schema class to which at least one of the nodes identi�ed by e must
belong in order for the rule to trigger�

The rule is triggered if the set of nodes returned by e includes any new node �in
the case of an insertion� or any deleted node �in the case of a deletion� that is an
instance of class� if speci�ed�� The system�de�ned variable 	delta is available for
use within the condition and actions parts of the rule� and its set of instantiations
is the set of new or deleted nodes that have triggered the rule�

�� �INSERT � DELETE� triple

�Note that RDFTL supports semantic rather than syntactic triggering� rule triggering occurs if instances

of an event occur and make changes to the RDF graph� In contrast� with syntactic triggering� rule triggering

would occur if instances of an event occurred irrespective of whether the RDF graph were changed� e�g� an

attempt to insert an existing resource�



�

This detects insertions or deletions of arcs speci�ed by triple� which has the form
�source node� arc name� target node�� The wildcard 
 � is allowed in the place of
any of a triple�s components�

The rule is triggered if an arc labelled arc name from source node to target node
is inserted�deleted� The variable 	delta has as its set of instantiations the triples
which have triggered the rule� The individual components of one these triples can
be obtained by 	delta�source� 	delta�arc name or 	delta�target�

�� UPDATE upd triple

This detects updates of arcs speci�ed by upd triple� which has the form �source node�
arc name� old target node � new target node�� Here� old target node is where the
arc labelled arc name from source node used to point before the update� and
new target node is where this arc points after the update� Again� the wildcard 
 �

is allowed in the place of any of these components�

The rule is triggered if an arc labelled arc name from source node changes its tar�
get from old target node to new target node� The variable 	delta has as its set
of instantiations the triples which have triggered the rule� The individual compo�
nents of one these triples can be obtained by 	delta�source� 	delta�arc name�
	delta�old target or 	delta�new target�

The condition part of rule is a boolean�valued expression which may reference the
	delta variable� This expression may consist of conjunctions� disjunctions and nega�
tions of path expressions�

The actions part of a rule is a sequence of one or more actions� Actions can INSERT

or DELETE a resource � speci�ed by its URI � and INSERT� DELETE or UPDATE an arc�
The actions language has the following form for each one of these cases �note that this
actions language can also serve more generally as an update language for RDF��

�� INSERT e AS INSTANCE OF class

DELETE e �AS INSTANCE OF class�

for expressing insertion or deletion of a resource�

�� �INSERT � DELETE� triple ���� triple�

for expressing insertion or deletion of the arcs�s� speci�ed�

�� UPDATE upd triple ���� upd triple�

for updating arc�s� by changing their target node�

The AS INSTANCE OF keyword classi�es the resource to be deleted or inserted� In
the case of insertions� the classi�cation of the new resource is obligatory� while in the
case of deletions it is optional� The semantics of this optional class speci�cation in
deletions is as follows� when the name of the class is speci�ed� the RDF resource�s�
returned by the path expression e that are instances of this class are deleted� in the case
that no class is speci�ed� all the RDF resources returned by e are deleted� regardless of
their classi�cation�

The triples in the case of arc manipulation have the same form as in the event
sublanguage� The wildcard � � may appear inside triples in the action sublanguage� as
follows� In the case of a new arc insertion� � � is allowed in the place of the source node
and has the e�ect of inserting the new arc for all stored resources� In the case of arc
deletion� if � � replaces the arc name then all the arcs from source node pointing to
target node will be deleted� if � � replaces the source node� the action deletes all the
arcs labelled arc name� replacing the target node by � � deletes the arc arc name from
the source node regardless of where it points to� In case of a arc update� � � can be



�

LO

Author

String

StringString

String

String

String

Annotation

User

Messages

Interest

String

String

dc:annotation

dc:creator

dc:reviewer

Date

dc:details
dc:date

dc:subject

dc:title

dc:type

dc:description

sl_user:updated_LO
sl_user:newLO

sl_user:interest_description

sl_user:new_user

sl_user:interest

sl_user:interest_typename

sl_user:messages

Figure �� RDF schema describing users and learning objects�

used in place of the source node or the old target node� in the �rst case� it indicates
replacement of the target node for all arcs labelled arc name� in the second case� use
of � � indicates update of the target node regardless of its previous value� The use of
combinations of the above wildcards in a triple is also allowed� in order to express more
complex update semantics that combine those given above�

Example � The following examples refer to the Learning Object metadata and to the
fragment of a user�s personal metadata illustrated in Figure � �see ��	
 for details of
these schemas and their use in the SeLeNe system��

Suppose a Learning Object �LO� is inserted whose subject is the same as one of
user ���s areas of interest� Then the following rule adds a new arc linking the newly
inserted LO to user ���s personal messages�

USING NAMESPACE dc http���purl�org�dc�elements�����

USING NAMESPACE sl�user http���www�dcs�bbk�ac�uk��gpapa���semapeer�user

LET 	msgs �� resource�http���www�dcs�bbk�ac�uk�users�����

�target�sl�user�messages�

ON INSERT resource�� AS INSTANCE OF LO

IF 	delta�target�dc�subject�

� resource�http���www�dcs�bbk�ac�uk�users�����

�target�sl�user�interest��target�sl�user�interest�typename�

DO INSERT �	msgs�sl�user�newLO�	delta���

Here� the event part checks if a new resource belonging to the LO class has been inserted�
The condition part checks if the inserted LO has a subject which is the same as of one
user ���s areas of interest� The LET clause de�nes the variable 	msgs to be user ���s
messages� Finally� the INSERT clause inserts a new arc from 	msgs to the newly inserted
LO�

Example � As another example� if the description of a LO whose subject is the same
as one of user ���s areas of interest changes� the following rule inserts a new arc from



	

user ���s Messages to the modi�ed LO�

USING NAMESPACE dc http���purl�org�dc�elements�����

USING NAMESPACE sl�user http���www�dcs�bbk�ac�uk��gpapa���semapeer�user

LET 	msgs �� resource�http���www�dcs�bbk�ac�uk�users�����

�target�sl�user�messages�

ON UPDATE �resource���dc�description������

IF 	delta�source�target�dc�subject�

� resource�http���www�dcs�bbk�ac�uk�users�����

�target�sl�user�interest��target�sl�user�interest�typename�

DO INSERT �	msgs�sl�user�updated�LO�	delta�source���

��� RDFTL Rule Execution

RDFTL rule execution takes as input an RDF graph and a schedule�
The schedule consists of a sequence of updates which are to be executed on the

RDF graph� where the syntax of an update is the same as the syntax of a rule action
described above� except that there are no occurrences of the 	delta variable within
it� The updates on the schedule belong to concurrently executing transactions� and are
scheduled for execution according to the concurrency control policy being employed�

Execution of the update at the head of the schedule may cause events to occur�
These events may cause rules to �re� modifying the schedule with new subsequences of
updates to be executed� The events detectable by the system are determined by the
syntax of the event parts of RDFTL� as de�ned above� We also speci�ed above for
each kind of event when a rule is considered to have been triggered� and what its set of
instantiations for the 	delta variable is�

The condition and action parts of an RDFTL rule may or may not contain oc�
currences of the 	delta variable� If neither the condition nor the action part contain
occurrences of 	delta� then the rule is a set�oriented rule� otherwise it is an instance�
oriented rule�

A set�oriented rule �res if it is triggered and its condition evaluates to True� An
instance�oriented rule �res if it is triggered and its condition evaluates to True for some
instantiation of 	delta� A rule�s action part consists of one or more actions� If a set�
oriented rule �res as a result of the execution of an update belonging to a transaction
T � then a copy of the rule�s action part is added to the current schedule and executed
after the rest of T executes� as a subtransaction of T � This is known as Deferred rule
coupling �
�� � other coupling modes are also possible for ECA rules� but our current
implementation of RDFTL supports only this one�

If an instance�oriented rule �res then one copy of its action part is added to the
current schedule for each value of 	delta for which the rule�s condition evaluates to
true� in each case substituting all occurrences of 	delta within the action part by one
speci�c instantiation for 	delta� The ordering of these multiple instances of the rule�s
action part is arbitrary� Thus� we assume that instance�oriented rules arewell�de�ned�
in the sense that the same �nal RDF graph will result when rule execution terminates
irrespective of the order in which instances of the rule�s actions part are scheduled� See
Section 
�� below for a discussion of conservative tests for verifying this property for
RDFTL rules�

It is in general possible that many rules may �re as a result of an event occurrence�
The set of rules is partially ordered by a rule precedence relationship� prec� which is
speci�ed by the user or application �and which may be empty�� If two rules ri and rj
�re and ri prec rj then the updates generated by ri precede on the schedule the updates
generated by rj � If two rules ri and rj �re and they are not related by prec then the






updates generated by ri may precede or may follow the updates generated by rj � We
assume that rules ri and rj commute in such cases� i�e� that the same �nal RDF graph
will result when rule execution terminates irrespective of the order of scheduling of ri
and rj � See Section 
�� below for a conservative test for verifying this property for
RDFTL rules�

We �nally assume that all rules have the same binding mode� whereby any occur�
rences of the 	delta variable appearing in a rule�s condition or action parts are bound
to the state of the RDF graph in which the rule�s condition is evaluated� A detailed
description of the general coupling and binding possibilities for ECA rules is beyond
the scope of this paper and we refer the reader to �
���

� Analysing RDFTL Rule Behaviour

One of the key recurring themes regarding the successful deployment of ECA rules in
systems is the need for techniques and tools for analysing their run�time behaviour ����

��� Analysis of ECA rules in active databases is a well�studied topic� with a number of
approaches appearing in the literature� e�g� �
� 	� �� � ��� ��� ��� �
� ���� mostly in the
context of relational databases� In recent work we also explored analysis of ECA rules
for XML data ��� ���� In this section we develop conservative tests for determining two
properties of RDFTL rules� termination and con�uence� A set of ECA rules is said to
be terminating if for any initial event and any initial database state� the rule execution
terminates� In Section 
�� we �rst develop conservative tests for when one RDFTL
rule may trigger another� acyclicity of the resulting triggering graph between rules then
implies de�nite termination of rule execution� A rule set is said to be con�uent if
the same database state results �if rule execution terminates� irrespective of the order
of execution of the instances of actions of instance�oriented rules� or the actions of
rules which are not related by the precedence �prec� relationship� Several techniques
have been developed for detecting con�uent ECA rule sets in the context of relational
databases� e�g�� �	�� and in Sections 
�� and 
�� we develop analogous tests for sets of
RDFTL rules�

��� Triggering Relationships and Rule Termination

Triggering relationships between rules can been used to determine whether a set of ECA
rules is terminating� A rule ri may trigger a rule rj if the action of ri may generate an
event which triggers rj � The triggering graph �
� 	� represents each rule as a vertex� and
there is a directed arc from a vertex ri to a vertex rj if ri may trigger rj � Acyclicity of
the triggering graph implies de�nite termination of rule execution�

In order to determine triggering relationships between our RDFTL rules� we need
to be able to determine whether an action of some rule may trigger the event part of
some other rule� This can be done by de�ning the sets of RDFS schema nodes and
triples that are matched by RDFTL rule actions and events� Before doing this� we need
to make our de�nition of an RDFS schema graph more precise� particularly as there are
some di�erences with the standard de�nition of an RDFS schema�

An RDFS schema graph S comprises nodes representing the built�in classes� such as
rdfs�Resource� rdfs�Class� rdf�Property and rdfs�Literal� as well as any user�
de�ned classes and properties� These nodes are connected by arcs labelled with built�in
properties� such as rdf�type and rdfs�subClassOf� We require that all user�de�ned
properties have domain and range constraints speci�ed� Consider property p with do�
main d and range r� Rather than this being represented in S by a pair of triples



��

�p� rdfs � domain� d� and �p� rdfs � range� r�� we instead use the single triple �d� p� r��
Examples of this representation are given in Figure �� One advantage of this represen�
tation is that RDFTL path expressions can be evaluated on an RDFS schema graph as
outlined below�

Throughout we assume that we always work with the closure of the RDF graph
and of the RDFS schema� as de�ned in �	
�� This means� for example� that when a
resource s is inserted into a class c �i�e� the triple �s� rdf � type� c� is inserted into the
RDF graph�� s is also inserted into all superclasses of c� Likewise when a triple �u� p� v�
is inserted into an RDF graph for any property p� then a triple �u� q� v� is also inserted
for all superproperties q of p�

For simplicity in the following de�nitions �and without loss of generality�� we assume
that each source node� target node and path expression appearing in the event or action
part of an RDTFL rule is a simple variable� de�ned by a let�expression in the rule�s
preamble� Let S be the RDFS schema to which the rules conform� and G be the RDF
graph on which the rules will operate�

For each variable v used in an event part or action part of a rule� we can identify the
set nodes�v� S� of nodes in S whose extents may be accessed by evaluating v on graph
G� Assume that variable v is de�ned by path expression e� We compute nodes�v� S� by
evaluating e on S as follows�

Recall the syntax and semantics of RDFTL path expressions given in Section �� In
order to evaluate an expression e on a schema graph S rather than an RDF graph� we
modify the semantics as follows� �i� expressions resource�x� and resource�� both return
all nodes in S� and �ii� p � s and p �� s both return the same set of nodes as p� Note
that� because we are querying the closure of S� if nodes�v� S� contains a class c� then it
will also contain all superclasses of c� except that we assume that it does not contain
the class rdfs�Resource�

Given a way of identifying the nodes in a schema matched by a variable de�ned by
a path expression� we can now identify those schema triples matched by a triple in a
rule� For each triple t � �u� p� v� appearing in a rule� where u and v are variables or
the wildcard � � and p is a property or � �� triples�t� S� is the set of triples in S whose
extents may be accessed by evaluating t on G� If u �resp� v� is � �� then nodes�u� S�
�resp� nodes�v� S�� is the set of all nodes in S� If p is � �� then let properties�p� be all
properties in S� otherwise� let properties�p� � fpg� Now triples�t� S� is given by

f�x� q� y� � S j x � nodes�u� S�� y � nodes�v� S�� q � properties�p�g

Note that if �a� q� b� � triples�t� S�� then all triples �c� r� d�� where a is a subclass of b�
q is a subproperty of r� and b is a subclass of d� will also be in triples�t� S�� As above�
we assume that no triple in triples�t� S� includes rdf�Property or rdfs�Resource�

For an action a of the form INSERT t�� � � � � tn or DELETE t�� � � � � tn� where t�� � � � � tn
are triples�

triples�a� S� � triples�t�� S� � 	 	 	 � triples�tn� S��

Clearly� INSERT actions can only trigger INSERT events� DELETE actions can only
trigger DELETE events� and UPDATE actions can only trigger UPDATE events�

Consider �rst an action a given by INSERT v� AS INSTANCE OF c� along with an
event e given by INSERT v� AS INSTANCE OF c�� For a class c� we de�ne nodes�c� S� to
be the set of nodes in S that includes c and all its superclasses� excluding rdfs�Resource�
Then action a may trigger event e if nodes�v�� S�
nodes�v�� S� �� � and nodes�c�� S�

nodes�c�� S� �� �� Action a may also trigger an event e of the form INSERT �u�
rdf�type� w� if nodes�v�� S� 
 nodes�u� S� �� � and nodes�c�� S� 
 nodes�w� S� �� ��



��

Example � Consider the RDF schema S from Figure �� Suppose that we have rule r�
with its action part containing the following action

INSERT 	u AS INSTANCE OF LO

where 	u is de�ned by

LET 	u �� resource�http���www�dcs�bbk�ac�uk�LOs�BK����

and a rule r� with event part

INSERT 	v AS INSTANCE OF LO

where 	v is de�ned by

LET 	v �� resource���target�sl�user�messages��target�sl�user�updated�LO�

We have that nodes�u� S�
nodes�v� S� �� �� since both sets of nodes include LO� Clearly
we also have that the sets of classes in S matched by LO in each case intersect� Hence�
r� may trigger r��

Consider next an action a which is an INSERT of triples along with an event e given
by INSERT t� where t is a triple� Then a may trigger e if triples�a� S�
triples�t� S� �� ��
If some triple comprising a is of the form �u� rdf � type� v�� then action a may trigger
an event of the form INSERT x AS INSTANCE OF y if nodes�u� S�
nodes�x� S� �� � and
nodes�v� S� 
 nodes�y� S� �� ��

DELETE actions can be analysed in a similar way to INSERT actions� An action a�
given by DELETE v� AS INSTANCE OF c�� may trigger an event e� given by DELETE v� AS

INSTANCE OF c�� if nodes�v�� S� 
 nodes�v�� S� �� � and nodes�c�� S� 
 nodes�c�� S� ��
�� An event e of the form DELETE �u�rdf�type�w� may also be triggered by a if
nodes�v�� S� 
 nodes�u� S� �� � and nodes�c�� S� 
 nodes�w� S� �� ��

Similarly� an action a that deletes triples� may trigger an event e given by DELETE

t� where t a triple� if triples�a� S� 
 triples�t� S� �� �� If some triple comprising a is of
the form �u� rdf � type� v�� then action a may trigger an event of the form DELETE x
AS INSTANCE OF y if nodes�u� S�
 nodes�x� S� �� � and nodes�v� S� 
 nodes�y� S� �� ��

Finally� considering UPDATE actions� an action a given by UPDATE �u�� p�� v�� �
v��� may trigger an event e of the form UPDATE �u�� p�� v�� � v��� if triples�t��� S� 

triples�t��� S� �� � and triples�t��� S� 
 triples�t��� S� �� �� where t�� � �u�� p�� v����
t�� � �u�� p�� v���� t�� � �u�� p�� v��� and t�� � �u�� p�� v����

We note that more sophisticated approaches than just using triggering relationships
between rules have been also developed for determining rule termination� using acti�
vation relationships ����� using a combination of triggering and activation relationships
����� and using abstract interpretation ���� Extending our RDFTL rule analysis to utilise
these approaches is an area of future work�

��� Well�de�nedness of Action Instances

We stated earlier that instance�oriented rules are considered to be well�de�ned if the
same �nal RDF graph will result when rule execution terminates irrespective of the
order in which copies of the rule�s actions part are scheduled�

A condition guaranteeing this is that�

�I�� for all possible pairs of instances Ui� Uj of the rule�s action part� the sequence of
updates Ui� Uj has the same e�ect as the sequence of updates Uj � Ui on any RDF
graph�



��

�I�� all possible pairs of instances Ui� Uj of the rule�s action part are independent�
i�e� the queries that are evaluated following the execution of Ui are independent
of the updates that are generated following the execution of Uj �

Regarding I�� if the rule�s action part has no occurrences of 	delta then I� holds
provided the rule�s action part is idempotent� which is indeed the case for actions de�ned
in our RDFTL actions syntax� If the rule�s action part does have occurrences of 	delta�
then I� holds if all actions that refer to 	delta are either INSERT or DELETE actions�
Otherwise� if there is both an INSERT action and a DELETE action that refer to 	delta�
or any UPDATE actions refer to 	delta then I� may not hold�

For condition I� above� we need to establish whether the queries generated following
the execution of one update are independent of the updates generated following the
execution of another update�

Let R be a set of RDFTL rules� For an action a� we can determine� using the
techniques described in Section 
��� the rules in R that may be triggered by a� Hence�
using the triggering graph� we can determine the set of all rules that may be recursively
triggered by a� We denote this set of rules by triggered�a��

For each rule r in triggered�a�� we need to �nd the sets of triples and nodes in the
schema S whose extents may be accessed during the evaluation of r� None of these
extents must be updated if independence is to hold� For each path expression p used
in r� we determine triplesQueried�p� S�� the triples in S that correspond to the triples
in the RDF graph that may be accessed during the evaluation of p� We also determine
nodesQueried�p� S�� the nodes in S that correspond to the nodes in the RDF graph that
may be accessed during the evaluation of p� These sets can be computed by evaluating
p on S� as described in Section 
��� and marking all nodes and triples that contribute to
complete matches of p in S� For rule r� triplesQueried�r� S� �resp� nodesQueried�r� S��
is the union of the sets triplesQueried�p� S� �resp� nodesQueried�p� S�� for each path
expression p in r� For action a� triggeredTriplesQueried�a� S� �resp� triggeredNodes�
Queried�a� S�� is then the union of the sets triplesQueried�r� S� �resp� nodesQueried�r� S��
for each rule r in triggered�a��

In a similar fashion� we can determine triggeredTriplesUpdated�a� S�� the set of
triples in S that correspond to triples in the RDF graph that may be inserted� deleted or
updated by rules triggered by action a� We can also determine triggeredNodesUpdated�a� S��
the set of nodes in S that correspond to nodes in the RDF graph that may be inserted
or deleted by rules triggered by action a�

Now� an action a is independent of an action b if the following four conditions hold�

triggeredTriplesQueried�a� S�
 triggeredTriplesUpdated�b� S� � �

triggeredTriplesQueried�b� S�
 triggeredTriplesUpdated�a� S� � �

triggeredNodesQueried�a� S� 
 triggeredNodesUpdated�b� S� � �

triggeredNodesQueried�b� S� 
 triggeredNodesUpdated�a� S� � �

Example � Consider the RDF schema S in Figure � along with the action a given by

INSERT �resource�http���www�dcs�bbk�ac�uk�LOs�BK�����dc�type��Book��

and assume that the only rule that may be triggered �directly or indirectly� by a is the
following�

USING NAMESPACE dc http���purl�org�dc�elements�����

USING NAMESPACE sl�user http���www�dcs�bbk�ac�uk��gpapa���semapeer�user

LET 	msgs �� resource�http���www�dcs�bbk�ac�uk�users�sys�



��

�target�sl�user�messages�

ON INSERT �resource���dc�type���

IF True

DO INSERT �	msgs�sl�user�updated�LO�	delta�source���

Then triggeredTriplesQueried�a� S� comprises the � triples �LO� dc � type� String� and
�User� sl user � messages� Messages�� while triggeredTriplesUpdated�a� S� comprises
the single triple �Messages� sl user � updated LO� LO��

Finally� a conservative test for the independence of two instances of a rule�s action
part a�� � � � � an� i�e� for condition I� above� is that

�triggeredTriplesQueried�a�� S� � � � � � triggeredTriplesQueried�an� S�� 


�triggeredTriplesUpdated�a�� S� � � � � � triggeredTriplesUpdated�an� S�� � �

and

�triggeredNodesQueried�a�� S� � � � � � triggeredNodesQueried�an� S�� 


�triggeredNodesUpdated�a�� S� � � � � � triggeredNodesUpdated�an� S�� � �

��� Rule Commutativity

Two rules ri and rj that may �re at the same time are said to commute if the same
�nal RDF graph will result when rule execution terminates irrespective of the order in
which ri and rj are scheduled for execution�

A condition guaranteeing this is that�

�C�� for all possible pairs of instances Ui and Uj of the action part of ri and rj � re�
spectively� the sequence of updates Ui� Uj has the same e�ect as the sequence of
updates Uj � Ui on any RDF graph�

�C�� all possible pairs of instances Ui� Uj of the action part of ri and rj are independent
i�e� the queries that are evaluated following the execution of Ui are independent
of the updates that are generated following the execution of Uj � and vice versa�

Regarding C�� let triplesInserted�r� S�� triplesDeleted�r� S� and triplesUpdated�r� S�
be the sets of triples in schema S whose extents may be subject to INSERT� DELETE and
UPDATE actions� respectively� by the action part of a rule r� as well as by the action part
of any rule that may be triggered by r� In addition� let triplesModified�r� S� be

triplesInserted�r� S� � triplesDeleted�r� S� � triplesUpdated�r� S�

Then� assuming that all update actions are to triples� a conservative test for C� is that

triplesInserted�ri� S� 
 triplesDeleted�rj� S� � �

triplesDeleted�ri� S� 
 triplesInserted�rj � S� � �

triplesUpdated�ri� S� 
 triplesModified�rj� S� � �

and
triplesModified�ri� S� 
 triplesUpdated�rj � S� � �

A similar test can be made for updates to nodes and for action parts that are combi�
nations of updates to triples and nodes�



��

Regarding condition C�� if a�� � � � � an is the action part of ri and b�� � � � � bm is the
action part of rj � then a conservative test for C� is that

�triggeredTriplesQueried�a�� S� � � � � � triggeredTriplesQueried�an� S�� 


�triggeredTriplesUpdated�b�� S� � � � � � triggeredTriplesUpdated�bm� S�� � �

and

�triggeredTriplesQueried�b�� S� � � � � � triggeredTriplesQueried�bm� S�� 


�triggeredTriplesUpdated�a�� S� � � � � � triggeredTriplesUpdated�an� S�� � �

once again assuming that updates involve only triples� The test can easily be extended
to include updates to nodes as well�

� RDFTL Rules in P�P Environments

We have implemented a system for processing RDFTL rules in P�P environments� We
discuss our implementation further in Section � below� The rule processing functionality
in our system is provided by a set of services that constitute the RDFTL ECA Engine�
This set of services acts as an �active� wrapper over a distributed set of �passive� RDF�S
repositories� exploiting their query� storage and update functionality�

Our system is an example of a schema�based P�P system� having been inspired by
the superpeer�based architecture of Edutella �

�� Other schema�based P�P systems
include ICS FORTH SQPeer ��� and Piazza �	��� Similar to our system� the metadata
distribution in an Edutella network allows hybrid fragmentation with possible replica�
tion between peers� SQPeer also does not impose any particular data fragmentation
or replication policy� each superpeer integrates a set of peers that support the same
schema� although a peer may belong to more than one peergroup if it supports more
than one schema� this is contrast to our approach where each peer is connected to one
superpeer only and all peers support the same RDF schema� Piazza focuses on the
semantic integration and global querying of heterogenous data distributed over a P�P
network� where each peer supports its own schema�

The architecture of our system is illustrated in Figure �� Each superpeer shown in
that �gure may be supervising a group of further peers� which we term its peergroup�
as well as itself hosting a fragment of the global RDF�S descriptions in the network�
At each superpeer there is one ECA Engine installed� We assume that each peer or
superpeer hosts a fragment of an overall global RDFS schema� and that each superpeer�s
RDFS schema is a superset of its peergroup�s individual RDFS schemas� Although this
is su�cient for the SeLeNe project� in general superpeers� and indeed peers� may hold
heterogeneous RDFS schemas� and there is a need for an RDFS schema mapping service�
The techniques discussed in ��
� 
�� could be used as the basis for such a service� and
this is an area of future work�

The fragment of the global RDFS schema stored at a peer may change as a result
of changes in the peers� RDF�S descriptions� Peers notify their supervising superpeer
of any updates to their local RDF�S repository� Peers may dynamically join or leave
the network�

Each superpeer de�nes access privileges over the classes and properties in its RDFS
schema� These privileges may be read�only� read�write or private� describing the cor�
responding access level to the instances of each class and property� More �ne�grained



��

Peer

Peer

Super Peer

LO

Metadata

User

Metadata

Local ECA
Engine

Super Peer

LO
Metadata

User
Metadata

Local ECA
Engine

Super Peer

LO

Metadata

User

Metadata

Local ECA
Engine

Peer

Peer

PeerPeer

Figure �� P�P System Architecture

access privileges are also allowed on speci�c RDF resources and properties� These facil�
ities allow a superpeer to specify which metadata can be shared with other superpeers
outside its peergroup�

In the dynamic applications that we envisage� ECA rules are likely not to be hand�
crafted but automatically generated by higher�level presentation and application ser�
vices� An ECA rule generated at one site of the network might be triggered� evaluated�
and executed at di�erent sites� Within the event� condition and action parts of ECA
rules there might or might not be references to speci�c RDF resources� i�e� ECA rules
may be resource�speci�c or generic�

Whenever a new ECA rule r is generated at a peer P� it will be sent to P�s superpeer
for storage� From there� r will also be forwarded to all other superpeers� and a replica
of it will be stored at those superpeers where an event may occur that may trigger r�s
event part� i�e� those superpeers that are e�relevant to r �see below�� A rule r has
a globally unique identi�er of the form SPi�j� where SPi is the originating superpeer
identi�er and j a locally unique identi�er for the rule in SPi�s rule base�

We assume that at run�time rules are triggered by events occurring within a single
peer�s local RDF repository� We also assume that each particular copy of a rule�s action
part executes within a single peer�s RDF repository� If there is a need to distribute a
sequence of updates across a number of peers in reaction to some event� then rather
than specifying one rule of the form

on e if c do a�� � � � � an

instead� n rules r�� � � � � rn can be speci�ed� where each ri is on e if c do ai and
r� prec r� prec � � � prec rn� Note that it is also possible to relax the total order�
ing of r�� � � � � rn into a partial ordering� or no ordering at all� However� there is still the
limitation that a copy of each ai will only execute on one peer�

In summary� we assume that there is no need for distributed event detection or
distributed update execution �although the evaluation of rules� condition parts may be
distributed�� These assumptions hold true for the SeLeNe system� but generalising our
techniques and architure to support distributed event detection and distributed update



��

execution are areas of future work�
Given an RDF schema S and an RDFTL rule r� we now de�ne what it means for r

to be relevant to S� There are three types of relevance�

� r is e�relevant to S if each of the path expressions that either appear in the
event part of r or are used by the event part through variable references� can be
evaluated on S� i�e�� each step in each path expression exists in S� �This is because
we assume that there is no distributed event detection��

� r is c�relevant to S if some step in one of the path expressions referenced by
the condition part of r can be evaluated on S� �This is because we assume that
conditions may be evaluated at multiple sites��

� r is a�relevant to S if all actions in the action part of r are a�relevant to S�
�This is because we assume that there is no distributed update execution�� An
individual action is a�relevant to S if it satis�es one of the following�

� If it is a deletion or insertion of resources that uses AS INSTANCE OF class�
then class must be in S�

� If it is a deletion of resources that does not use AS INSTANCE OF class� then
we determine the most speci�c class of resources that the path expression in
the deletion would return� This class must be in S�

� If it is an action over triples that uses a property p� then p must be in S� If
it is a deletion of triples that uses the wildcard � � instead of a property �the
only action allowed to do this�� then the classes of resources returned by the
path expressions involved in the deletion must exist in S� Note that use of
the wildcard � � instead of the source or target node of a triple would return
all resources�

We say that a peer or superpeer is e�relevant� c�relevant or a�relevant to a rule r if
r is e�� c� or a�relevant� respectively� to the peer or superpeer�s RDFS schema�

The ECA engine at a superpeer� SP� provides several services�

� The Rule Registration Service takes as input an RDFTL rule de�nition� generated
by some peer in SP�s peergroup� and registers it in SP�s Rule Base� It invokes an
RDFTL Language Interpreter to verify the syntactic correctness of the rule and to
translate any path queries and updates within the rule into the query and update
syntax of the underlying RDF repository�

� The Event Handler handles the occurrence of events within the RDF repositories
of SP�s peergroup� and the triggering of rules registered within SP�s rule base� The
Event Handler determines which rules have actually been triggered by an update
to a local repository by invoking that repository�s query service to evaluate the
event queries of rules that may have been triggered�

� The Condition Evaluator determines which of the triggered rules should �re� This
may require distributed query processing across a number of peers and superpeers�
invoking their local query services�

� The Action Scheduler generates from the action parts of rules that have �red a list
of updates to be considered for execution at SP and also to be sent to all other
superpeers over the network� At any superpeer� whether these updates are added
to the local execution schedule or not depends on whether�

�a� they are a�relevant to the local schema� and

�b� the local schema allows read�write privileges to all the resources a�ected by
the updates�



��

� The Routing Service keeps a list of the immediate neighbours of SP �peers in its
peergroup and other superpeers� and hence maintains the message transmission
paths in the network�

��� Registering a new ECA rule

Whenever a new ECA rule r is registered at a peer P� it is sent to P�s supervising
superpeer for syntax validation� translation into the local repository�s query and update
language� and storage� �From there� r will also be sent to all other superpeers� and a
replica of it will be stored at those superpeers that are e�relevant to r�

Determining the e�� c� and a�relevance of a particular ECA rule to a superpeer
involves comparing the path expression�s� used by that part of the rule against the
superpeer�s RDFS schema� In order to aid this comparison� an index can be kept at
each superpeer� There are a number of possibilities for doing this ��	� 
	� ��� ��� and
we describe our approach in Section ��

Using the Routing Service� a new rule is propagated to all superpeers of the network
and it is stored at those superpeers that are e�relevant to it� Each such superpeer
matches each part of the rule against its index� and annotates the event� condition and
action parts of the rule with the IDs of local peers which may be a�ected by each part
of the rule�

Each superpeer SPi is responsible for specifying the precedence relationship preci
between the rules generated by itself or its local peergroup� As rules are propagated
from superpeer to superpeer� local decisions are made at each superpeer regarding the
precedence of the rules originating from other superpeers compared with its own rules�
and a local precedence scheme is applied �e�g� timestamp order� assigning higher priority
to local rules� assigning higher priority to more speci�c rules� or combinations thereof��

Changes in a superpeer�s index �caused by changes in its peergroup�s or its own
RDF�S metadata� require the annotations of each part of each rule in its rule base to
be updated� Any rules that are no longer e�relevant to the superpeer can be deactivated�
Conversely� if a superpeer�s RDFS schema changes from having no metadata associated
with a particular schema node to now having such metadata� this change is noti�ed to
SP�s neighbouring superpeers� If any of these neighbours have ECA rules which may
have been made e�relevant by the new change at SP� they send these ECA rules to SP�
These superpeers also request from their neighbours �other than SP� their current set of
ECA rules which are potentially e�relevant to the change� and they forward these rules
on to SP� This process repeats until all the potentially e�relevant ECA rules throughout
the network have been sent to SP�

��� P�P Rule Execution

In a P�P environment� the RDF graph is partitioned amongst the peers and each
superpeer manages its own local execution schedule�

Each local schedule at a superpeer is a sequence of updates constituting fragments of
global transactions which are to be executed on the fragment of the global RDF graph
which is stored at the superpeer or its local peergroup�

Each superpeer coordinates the execution of transactions that are initiated by that
superpeer� or by any peer in its local peergroup�

Whenever an update u is executed at a peer P� P will notify its supervising super�
peer SP� SP will determine whether u may trigger any ECA rule whose event part is
annotated with P�s ID� If a rule r may have been triggered� then SP will send r�s event
query to P to evaluate�



�	

If r has indeed been triggered� its condition will need to be evaluated� after generating
an instantiation of it for each value of the 	delta variable if this is present in the
condition� The distributed evaluation of the condition is coordinated by SP�s Condition
Evaluator�

If a condition evaluates to true� SP will send each instance of r�s action part �there
will be only one instance if r is a set�oriented rule� and one or more instances if r
is an instance�oriented rule� to its local peers� according to the annotations on r�s
action part made during r�s registration� The instances of r�s actions part will also be
sent to all neighbouring superpeers and from there in turn to all other superpeers of
the network� All superpeers that are a�relevant to r will consult the access privileges
on their metadata in order to decide whether the updates they have received can be
scheduled and executed on their local peergroup�

In summary therefore� local execution of the update at the head of a local schedule
may cause events to occur� These events may cause rules to �re� modifying the local
schedule or remote schedules with new subtransactions to be executed�

Because of the assumption that instance�oriented rules are well�de�ned� if di�erent
instances of an instance�oriented rule�s action part are executed by di�erent superpeers�
then the order of execution of these di�erent instances is immaterial and the coordinat�
ing superpeer does not have to enforce any particular ordering� Moreover� the resulting
subtransactions do not have to be executed in isolation from each other�

Similarly� because of the commutativity assumption for rules that have the same
precedence� the coordinating superpeer does not have to enforce any particular order of
execution of such rules and the resulting subtransactions do not have to be executed in
isolation from each other�

� Implementation

Our system implements a set of services over the JXTA P�P framework ����� JXTA
is a platform�independent framework� containing a set of open protocols that enable
service�based communication in a P�P manner� between any kind of device in a network�
JXTA provides a full range of services necessary for building a peer�to�peer network�
These services include peer discovery� message exchange� resource sharing� security and
authentication� In our system we have exploited this functionality and have built our
system�speci�c services using the JXTA API�

Each peer of our P�P network implements a set of core services that provide the basic
functionality necessary to participate in the system� local RDF�S event detection� local
RDF�S indexing� RDF repository connectivity� and messaging� In order for a host to
become a member of the network� it has to support this set of core services� Superpeers
in addition support RDFTL rule registration and rule processing� superpeer RDF�S
indexing� and manage connectivity with the peers in their peergroup as well as with
their neighbouring superpeers�

Our implementation of these services is �exible� allowing a peer to dynamically
extend its set of services and become a superpeer� or a superpeer to dynamically shed
its extra services and become a simple peer� Below we describe the most important
services� and their role in the overall operation of the system�

��� Core Services

Event Detection Service� This is responsible for detecting metadata modi�cation
events at a peer� It noti�es the Event Handler service at its superpeer of each event



�


occurrence� including the type of the event� the metadata a�ected and the time the
event occurred� It also noti�es its own Peer Indexing service to update its indexes
according to the changes� if necessary�

Peer Indexing Service� This maintains indexes on the RDF metadata stored at
the peer and provides a simple query interface over these indexes� After noti�cation of
a metadata change by the Event Detection service� the Peer Indexing service updates�
if necessary� the local peer indexes� If necessary� it also sends a noti�cation to the
Superpeer Indexing Service �see below� at its supervising superpeer in order for it to
update its superpeer indexes�

In more detail� as the RDF metadata stored at a peer P change over time� P main�
tains an RDFS schema which shows for each node in the schema whether or not there
is RDF metadata of this type stored at P �a ��� or ��� bit�� This information is also
propagated to P�s supervising superpeer SP� which maintains a combined RDFS schema
annotated so that each node shows the set of peers in its peergroup that manage meta�
data of this type �a set of peer IDs�� Over time� the metadata stored at P may change
so that its RDFS schema �shrinks� �i�e� one or more ��� annotations become ��� anno�
tations� or �grows� �i�e� one or more ��� annotations become ��� annotations� and such
changes are also propagated to SP�

As well as this annotated RDFS schema� each peer also keeps for each node annotated
with a ��� in this schema a list of the RDF resources of this type that its RDF metadata
references � we call these lists of RDF resources the resource index� Each peer also
keeps a list of the properties that its RDF metadata references � which we call the
property index� Each superpeer keeps a consolidated resource index and property index
for its entire peergroup�

Repository Connection Service� This manages the connection with the under�
lying RDF repository� It consists of three subcomponents� the Connection Manager
that provides connection pooling� the Update Manager that interprets and passes RDF
metadata update requests to the repository� and the Query Manager that establishes
communication with the query engine of the repository and retrieves query results� In
the current version of our system we are using ICS�FORTH RSSDB ��� as the RDF
repository� For the future we plan also to support Jena� �����

Messaging Service� This is responsible for all message exchange between the
peer and its supervising superpeer� It undertakes to wrap or unwrap the outgoing or
incoming messages� respectively� and pass them to the appropriate service�

��� Superpeer Services

RDFTL Rule Processing Services� This set of services includes the Event Handler�
Condition Evaluator and Action Scheduler already mentioned earlier�

The Event Handler is passed information concerning an event occurrence by the
Event Detection service each time that an update takes place at some peer of the
peergroup� Using this information� the Event Handler contacts the Rule Base Indexer
�see below� to retrieve all rules that may be triggered by the event� The Event Handler
then determines which rules have actually been triggered by the event by invoking
the peer�s Query Manager to evaluate the event queries of rules that may have been
triggered�

The Condition Evaluator evaluates the condition part of rules that have been trig�
gered� Our current implementation assumes that all conditions can be evaluated within
the local peergroup and does not support distributed query processing across a number
of superpeers� Subqueries of the condition part of a triggered rule are dispatched to the
appropriate peers in the peergroup for evaluation by their Query Managers� A super�



��

peer can use the annotations on a rule�s condition part to determine to which local peers
subqueries of the condition should be dispatched for evaluation� If the 	delta variable
is present in the condition� it will have been instantiated and the superpeers� indexes
can be consulted for more precise information about which local peers are relevant to
subqueries of the instantiated condition� The subquery results are subsequently merged
by the Condition Evaluator�

The Action Scheduler generates from the action parts of rules that have �red a list of
updates to be considered for execution at the superpeer� A copy of this list of updates
is also sent� using the Routing Service� to all neighbouring superpeers and from there
in turn to all other superpeers�

The Action Scheduler maintains the local execution schedule where all updates
scheduled for local execution are placed� Each time an update reaches the head of
this schedule� the Action Scheduler consults the peer ID annotations on the update and
dispatches the update to the appropriate peers within the peergroup for execution�

In the current version of the system� no transaction management has been imple�
mented� So each time the Action Scheduler dispatches an update for execution some�
where in the network� we assume that this execution is successful� Future versions of
the system will� however� support transaction management as discussed in Section ���
below� To detect possibly non�terminating rule executions� a maximum number of
recursive rule �rings is allowed�

Rule Base Management Services� This set of services is dedicated to maintain�
ing the local rule base� including indexing of its contents and providing simple query
and update functionality over it�

The Rule Registration service receives a new RDFTL rule and undertakes to regis�
ter it in the rule base� The RDFTL Language Interpreter is �rst invoked to translate
RDFTL path expressions to the corresponding query expressions of the underlying RDF
repository� and RDFTL rule actions to update�API function calls� The Superpeer In�
dexing service is then contacted in order to construct the list of peers that are a�ected
by each part of the rule� using the annotated superpeer RDFS schema and the consol�
idated resource and property indexes at the superpeer� In particular� let i be a peer
ID and let Si denote the subgraph of the superpeer schema S induced by nodes whose
annotation includes i� The event part of a new rule r is annotated with peer ID i if
r is e�relevant to Si� any property mentioned in the event part of r is in i�s property
index and any resource mentioned in the event part of r is in i�s resource index� The
condition part of r is annotated with i if r is c�relevant to Si� The action part of r is
annotated with i if r is a�relevant to Si� every property mentioned in the action part of
r is in i�s property index and every resource mentioned in the action part of r is in i�s
resource index� The annotated rule is then stored in the rule base�

The translated� but not yet annotated rule� is also sent to the neighbouring super�
peers� using the Routing Service� and from there to all superpeers in the network� It
will be stored in the rule base of all superpeers that are e�relevant to it� after it has
been appropriately annotated�

The Rule Base Indexer creates and maintains rule�speci�c indexes on the contents
of a rule base� aiming to speed up the discovery of rules that may be triggered by an
event� Whenever the rule base is updated �i�e� a rule is added or deactivated� this
service undertakes to perform the appropriate updates to the rule indexes�

Routing Service� This keeps a list of the neighbouring peers and superpeers in
order to maintain the message transmission paths in the network� This service is called
each time that another service of the superpeer needs to transmit a message to one or
more of its neighbouring peers or superpeers�

Superpeer Indexing Service� This is responsible for the creation and main�



��

tenance of the consolidated indexes operating at the peergroup level� including the
combined RDFS schema and the consolidated resource and property indexes� Each
time a change occurs to a peer�s RDF metadata� this service is noti�ed� if necessary� by
the corresponding Peer Indexing service in order to update also these peergroup�level
indexes�

��� Concurrency Control and Recovery

Our current implementation does not yet support any concurrency control or recovery
mechanisms� but we brie�y discuss here possible implementations of such mechansisms�

In theory� any distributed concurrency control protocol could be adapted to a P�P
environment� For example� the AMOR system adopts optimistic concurrency con�
trol ����� The serialisation graph is distributed amongst those peers responsible for
transaction coordination� which are analogous to our superpeers� The AMOR system
assumes that con�icts are only possible between those transactions that are accessing
a particular �region� of resources �analogous to our peers� and thus subgraphs of the
global serialisation graph are stored and replicated amongst those coordinators which
service a particular region� However� the regions are not static and these subgraphs
are dynamically merged and replicated as transactions execute and regions evolve� We
could use similar techniques to merge and replicate subgraphs of the global serialisation
graph between our superpeers�

In the classical approach to distributed transactions� global transactions hold on to
the resources necessary to achieve their ACID �Atomicity� Consistency� Isolation and
Durability� properties until such time as the whole transaction commits or aborts� In
a P�P environment this may not be feasible� the resources available at peers may be
limited� peers may not wish to cooperate in the execution of global transactions� and
peers may disconnect at any time from the network� including during the execution of a
global transaction in which they are participating� The cascaded triggering and execu�
tion of ECA rules will cause longer�running transactions which may further exacerbate
these problems� It is therefore necessary to relax the Atomicity and Isolation properties
of transactions�

In particular� subtransactions executing at di�erent peers may be allowed to commit
or abort independently of their parent transaction committing or aborting� and parent
transactions may be able to commit even if some of their subtransactions have failed�
Subtransactions that have committed ahead of their parent transaction committing can
be reversed� if necessary� by executing compensating subtransactions ��� 
��� These
are generated as transactions execute and they reverse the e�ects of a transaction by
compensating each of the transaction�s updates in reverse order of their execution� Gen�
erating compensating updates is straight�forward for RDFTL updates� the insertion of a
triple is reversed by deletion of the triple� the deletion of a triple by an insertion� and an
update by the restoration of the original value� If transactions have read from commit�
ted �sub�transactions which are subsequently reversed� then a cascade of compensations
will result�

We assume as the default that a parent transaction �or subtransaction� and its
immediate subtransactions are able to commit independently of each other� and so an
explicit abort dependency now needs to be speci�ed for each rule� The possible abort
dependencies are as follows� with To being the parent �sub�transaction and Tr the child
subtransaction�

� ParentChild� If To aborts then Tr is to abort�

� ChildParent� If Tr aborts then To is to abort�



��

� Mutual� If either To or Tr aborts then so must the other�

� Independent� There is no abort dependency between To and Tr�

For coordinating the execution of compensating transactions or subtransactions� an
abort graph can be maintained that describes the abort dependencies between parent
transactions and their subtransactions�

The abort graph will be distributed amongst the superpeers that participate in any
subtransaction of a top�level transaction� The graph will be constructed dynamically
with each new subtransaction� In particular� each time a transaction Tn at a superpeer
SPi initiates a new subtransaction Tm to be executed at a superpeer SPj �where it
may be that i � j� then depending on the abort dependency between Tn and Tm� the
following actions are taken�

�� ParentChild� The identi�er of Tm and the superpeer SPj that it will execute on
are transmitted to SPi and recorded there� together with an arc Tn � Tm in the
local abort graph at SPi�

�� ChildParent� The identi�er of Tn and the superpeer SPi that it is executing on
are transmitted to SPj and recorded there� together with an arc Tm � Tn in the
local abort graph at SPj �

�� Mutual� A combination of the actions for ParentChild andChildParent above
is taken�


� Independent� No local abort graph is updated�

Using the above� in case of a subtransaction failure all the necessary information is
available in order to initiate a compensating subtransaction� at any level of nesting of
the subtransaction�

Figure � gives an example of a distributed abort graph� In this �gure� a failure
in subtransaction T� at SP� leads to compensation of T� at SP� but leaves the rest
of the transaction una�ected� while a failure in subtransaction T� at SP� initiates a
compensating transaction for T� at SP�� a compensating transaction for T� at SP� �due
to the Mutual abort dependency between T� and T��� and a compensating transaction
for T� at SP� �due to the ParentChild dependency between T� and T���

� Concluding remarks

In this paper we have described the RDFTL language for de�ning ECA rules on RDF
metadata� including its syntax and execution semantics� To our knowledge� this is the
�rst ECA rule language developed speci�cally for RDF�S� We have developed conser�
vative tests for determining the termination and con�uence of RDFTL rules� We have
described an architecture for supporting RDFTL rules in P�P environments� and have
described an implementation of this architecture� We have also discussed techniques
for relaxing the isolation and atomicity requirements of transactions� We are currently
evaluating the performance of our system in the context of the SeLeNe application
domain� including the development and validation of an analytical performance model�

For the future� we plan to explore more deeply the expressiveness of RDFTL �
it is straight�forward to show that RDFTL is computationally complete but we wish
to investigate also its query and update expressiveness� We also plan to implement
the transaction management techniques discussed here� and to evaluate their e�ects on
system performance�

There are as yet no generally accepted query or update languages for RDF�S� A
survey of current RDF query language proposals can be found in ����� Since the design



��

T1−>{SP2} T2−>{SP1} T3−>{SP3}

T0 −> {SP1}

T4−>{SP4}

T5−>{SP2} T6−>{SP5} T7−>{SP3} T8−>{SP4} T9−>{SP2}

Tparent : ParentChild

: ChildParent

: Mutual

: Independent

Tchild

Tparent

Tparent

Tchild

Tchild

Tparent Tchild

Level 3

Level 2

Level 1

where:

Tn−>{SPn} : (Sub)transaction Tn initiated in SPn

Abort Dependencies

Figure �� Abort graph example

of our RDFTL language� proposals for RDF update languages have been described �
��
	��� If ECA rules are to be supported on RDF�S repositories� then whatever query
and update languages eventually emerge for RDF�S� there is also the parallel issue of
designing the event� condition and action sub�languages for ECA rules� In this paper
we have shown how this was done in the context of our particular ECA language� In
general� the ability to analyse and optimise ECA rules needs to be balanced against
their complexity and expressiveness� and this issue also needs to be borne in mind in
future developments in ECA rule languages for RDF�

References

��� S� Abiteboul� O� Benjelloun� I� Manolescu� T� Milo� and R� Weber� Active XML�
peer�to�peer data and web services integration� In Proc� �th Int� Conf� on Very
Large Data Bases� pages ��� ����� �����

��� S� Abiteboul� S� Cluet� G� Ferran� and M��C� Rousset� The Xyleme project� Com�
puter Networks� �����	 ��� �����

��� A� Adi� D� Botzer� O� Etzion� and T� Yatzkar�Haham� Push technology person�
alization through event correlation� In Proc� �	th Int� Conf� on Very Large Data
Bases� pages �
� �
	� �����

�
� A� Aiken� J� Widom� and J� M� Hellerstein� Behaviour of database production rules�
Termination� con�uence and observable determinism� In Proc� ACM SIGMOD Int�
Conf� on Management of Data� pages 	� �� ACM Press� �����

�	� A� Aiken� J� Widom� and J� M� Hellerstein� Static analysis techniques for predicting
the behavior of active database rules� ACM TODS� ������� 
�� ���	�

��� S� Alexaki� V� Christophides� G� Karvounarakis� D� Plexousakis� and K� Tolle� The
ICS�FORTH RDFSuite� Managing Voluminous RDF Description Bases� In Proc�
�nd� Int� Workshop on the Semantic Web� �����



��

��� J� Bailey and A� Poulovassilis� An abstract interpretation framework for termina�
tion analysis of active rules� In Proc� �th Int� Workshop on Database Programming
Languages� LNCS ����� pages �
� ���� Kinloch Rannoch� Scotland� �����

�� J� Bailey� A� Poulovassilis� and P� Newson� A dynamic approach to termination
analysis for active database rules� In Proc� �st Int� Conf� on Computational Logic
�DOOD stream�� LNCS �	�� pages ���� ����� London� �����

��� J� Bailey� A� Poulovassilis� and P� Wood� An Event�Condition�Action Language
for XML� In Proc� ��th Int� Conf� on the World Wide Web� pages 
� 
�	� �����

���� J� Bailey� A� Poulovassilis� and P� Wood� Analysis and optimisation for event�
condition�action rules on XML� Computer Networks� ������ �	�� �����

���� E� Baralis� S� Ceri� and S� Paraboschi� Improved rule analysis by means of triggering
and activation graphs� In T� Sellis� editor� Rules in Database Systems� LNCS ���
pages ��	 ��� Springer� ���	�

���� E� Baralis� S� Ceri� and S� Paraboschi� Compile�time and runtime analysis of active
behaviors� IEEE Transactions on Knowledge and Data Engineering� �������	� ����
����

���� E� Baralis and J� Widom� An algebraic approach to rule analysis in expert database
systems� In Proc� ��th Int� Conf� on Very Large Data Bases� pages 
�	 
��
Santiago� Chile� ���
�

��
� E� Baralis and J� Widom� An algebraic approach to static analysis of active
database rules� ACM TODS� �	������� ���� �����

��	� A� Bonifati� D� Braga� A� Campi� and S� Ceri� Active XQuery� In Proc� �th Int�
Conf� on Data Engineering� pages 
�� 
�� �����

���� A� Bonifati� S� Ceri� and S� Paraboschi� Active rules for XML� A new paradigm
for e�services� VLDB Journal� �������� 
�� �����

���� A� Bonifati� S� Ceri� and S� Paraboschi� Pushing reactive services to XML reposi�
tories using active rules� In Proc� ��th Int� Conf� on the World Wide Web� pages
��� �
�� �����

��� A� Buchmann et al� DREAM � Distributed Reliable Event�Based Application Man�
agement� In M� Levene and A� Poulovassilis� editors� Web Dynamics� pages ��� 
�	�� Springer� ���
�

���� S� Ceri� R� Cochrane� and J� Widom� Practical applications of triggers and con�
straints� Success and lingering issues� In Proc� �	th Int� Conf� on Very Large Data
Bases� pages �	
 ���� �����

���� S� Ceri and P� Fraternali� Designing Database Applications with Objects and
Rules�The IDEA Methodology� Addison�Wesley� �����

���� S� Ceri� P� Fraternali� and S� Paraboschi� Data�driven one�to�one web site genera�
tion for data�intensive applications� In Proc� ��th Int� Conf� on Very Large Data
Bases� pages ��	 ���� �����

���� P��A� Chirita� S� Idreos� M� Koubarakis� and W� Nejdl� Publish�subscribe for
RDF�based P�P networks� In Proc� ESWS ����� Heraklion� Crete� pages �� ����
���
�

���� E� Cho� I� Park� S� J� Hyun� and M� Kim� ARML� an active rule mark�up language
for heterogeneous active information systems� In Proc� RuleML ����� Sardinia�
June �����



��

��
� V� Christophides et al� The ICS�FORTH SWIM� A powerful semantic web inte�
gration middleware� In Proc� SWDB ����� pages �� ���� �����

��	� A� Crespo and H� Garcia�Molina� Routing indices for peer�to�peer systems� In
Proc� ICDCS ����� Vienna� pages �� �
� �����

���� P� T� Eugster� P� A� Felber� R� Guerraoui� and A��M� Kermarrec� The many faces
of publish�subscribe� ACM Comput� Surv�� �	������
 ���� �����

���� L� Galanis� Y� Wang� S� R� Je�ery� and D� DeWitt� Locating data sources in large
distributed systems� In Proc� ��th Int� Conf� on Very Large Data Bases� pages
�
 	� �����

��� H� Garcia�Molina and H� Salem� Sagas� In Proc� ACM SIGMOD Int� Conf� on
Management of Data� pages �
� �	�� ����

���� P� Haase� J� Broekstra� A� Eberhart� and R� Volz� A comparison of RDF query
languages� In Proc� �rd Int� Semantic Web Conference� Hiroshima� pages 	�� 	���
���
�

���� K� Haller� H� Schuldt� and H� Schek� Transctional peer�to�peer information pro�
cessing� The AMOR approach� In �th Int� Conf� on Mobile Data Management�
pages �	� ���� Springer� �����

���� J� Jacob� A� Sanka� N� Pandrangi� and S� Chakravarthy� WebVigil� An approach
to just�in�time information propagation in large network�centric environments� In
M� Levene and A� Poulovassilis� editors� Web Dynamics� pages ��� ��� Springer�
���
�

���� Jena� A Semantic Web Framework for Java� http���jena�sourceforge�net��

���� JXTA Framework� http���www�jxta�org��

��
� V� Kantere� I� Kiringa� J� Mylopoulos� A� Kemenstiestides� and M� Arenas� Coor�
dinating peer databases using ECA rules� In Proc� DBISP�P ����� pages �� ����
�����

��	� K� Keenoy et al� Self e�Learning Networks � Func�
tionality� User Requirements and Exploitation Scenarios�
http���www�dcs�bbk�ac�uk�selene�reports�UserReqs�pdf� ����� SeLeNe
Deliverable ����

���� K� Keenoy� M� Levene� and D� Peterson� Personalisation and Trails in Self e�
Learning Networks� http���www�dcs�bbk�ac�uk�selene�reports�Del���pdf�
����� SeLeNe Deliverable 
���

���� S� Kokkelink� Transforming RDF with RDFPath�
http���zoe�mathematik�uni�osnabrueck�de�QAT�Transform�RDFTransform�pdf�
March �����

��� G� Kokkinidis and V� Christophides� Semantic Query Routing and Processing in
P�P Database Systems� The ICS�FORTH SQPeer Middleware� In Proc� EDBT
Workshops� pages 
� 
�	� ���
�

���� G� Koloniari and E� Pitoura� Content�based routing of path queries in peer�to�peer
systems� In Proc� EDBT���� pages �� 
�� �����

�
�� H� Korth� E� Levy� and A� Silberschatz� A formal approach to recovery by com�
pensating transactions� VLDB Journal� pages �	 ���� �����

�
�� A� Kotz�Dittrich and E� Simon� Active database systems� Expectations� commer�
cial experience and beyond� In N� Paton� editor� Active Rules in Database Systems�
pages ��� 
�
� Springer� �����



��

�
�� M� Magiridou� S� Sahtouris� V� Christophides� and M� Koubarakis� RUL� A declar�
ative update language for RDF� In Proc� �th Int� Semantic Web Conference
�ISWC����� Galway� Ireland� ���	�

�
�� P� McBrien and A� Poulovassilis� De�ning peer�to�peer integration using Both As
View rules� In Proc� DBISP�P ����� pages �� ���� �����

�

� W� Nejdl� B� Wolf� C� Qu� S� Decker� M� Sintek� A� Naeve� M� Nilsson� M� Palmer�
and T� Risch� EDUTELLA� a P�P networking infrastructure based on RDF� In
Proc� ��th Int� Conf� on the World Wide Web� pages ��
 ��	� �����

�
	� W� Nejdl� M� Wolpers� W� Siberski� C� Schmitz� M� Schlosser� I� Brunkhorst� and
A� Loser� Super�peer�based routing and clustering strategies for RDF�based peer�
to�peer networks� In Proc� ��th Int� Conf� on the World Wide Web� pages 	�� 	
��
�����

�
�� B� Nguyen� S� Abiteboul� G� Cobena� and M� Preda� Monitoring XML data on the
web� In Proc� ACM SIGMOD Int� Conf� on Management of Data� pages 
�� 

�
�����

�
�� N� Paton� Active Rules in Database Systems� Springer� �����

�
� J� Pereira� F� Fabret� F� Llirbat� and D� Shasha� E�cient matching for web�based
publish�subscribe systems� In Proc �th Int� Conf� on Cooperative Information
Systems �CoopIS������� pages ��� ���� �����

�
�� REWERSE Project� Deliverable i	�d�� State�of�the�art on evolution and reactivity�
http���rewerse�net�deliverables�i��d��pdf�

�	�� A� Souzis� RxPath speci�cation proposal� http���rx�rdf�liminalzone�org�RxPathSpec�

�	�� I� Tatarinov� Z� Ives� J� Madhavan� A� Halevy� D� Suciu� N� Dalvi� X� Dong�
Y� Kadiyska� G� Miklau� and P� Mork� The Piazza Peer Data Management Project�
SIGMOD Record� ������
� 	�� �����

�	�� M��R� Tazari� A context�oriented RDF database� In Proc� SWDB ����� pages
�� �� �����

�	�� W�C� XML Path Language �XPath�� �����

�	
� W�C� RDF Semantics� W�C Recommendation �� February ���
� ���
�

�		� W�C� RDF Vocabulary Description Language ���� RDF Schema� W�C Recom�
mendation �� February ���
� ���
�

�	�� W�C� RDF�XML Syntax Speci�cation� W�C Recommendation �� February ���
�
���
�

�	�� G� Wagner� How to design a general rule markup language� In Invited talk at the
Workshop XML Technologien f�ur das Semantic Web �XSW ������ pages �� ���
Berlin� June �����

�	� J� Widom and S� Ceri� Active Database Systems� Morgan�Kaufmann� San Mateo�
California� ���	�



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


