
8 BASICS OF MODAL LOGIC 32

8 Basics of Modal Logic

Modal logic subsumes propositional logic. It allows us to speak about not just one world (a specific
valuation of atomic formulas) but about “possible worlds” (different valuations of atomic formulas)
and their relationships (whether a possible world is an “alternative” of another one).

8.1 Syntax

Formulas are built up from atomic formulas using the connectives ∧ and ¬ as in the case of
propositional logic, but we have an additional unary connective �:

• �ϕ is a formula for any formula ϕ.

The intuition is that �ϕ holds at the current world if ϕ holds in all alternative worlds — see the
semantics below. We will use the abbreviation �ϕ for ¬�¬ϕ.

Recall that Sf(ρ) denotes the set of subformulas of a formula ρ. Sf(ρ) can be defined inductively:

• Sf(p) = {p} for atomic p,

• Sf(¬ϕ) = Sf(ϕ) ∪ {¬ϕ},
• Sf(ϕ ∧ ψ) = Sf(ϕ) ∪ Sf(ψ) ∪ {ϕ ∧ ψ},
• Sf(�ϕ) = Sf(ϕ) ∪ {�ϕ}.

Exercise 8.1 Show that a formula ϕ has at most |ϕ| many subformulas, where |ϕ| stands for the
number of characters occurring in ϕ (as a string). Hint: use formula induction.

8.2 Semantics

A (Kripke) frame is a pair F = (S,R), where the set of possible worlds S is a non-empty set and
the accessibility relation R is a binary relation on S (i.e., R ⊆ S × S).

A model on a frame F = (S,R) is a triple M = (S,R, V ) with V : P → P(S). Hence V assigns
to each atomic formula p ∈ P a subset V (p) of S — those worlds at which p is “true”.

Let M = (S,R, V ) be a model and s ∈ S be a world; we define ρ is true in M = (S,R, V ) at
s, in symbols

(M, s) |= ρ

as follows.

(M, s) |= p iff s ∈ V (p)
(M, s) |= ¬ϕ iff not (M, s) |= ϕ (i.e., (M, s) �|= ϕ)
(M, s) |= (ϕ ∧ ψ) iff (M, s) |= ϕ and (M, s) |= ψ
(M, s) |= �ϕ iff for all t ∈ S such that sRt, we have (M, t) |= ϕ

Note that
(M, s) |= �ϕ iff there exists t ∈ S with sRt and (M, t) |= ϕ.

Prove it!
A formula ϕ is true in model M = (S,R, V ), denoted M |= ϕ, if it is true at all worlds in

M (i.e., (M, s) |= ϕ for all s ∈ S). Note that the meaning of a formula in a model (i.e., those
possible worlds that satisfy the formula) is determined by the meaning of its subformulas (and the
accessibility relation).

A formula ϕ is valid in frame F = (R,S), denoted F |= ϕ, if it is true in all models M =
(S,R, V ) based on F .

If C is a class of frames (respectively, models), then ϕ is valid (respectively, true) in C, denoted
as C |= ϕ, if ϕ is valid (respectively, true) in all elements of C. Truth and validity are defined for
sets of formulas in the obvious way.
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8.3 Frame conditions

Different applications require different versions of modal logic. For instance, we can require that
the set of possible worlds is a certain fixed set (e.g., the set of natural numbers) and that the
accessibility relation satisfies certain conditions (e.g., transitivity). In particular, the modal logic
of all frames is denoted by K and the modal logic of all frames with equivalence accessibility
relation by S5.

Consider the following frame conditions:

reflexivity: ∀s sRs
symmetry: ∀s, t(sRt→ tRs)

transitivity: ∀s, t, u[(sRt ∧ tRu) → sRu].

Now look at these formulas:

refl: �ϕ→ ϕ

symm: ϕ→ ��ϕ

trans: �ϕ→ ��ϕ.

Example 8.2 Show that in transitive frames the formula �ϕ→ ��ϕ is valid.
Solution: Let F = (S,R) be an arbitrary transitive frame, i.e., for every x, y and z, we have

that xRy and yRz imply xRz. Let M = (S,R, V ) be a model on F defined by the valuation
V : P → P(S). We have to prove that, for every world s ∈ S, we have

(M, s) |= �ϕ→ ��ϕ.

Take a world s ∈ S and assume that (M, s) |= �ϕ. We have to show that (M, s) |= ��ϕ, which
means that, for every t ∈ S, we have

sRt implies (M, t) |= �ϕ

or, in other words, that for every t and u in S, we have

sRt implies (tRu implies (M, u) |= ϕ).

So, suppose sRt. Then if tRu, we have sRu by transitivity. Then we have (M, u) |= ϕ, since
(M, s) |= �ϕ by assumption.

Example 8.3 Show that the formula �ϕ→ ��ϕ is not valid in non-transitive frames.
Solution: Let F = (S,R) be an arbitrary frame where R is not transitive, say, we have s, t, u ∈ S

such that sRt and tRu but not sRu. Let p be a propositional atom and V be a valuation such that
u /∈ V (p) but v ∈ V (p) for all v ∈ S such that sRv. If we let M = (S,R, V ), then (M, s) |= �ϕ
but (M, s) �|= ��ϕ.

Exercise 8.4 Show that each frame condition above is defined by the corresponding formula.
That is, show that for any frame, the accessibility relation is reflexive, symmetric, and transitive
if and only if, respectively, refl, symm, and trans is valid in the frame.
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8.4 Model checking

Given a finite model M = (S,R, V ) and a formula χ, we are interested in precisely which worlds
s ∈ S make the formula χ true.

First we define the modal depth, d(ϕ) of the formula ϕ:

• d(p) = 0 for atomic p,

• d(¬ϕ) = d(ϕ),

• d(ϕ ∧ ψ) = max{d(ϕ), d(ψ)},
• d(�ϕ) = d(ϕ) + 1.

Let X be the set of subformulas of a fixed formula χ, and let n be the modal depth d(χ) of χ.
We define labels �i(s) for every s ∈ S and 0 ≤ i ≤ n such that

�i(s) = {ϕ ∈ X : d(ϕ) ≤ i & (M, s) |= ϕ}

Let Xi = {ϕ ∈ X : d(ϕ) = i}.
It is easy to compute �0(s): take those elements of X0 which are (propositionally) true at s.

In more detail: first take those atomic propositions p which are true at s (i.e., s ∈ V (p)); this
determines which propositional combinations (using the connectives ∧ and ¬) from X0 of atomic
propositions are true at s.

Given �i(s) for every s ∈ S, we can compute �i+1(s) for every s ∈ S as follows. Consider

�i(s) ∪ {�ϕ ∈ Xi+1 : ϕ ∈ �i(t) for every t ∈ S such that sRt}

Assuming that these formulas are true at s, we can compute those propositional combinations
from Xi+1 of these formulas which must be true at s (see the computation of �0(s) above). This
defines �i+1.

Lemma 8.5 For every ϕ ∈ Xn and s ∈ S,

ϕ ∈ �n(s) ⇔ (M, s) |= ϕ

Proof: By induction on the modal depth of ϕ.

Exercise 8.6 Perform model checking for

• χ = �(p∧¬�q) andM = (S,R, V ) where S = {s0, s1, s2, s3}, R = {(s0, s1), (s0, s3), (s1, s2), (s3, s3)}
and V (p) = {s1, s3}, V (q) = {s2, s3}.
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8.5 Mosaic method for modal logic

Let ξ be a formula of modal logic and let X = ±Sf(ξ) = {ϕ,¬ϕ : ϕ ∈ SF(ξ)} the set of subformulas
of ξ closed under single negation.

Definition 8.7 Let G = (U,E, �) be a labeled, directed graph (LDG for short), i.e., U is a set of
nodes, E ⊆ U × U is the set of directed edges and � : E → P(X) is a labeling function. We say
that G is coherent if it satisfies the following coherency conditions: for every u, v ∈ U and formula
in X,

Coh1 ϕ ∈ �(u) ⇐⇒ ¬ϕ /∈ �(u)

Coh2 ϕ ∧ ψ ∈ �(u) ⇐⇒ ϕ, ψ ∈ �(u)

Coh3 �ϕ ∈ �(u) and (u, v) ∈ E ⇒ ϕ ∈ �(v)

By a mosaic we mean a coherent LDG such that |U | ≤ 2.

Definition 8.8 By a saturated set of mosaics, an SSM for short, we mean a set M of mosaics
satisfying the following saturation condition: for every μ = (Uμ, Eμ, �μ) ∈M and u ∈ Uμ,

Sat1 �ϕ ∈ �μ(u) ⇒ there are ν = (Uν , Eν , �ν) ∈ M , u′, v′ ∈ Uν such that �μ(u) = �ν(u
′),

(u′, v′) ∈ Eν and ϕ ∈ �ν(v
′).

A ξ-SSM is an SSM M such that there is μ = (Uμ, Eμ, �μ) ∈M with ξ ∈ �μ(u) for some u ∈ Uμ.

Lemma 8.9 ξ is satisfiable in K ⇐⇒ there is a ξ-SSM.

Proof: First assume that ξ is satisfiable. Let M = (S,R, V ) be a model and s ∈ S such that
(M, s) |= ξ. For every t ∈ S, define �(t) = {ϕ ∈ X : (M, t) |= ϕ}. Note that ξ ∈ �(s). Let

M = {({t, t′}, {t, t′} × {t, t′} ∩R, �) : t, t′ ∈ S and tRt′}
It is routine to check that every element of M satisfies the coherency conditions in Definition 8.7
and that M satisfies the saturation condition in Definition 8.8. Hence M is a ξ-SSM as required.

Now assume that M is a ξ-SSM. We will define a model satisfying ξ by “glueing” together
elements of M . To this end we define a LDG G = (U,E, �). Let us call (u,�ϕ) a defect of a LDG
G = (U,E, �) if u ∈ U , �ϕ ∈ �(u) and there is no v ∈ U such that ϕ ∈ �(v) and (u, v) ∈ E.

Initial step 0: Since M is a ξ-SSM, there is μ = (Uμ, Eμ, �μ) ∈ M and u ∈ Uμ such that
ξ ∈ �μ(u). We define G0 = (U0, E0, �0) by U0 = Uμ, E0 = Eμ and �0 = �μ. It is straightforward
that G0 is coherent.

Successor step k + 1: Assume that we have defined a finite, coherent LDG Gk = (Uk, Ek, �k)
such that Gk is a union of members of M , Uk =

⋃
i<k Ui, Ek =

⋃
i<k Ei and �k =

⋃
i<k �i. Also

assume that there is no defect (u,�ϕ) of Gk such that u ∈ Uk−1. (That is, all the defects occur
in Uk � Uk−1.)

For each defect (u,�ϕ) of Gk, we will do the following extension of Gk. Since u ∈ Uk � Uk−1,
and Gk is a union of mosaics from M , there is v ∈ Uk−1 such that the structure ({v, u}, {v, u} ×
{v, u} ∩ Ek, �k) ∈ M . Since M is saturated, there are a mosaic ν = (Uν , Eν , �ν) ∈ M and points
u′, w ∈ Uν such that �k(u) = �ν(u

′), (u′, w) ∈ Eν and ϕ ∈ �ν(w). We extend Uk by a node w, Ek

by (u,w) and label w with the label �ν(w).
We define Gk+1 = (Uk+1, Ek+1, �k+1) as the union of the above extensions of Gk when we go

through all the defects of Gk. (If there is no defect in Gk, then we let Gk+1 = Gk.) Since both
Gk and each label �k(u) are finite, Gk+1 is a finite LDG. Obviously Gk+1 is a union of elements of
M , hence it is coherent. Since we “cured” all the defects (u,�ϕ) of Gk by providing the necessary
witness nodes w ∈ Uk+1 such that (u,w) ∈ Ek+1 and ϕ ∈ �k+1(w), any defect (v,�ψ) of Gk has
the property v ∈ Ek+1 � Ek.
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Limit step ω Define Gω as the union of all Gi (i ∈ ω):

Uω =
⋃

i∈ω
Ui Ei =

⋃

i∈ω
Ei �ω =

⋃

i∈ω
�i

We define G as Gω. Obviously, G is a coherent LDG. It also satisfies the following saturation
condition:

�ϕ ∈ �(u) implies that there is v ∈ U such that (u, v) ∈ E and ϕ ∈ �(v). (3)

Indeed, let u ∈ U and �ϕ ∈ �(u). Since u has been added to U during the above construction,
there is k ∈ ω such that u ∈ Uk � Uk−1 and �ϕ ∈ �k(u). If (u,�ϕ) was a defect of Gk, then it
was cured in step k + 1 of the construction, hence it is not a defect of G.

We define the model M = (U,E, V ) where V is given by

V (p) = {u ∈ U : p ∈ �(u)}

for every propositional atom p occurring in ξ. Using that G is a coherent and saturated LDG, an
easy induction on formulas yields

(M, u) |= ϕ⇐⇒ ϕ ∈ �(u) (4)

for every ϕ ∈ X. In particular, (M, w) |= ξ as desired.

Corollary 8.10 K has the finite model property, i.e., every satisfiable formula can be satisfied in
a finite model. Furthermore, there is a bound (in terms of the length of the formula) on the size
of the model.

Proof: In the second part of the proof of Lemma 8.9, construct the model as follows. Let U be
the disjoint union of the nodes of the mosaics in M . Every node u has the same label �(u) as in
the mosaic inM that contains u. Define the set of edges E as follows: for u, v ∈ U let (u, v) ∈ E iff
({u, v}, {(u, v)}, �) satisfies the coherency conditions in Definition 8.7. Then it is straightforward
that G is a coherent LDG. Saturation can be easily shown by using the saturation condition for
M and the definition of E above. The rest of the proof is unchanged. Note that in this case the
constructed model is finite.

Exercise 8.11 1. Prove the equivalence (4).

2. Compute a bound on the number of mosaics for a given formula ξ and on the size of the
model M in the proof of Corollary 8.10.

Exercise 8.12 Prove Lemma 8.9 and Corollary 8.10 for modal logic S5.
Hint: In Definition 8.7, make the additional requirements that E = U × U and that the

following additional coherency condition holds: for every u, v ∈ U ,

Coh4 for every �ϕ ∈ X, we have ((�ϕ ∈ �(u) and (u, v) ∈ E) ⇒ �ϕ ∈ �(v))

In the proof of Corollary 8.10, construct the model as follows. Let U be the disjoint union
of the nodes of the mosaics in M . Every node u has the same label �(u) as in the mosaic
in M that contains u. Define the set of edges E as follows: for u, v ∈ U let (u, v) ∈ E iff
({u, v}, {(u, u), (u, v), (v, u), (u, u)}, �) satisfies the coherency conditions. Then it is straightforward
that G is a coherent LDG. Saturation can be easily shown by using the saturation condition for
M and the definition of E above. The rest of the proof is unchanged. Note that in this case the
constructed model is finite.

Theorem 8.13 The satisfiability problem for both K and S5 is decidable.
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Proof: By Lemma 8.9 it is enough to check whether there exists a ξ-SSM for a given formula
ξ. Since there is a bound on the number of mosaics, there is a limited number of sets of mosaics.
Then one can check whether at least one of the subsets of all mosaics satisfies the saturation
condition in Definition 8.8.

Alternatively, using the upper bound from Corollary 8.10 it is enough to check whether the
formula is true in finitely many finite models.


