7 VERIFICATION BY RULES 27

7 Verification by Rules

Next we look at an alternative approach to verification. We will use a rule-based reasoning to
establish properties of computations.

We define invariance property as a property that can be specified by a formula Gy where ¢ is
a propositional formula. An invariance property p can be established by showing that

1. p holds initially and that
2. p is preserved during each step of all executions of the program.

Let the specifying formula for property p be ¢,. Thus we have to show that, for all computations
07

1. M, 0) = ¢p and

2. (M,0) E Glpp = Xgp).

Then, by an inductive argument, we have (M, o) = Gep,.

In general, we will consider wverification conditions defined as follows. Let T be a labelled
transition system, ¢ and i be propositional formulas, and 7 be a transition. The verification
condition of ¢ and ¢ relative to 7 is the triple {¢}7{¢}. We say that {¢}7{¢} holds if the
following holds:

for all states s and ¢ such that s7t, if p is true at s, then ¢ is true at ¢.

Note that if we can establish the verification condition {p}r{p} for all transitions 7, then ¢ is
preserved during all computations. Thus to prove that p is an invariance property, it suffices to
show that

1. ¢, is true at all initial states and

2. the verification condition {y,}7{¢,} holds for all transitions 7.

7.1 Proving Invariance Properties

Let us fix a program P and an invariance property p with specifying formula ¢,,. Let the labelled
transition system associated with P be T = (S,L,R, : a € A) and the corresponding linear
temporal model be M = (S, R, V). Assume that there are finitely many initial states in 7 and
that they can be defined by a propositional formula init, i.e., for every state s, s is an initial state
iff 4nit is true at s under the valuation V.

Consider the following rule.

Bl (M,o0) = init — ¢,
B2 {pp}R.{pp} forallaec A
B3 (M,0) = Gyp

Rule INV-B

where o is a computation. The basic invariance rule INV-B says, that the invariance formula ¢, is
true in M during computation o if ¢, is true at every initial state and the verification condition
{¢p}Ro{wp} holds for every transition R,. Note that checking the verification condition involves
checking all possible transitions between states, and it is not restricted to transitions between
states occurring in computations.?

2In general, it is difficult to check which transitions between states occur in computations.

7 VERIFICATION BY RULES 28

We can formulate Rule INV-B using temporal logic as follows.
Bl (M,o0) [init — ¢y
B2 (M,7) = G(pp = Xpp) for every run 7
B3 (M,0) = Gy

Rule INV-B
An invariance formula ¢ is called inductive if both B1 and B2 in INV-B hold for ¢.

Example 7.1 Consider the program MUX-SEM and the invariance formula g V 1. Define init
as at_lg A at_mg A ri. Thus init is true precisely at the initial state (lg,mg,r = 1). Obviously,
(M, 0) = init = 19 V rq for every run (computation) o. Let move(l;,l;) denote that process 1
makes a move from location I; to I; by executing some instruction (and similarly for process 2).
Using the definition of a semaphore, it is routine to check that the invariance conditions

{ro Vritmove(l;,1;){ro Vri} and {roV ri}move(m;, m;){roVri}

hold for any ¢, 5 € {0,1,2, 3,4} (recall that a process cannot perform request(r) if = 0). Thus we
can apply INV-B to establish that the semaphore r remains non-negative during all computations.

Invariance properties are monotone, i.e., the following rule is valid: for (propositional) formulas
¢ and v,
(M,0) |= Gy
M,0) |EGlp = ¢)
(M, 0) |= Gy

Rule MON-1, monotonicity of invariance

If we have two invariant formulas ¢ and v, then their conjunction is invariant as well. That
is, the following rule is valid:

(M:U) = Gy
(M, 0) =Gy
(M, 0) = Gle Ay)

Rule CON-1, conjunction of invariances

A basic limitation to rule INV-B is when ¢, is invariant but not inductive. This happens when
(M, 0) = G(p — Xep) holds for all computations o, but there is a run that falsifies the formula;
see the following example.

Example 7.2 We want to use rule INV-B to establish that the program MUX-SEM has the mutual
exclusion property, i.e., for every computation o, we have (M, o) E G—(at I3 A at_ms). But B2
requires that {—(at_l3 A at_mgs)}r{—(at I3 A at_m3)} should hold for all transitions 7. This fails,
however, for the transition move(la,l3) from state (I3, m3,r = 1) to state (I3, ms,r = 0).3

7.2 Assertion Strengthening
Consider the following rule. For all computations o,
Il (M,7n) = G(p —) for every run =
12 (M, 0) E=init — ¢
I3 {¢p}R.{p} forallac A
4 (M,o) =Gy

Rule 1NV, general invariance

30f course, the state (l2, m3,r = 1), hence the transition, cannot occur in any computation, but this is what we
would like to establish.

7 VERIFICATION BY RULES 29

Rule 1NV states that if ¢ is inductive and ¢ implies 1) at each state in all runs, then 1 is true at
each state in all computations. Again, we can replace 13 by:

for every run w, (M, 7) |= G(¢ = Xo).

Example 7.3 Assume we want to prove mutual exclusion v : =(at_l3 A at_mg) for MUX-SEM. Let
p be the propositional formula expressing that precisely one of at_ms V at_my, at_l3 V at_ly, or
holds. DEFINE p. We define ¢ as

(roVri)Ap

We have to establish the following for every computation o:
o I1: (M,m) = G(p —) for every run ,
o [2: (M,0) = init — ¢,
o [3: (M,) = G(¢ — Xyp) for every run m,

so that we have

o (M,0) Gy

by rule INV.
Premise I1: The implication

[(ro Vri) A p] = —(at ls A at_ms)

is true at every state (since (at_Is A at_mg) would contradict to p).
Premise 12: Obviously, the implication

(at_mo AN at_lo Ari) — [(ro V1) Ap

is true (since p is true in the initial state).
Premise 13: We have to show that

(M, ;) |E (roVr1) A p implies (M, mi41) E (roVri) Ap

for every run m and ¢ € w. Consider the transitions of process 1. Transitions move(ly,!1),
move(ly,l2) and move(ls, l4) do not change the truth of p (since these transitions do not change the
value of 7, (at_l3 V at_ly) and (at_mg V at_my)). Transition move(ls,l3) can be made only if r = 1.
But p implies that process 2 cannot be in its critical section in this case. Also, the value of r after
the transition is 0, by the definition of request(r). It follows that p is true after the transition.
Finally, transition move(ly,lo) changes at l3 V at_l4 from true to false and r; from false to true
(by the definition of release(r)), while the truth value of at_ms V at_my4 is unchanged. Hence p
is “preserved” under all transitions of process 1. A similar argument shows that transitions of
process 2 cannot change the truth value of p either.
Thus ¢ is true along all runs, and ¥ is true during all computations.

Exercise 7.4 Show that MUX-SEM avoids deadlock, i.e., that at every moment at least one tran-
sition is enabled.

Exercise 7.5 The exchange(z,y) instruction is defined in Figure 8. Consider the program in
Figure 9.

1. Show that MEX achieves mutual exclusion (i.e., only one of the n processes can be in the
critical section at any time).

Hint: Let ¢ @ ¢ denote exclusive disjunction (—¢ A) V (¢ A =) and A, 7; denote the
conjunction v A ... Ay A ... Ay,. Let crit; be an atomic proposition expressing that
‘process i is in its critical section’.

7 VERIFICATION BY RULES

int temp

void exchange(int z,int y)

{

temp = z;
T =1Y;
Yy = temp;

}

Figure 8: The exchange instruction

int n /*number of processes * /
int bolt =0
int key[n] =1 /x*a variable for each process * /

void P(int 7)

{

while(true){

while(keyli]! = 0) exchange(key][i],bolt);
critical;

exchange(key|i],bolt);

noncritical;

¥
}

Figure 9: MEX — mutual exclusion with exchange

e Show that bolt and all key[i] are either 0 or 1: that is,
(bolt = 0 & bolt = 1) A\ (keyli] = 0 & keyli] = 1)
is inductive.

e Show that
bolt + Z key[i] = n

is inductive.
e Show that ‘if process 7 is in its critical section, then key[i] = 0’: that is,
crit; — key[i] =0

is inductive for every i.

e Using the above inductive formulas show that
crit; — (bolt = 1 A /\ key[j] = 1)
J#i
is invariant for every i.
e Using the above invariant formulas show that
crit; — /\ —erit;
i

is invariant for every 1.

7 VERIFICATION BY RULES

2. Show “progress”, i.e., ‘if there is no process in the critical section, then one process can enter

the critical section’.

Hint: Define the formula enabled(crit;) as key, = 0V bolt = 0 and show that

(/\ —erit;) — (\/ enabled(crit;))

is invariant.

Exercise 7.6 Recall Peterson’s solution, see Figure 10. There are two processes, identified by 0

and 1.
int ¢
int Yo = 0
inty; =0

{

¥
}

Ll:
L2:
L3:
L4
L5:
L6:
L7:

void P(int 7)

while(true){

yi =1

t =1,

while{t =i & y1_; = 1}
critical;

yi = 0;

noncritical,;

Figure 10: PET

1. Show that mutual exclusion holds for PET.

Hint: Let Lj; be an atomic proposition for each 1 < 7 < 7 and 0 < i < 1 expressing that

process i is at location Lj.

e Show that

=08y = A(y1 =00y =) A(t=0t

is inductive.
e Show that

(L31; Vv L4; Vv L5; Vv L61) —y; =1

is inductive for both i = 0 and 7 = 1.

e Using the above inductive formulas show that

((LE)l V L61) A L41_i) — (lf =1—iAy; =]_)

is invariant for ¢ = 0, 1.

e Using the above invariant formulas show that

(L5i V Lﬁz) — ﬁ(L51_i V L6i_1)

is invariant for both 4 = 0 and 7 = 1.

2. Show that PET avoids “livelock”, i.e., at least one process can enter the critical section.
Hint: Define the formula enabled(L5;) as L4; A (t # iV y1—; # 1) and show that

(L4p A L41) — (enabled(L5g) V enabled(L51))

is invariant.

