7 Verification by Rules

Next we look at an alternative approach to verification. We will use a rule-based reasoning to establish properties of computations.

We define *invariance property* as a property that can be specified by a formula $G\varphi$ where φ is a propositional formula. An invariance property p can be established by showing that

- 1. p holds initially and that
- 2. p is preserved during each step of all executions of the program.

Let the specifying formula for property p be φ_p . Thus we have to show that, for all computations σ ,

- 1. $(\mathcal{M}, \sigma) \models \varphi_p$ and
- 2. $(\mathcal{M}, \sigma) \models \mathsf{G}(\varphi_p \to \mathsf{X}\varphi_p)$.

Then, by an inductive argument, we have $(\mathcal{M}, \sigma) \models \mathsf{G}\varphi_p$.

In general, we will consider *verification conditions* defined as follows. Let \mathcal{T} be a labelled transition system, φ and ψ be propositional formulas, and τ be a transition. The verification condition of φ and ψ relative to τ is the triple $\{\varphi\}\tau\{\psi\}$. We say that $\{\varphi\}\tau\{\psi\}$ holds if the following holds:

for all states s and t such that $s\tau t$, if φ is true at s, then ψ is true at t.

Note that if we can establish the verification condition $\{\varphi\}\tau\{\varphi\}$ for all transitions τ , then φ is preserved during all computations. Thus to prove that p is an invariance property, it suffices to show that

- 1. φ_p is true at all initial states and
- 2. the verification condition $\{\varphi_p\}\tau\{\varphi_p\}$ holds for all transitions τ .

7.1 Proving Invariance Properties

Let us fix a program P and an invariance property p with specifying formula φ_p . Let the labelled transition system associated with P be $\mathcal{T}=(S,L,R_a:a\in A)$ and the corresponding linear temporal model be $\mathcal{M}=(S,R,V)$. Assume that there are finitely many initial states in \mathcal{T} and that they can be defined by a propositional formula init, i.e., for every state s, s is an initial state iff init is true at s under the valuation V.

Consider the following rule.

$$\begin{array}{ll} B1 & (\mathcal{M}, \sigma) \models init \rightarrow \varphi_p \\ B2 & \{\varphi_p\}R_a\{\varphi_p\} \quad \text{for all } a \in A \\ B3 & (\mathcal{M}, \sigma) \models \mathsf{G}\varphi_p \end{array}$$

Rule INV-B

where σ is a computation. The basic invariance rule INV-B says, that the invariance formula φ_p is true in \mathcal{M} during computation σ if φ_p is true at every initial state and the verification condition $\{\varphi_p\}R_a\{\varphi_p\}$ holds for every transition R_a . Note that checking the verification condition involves checking all possible transitions between states, and it is not restricted to transitions between states occurring in computations.²

 $^{^{2}}$ In general, it is difficult to check which transitions between states occur in computations.

We can formulate Rule INV-B using temporal logic as follows.

B1
$$(\mathcal{M}, \sigma) \models init \rightarrow \varphi_p$$

B2 $(\mathcal{M}, \pi) \models \mathsf{G}(\varphi_p \rightarrow \mathsf{X}\varphi_p)$ for every run π
B3 $(\mathcal{M}, \sigma) \models \mathsf{G}\varphi_p$

Rule INV-B

An invariance formula φ is called *inductive* if both B1 and B2 in INV-B hold for φ .

Example 7.1 Consider the program MUX-SEM and the invariance formula $r_0 \vee r_1$. Define *init* as $at_-l_0 \wedge at_-m_0 \wedge r_1$. Thus *init* is true precisely at the initial state $(l_0, m_0, r = 1)$. Obviously, $(\mathcal{M}, \sigma) \models init \rightarrow r_0 \vee r_1$ for every run (computation) σ . Let $move(l_i, l_j)$ denote that process 1 makes a move from location l_i to l_j by executing some instruction (and similarly for process 2). Using the definition of a semaphore, it is routine to check that the invariance conditions

$$\{r_0 \vee r_1\} move(l_i, l_i) \{r_0 \vee r_1\}$$
 and $\{r_0 \vee r_1\} move(m_i, m_i) \{r_0 \vee r_1\}$

hold for any $i, j \in \{0, 1, 2, 3, 4\}$ (recall that a process cannot perform **request**(r) if r = 0). Thus we can apply INV-B to establish that the semaphore r remains non-negative during all computations.

Invariance properties are monotone, i.e., the following rule is valid: for (propositional) formulas φ and ψ ,

$$\begin{aligned} &(\mathcal{M},\sigma) \models \mathsf{G}\varphi \\ &(\mathcal{M},\sigma) \models \mathsf{G}(\varphi \to \psi) \\ &(\mathcal{M},\sigma) \models \mathsf{G}\psi \end{aligned}$$

Rule MON-I, monotonicity of invariance

If we have two invariant formulas φ and ψ , then their conjunction is invariant as well. That is, the following rule is valid:

$$(\mathcal{M}, \sigma) \models \mathsf{G}\varphi$$
$$(\mathcal{M}, \sigma) \models \mathsf{G}\psi$$
$$(\mathcal{M}, \sigma) \models \mathsf{G}(\varphi \land \psi)$$

Rule CON-I, conjunction of invariances

A basic limitation to rule INV-B is when φ_p is invariant but not inductive. This happens when $(\mathcal{M}, \sigma) \models \mathsf{G}(\varphi \to \mathsf{X}\varphi)$ holds for all *computations* σ , but there is a *run* that falsifies the formula; see the following example.

Example 7.2 We want to use rule INV-B to establish that the program MUX-SEM has the *mutual exclusion* property, i.e., for every computation σ , we have $(\mathcal{M}, \sigma) \models \mathsf{G} \neg (at_l_3 \land at_m_3)$. But B2 requires that $\{\neg (at_l_3 \land at_m_3)\}\tau\{\neg (at_l_3 \land at_m_3)\}$ should hold for all transitions τ . This fails, however, for the transition $move(l_2, l_3)$ from state $(l_2, m_3, r = 1)$ to state $(l_3, m_3, r = 0)$.

7.2 Assertion Strengthening

Consider the following rule. For all computations σ ,

$$\begin{array}{ll} I1 & (\mathcal{M},\pi) \models \mathsf{G}(\varphi \to \psi) & \text{for every run } \pi \\ I2 & (\mathcal{M},\sigma) \models init \to \varphi \\ I3 & \{\varphi\}R_a\{\varphi\} & \text{for all } a \in A \\ \hline I4 & (\mathcal{M},\sigma) \models \mathsf{G}\psi \end{array}$$

Rule INV, general invariance

³Of course, the state $(l_2, m_3, r = 1)$, hence the transition, cannot occur in any computation, but this is what we would like to establish.

Rule INV states that if φ is inductive and φ implies ψ at each state in all runs, then ψ is true at each state in all computations. Again, we can replace I3 by:

for every run
$$\pi$$
, $(\mathcal{M}, \pi) \models \mathsf{G}(\varphi \to \mathsf{X}\varphi)$.

Example 7.3 Assume we want to prove mutual exclusion $\psi : \neg (at_l_3 \land at_m_3)$ for MUX-SEM. Let ρ be the propositional formula expressing that precisely one of $at_m_3 \lor at_m_4$, $at_l_3 \lor at_l_4$, or r_1 holds. **DEFINE** ρ . We define φ as

$$(r_0 \vee r_1) \wedge \rho$$

We have to establish the following for every computation σ :

- $I1: (\mathcal{M}, \pi) \models \mathsf{G}(\varphi \to \psi)$ for every run π ,
- $I2: (\mathcal{M}, \sigma) \models init \rightarrow \varphi$,
- $I3: (\mathcal{M}, \pi) \models \mathsf{G}(\varphi \to \mathsf{X}\varphi)$ for every run π ,

so that we have

• $(\mathcal{M}, \sigma) \models \mathsf{G}\psi$

by rule INV.

Premise I1: The implication

$$[(r_0 \lor r_1) \land \rho] \rightarrow \neg(at_l_3 \land at_m_3)$$

is true at every state (since $(at_1l_3 \wedge at_2m_3)$ would contradict to ρ).

Premise I2: Obviously, the implication

$$(at_m_0 \wedge at_l_0 \wedge r_1) \rightarrow [(r_0 \vee r_1) \wedge \rho]$$

is true (since ρ is true in the initial state).

Premise I3: We have to show that

$$(\mathcal{M}, \pi_i) \models (r_0 \vee r_1) \wedge \rho \text{ implies } (\mathcal{M}, \pi_{i+1}) \models (r_0 \vee r_1) \wedge \rho$$

for every run π and $i \in \omega$. Consider the transitions of process 1. Transitions $move(l_0, l_1)$, $move(l_1, l_2)$ and $move(l_3, l_4)$ do not change the truth of ρ (since these transitions do not change the value of r, $(at_-l_3 \lor at_-l_4)$ and $(at_-m_3 \lor at_-m_4)$). Transition $move(l_2, l_3)$ can be made only if r = 1. But ρ implies that process 2 cannot be in its critical section in this case. Also, the value of r after the transition is 0, by the definition of $\mathbf{request}(r)$. It follows that ρ is true after the transition. Finally, transition $move(l_4, l_0)$ changes $at_-l_3 \lor at_-l_4$ from true to false and r_1 from false to true (by the definition of $\mathbf{release}(r)$), while the truth value of $at_-m_3 \lor at_-m_4$ is unchanged. Hence ρ is "preserved" under all transitions of process 1. A similar argument shows that transitions of process 2 cannot change the truth value of ρ either.

Thus φ is true along all runs, and ψ is true during all computations.

Exercise 7.4 Show that MUX-SEM avoids deadlock, i.e., that at every moment at least one transition is enabled.

Exercise 7.5 The **exchange**(x, y) instruction is defined in Figure 8. Consider the program in Figure 9.

1. Show that MEX achieves mutual exclusion (i.e., only one of the n processes can be in the critical section at any time).

Hint: Let $\varphi \oplus \psi$ denote exclusive disjunction $(\neg \varphi \land \psi) \lor (\varphi \land \neg \psi)$ and $\bigwedge_i \gamma_i$ denote the conjunction $\gamma_0 \land \ldots \land \gamma_i \land \ldots \land \gamma_n$. Let $crit_i$ be an atomic proposition expressing that 'process i is in its critical section'.

```
 \begin{aligned} & \textbf{int} \text{ temp} \\ & \textbf{void} \text{ exchange}(\textbf{int} \ x, \textbf{int} \ y) \\ & \{ \\ & \text{temp} = x; \\ & x = y; \\ & y = \text{temp}; \\ & \} \end{aligned}
```

Figure 8: The **exchange** instruction

```
\begin{array}{l} \textbf{int } n \quad /* \, \textbf{number of processes} \, * \, / \\ \textbf{int bolt} = 0 \\ \textbf{int key}[n] = 1 \quad /* \, \textbf{a variable for each process} \, * \, / \\ \textbf{void } P(\textbf{int } i) \\ \{ \\ \textbf{while}(\textbf{true}) \{ \\ \textbf{while}(\textbf{key}[i]! = 0) \, \textbf{exchange}(\textbf{key}[i], \textbf{bolt}); \\ \textbf{critical}; \\ \textbf{exchange}(\textbf{key}[i], \textbf{bolt}); \\ \textbf{noncritical}; \\ \} \\ \} \end{array}
```

Figure 9: MEX — mutual exclusion with **exchange**

• Show that bolt and all key[i] are either 0 or 1: that is,

$$(\mathrm{bolt} = 0 \oplus \mathrm{bolt} = 1) \wedge \bigwedge_i (\mathrm{key}[i] = 0 \oplus \mathrm{key}[i] = 1)$$

is inductive.

• Show that

$$bolt + \sum_{i} \ker[i] = n$$

is inductive.

• Show that 'if process i is in its critical section, then key[i] = 0': that is,

$$crit_i \to \text{key}[i] = 0$$

is inductive for every i.

• Using the above inductive formulas show that

$$\mathit{crit}_i \to (\mathrm{bolt} = 1 \land \bigwedge_{j \neq i} \ker[j] = 1)$$

is invariant for every i.

• Using the above invariant formulas show that

$$crit_i \to \bigwedge_{j \neq i} \neg crit_j$$

is invariant for every i.

2. Show "progress", i.e., 'if there is no process in the critical section, then one process can enter the critical section'.

Hint: Define the formula $enabled(crit_i)$ as $key_i = 0 \lor bolt = 0$ and show that

$$(\bigwedge_i \neg crit_i) \rightarrow (\bigvee_i enabled(crit_i))$$

is invariant.

Exercise 7.6 Recall Peterson's solution, see Figure 10. There are two processes, identified by 0 and 1.

```
\begin{array}{l} \textbf{int } t \\ \textbf{int } y_0 = 0 \\ \textbf{int } y_1 = 0 \\ \\ \textbf{void } P(\textbf{int } i) \\ \{ \\ L1: \ \textbf{while}(\textbf{true}) \{ \\ L2: \ y_i = 1; \\ L3: \ t = i; \\ L4: \ \textbf{while} \{t = i \ \& \ y_{1-i} = 1\} \\ L5: \ \textbf{critical}; \\ L6: \ y_i = 0; \\ L7: \ \textbf{noncritical}; \\ \} \\ \} \end{array}
```

Figure 10: Pet

1. Show that mutual exclusion holds for Pet.

Hint: Let Lj_i be an atomic proposition for each $1 \le j \le 7$ and $0 \le i \le 1$ expressing that process i is at location Lj.

• Show that

$$(y_0 = 0 \oplus y_0 = 1) \land (y_1 = 0 \oplus y_1 = 1) \land (t = 0 \oplus t = 1)$$

is inductive.

• Show that

$$(L3_i \lor L4_i \lor L5_i \lor L6_i) \to y_i = 1$$

is inductive for both i = 0 and i = 1.

 \bullet Using the above inductive formulas show that

$$((L5_i \lor L6_i) \land L4_{1-i}) \to (t = 1 - i \land y_i = 1)$$

is invariant for i = 0, 1.

• Using the above invariant formulas show that

$$(L5_i \lor L6_i) \rightarrow \neg (L5_{1-i} \lor L6_{i-1})$$

is invariant for both i = 0 and i = 1.

2. Show that Pet avoids "livelock", i.e., at least one process can enter the critical section.

Hint: Define the formula $enabled(L5_i)$ as $L4_i \wedge (t \neq i \vee y_{1-i} \neq 1)$ and show that

$$(L4_0 \wedge L4_1) \rightarrow (enabled(L5_0) \vee enabled(L5_1))$$

is invariant.