Simple Example — Immediate Addressing

Consider the computation (1 + 2) * 3.

1. Write an assembly program for the above computation and store the result in register
rl. You can assume that there are an unlimited number of regsiters available.

2. Describe what happens in the pipeline stages when various types of instructions
(data-movement, data-processing) are processed on a five-stage pipeline: fetch IF,
decode ID, register read RR, execute EX and write back WB.

3. Draw a diagram showing the in-order execution of the code and identify the delay
slots.



Simple Example — Memory Addressing

Recall that modern processors use (several levels of) caches so that instructions and data
can be loaded into the CPU faster than from main memory. In this exercise we will see the
benefit of caches when a simple code is executed on a pipelined processor. In particular,
we will assume that there are separate, onboard caches for data and instructions, and see
that this helps getting rid of some delay slots (vacant pipeline stages during the execution
of the code).

Consider the computation

(M1 + M2) (M3 + M4)
where M1, ... denote direct (memory) addressing.

1. Write an assembly program typical of RISC machines for this computation. First
load the data and then process the arithmetic operations. You can assume that there
are an unlimited number of registers available and store the result in register r1.

2. Show the execution of your program from item 1 on a pipelined processor. There are
five pipeline stages: IF, ID, RR, EX, WB. Assume that instructions and data have
to be loaded from main memory. Explain what happens during the pipeline stages
for the various instructions and whether certain instructions can skip some of the
pipeline stages.

3. Repeat the previous item, but this time assume that instructions and data are fetched
from onboard instruction and data caches, respectively, thus there is no resource
conflict on the bus.



Example — Immediate Addressing

Consider the computation (((10 * 8) +4) — 7).

1. Write an assembly program for the above computation by using a minimal number
of registers.

2. Draw a diagram showing the in-order execution of the code on a five-stage pipeline
and identify the delay slots. Assume that when an instruction cannot be further
processed (e.g., because of some dependency or resource conflict), then it stalls the
pipeline.

3. Now assume that there is an instruction window IW, where fetched and decoded
instructions can be stored before further processing (so that the pipeline does not
have to stall). In addition, allow an instructions to “jump the queue” (out-of-order
execution), provided that this does not alter the outcome of the computation. Draw
a diagram showing the execution of the code and identify the delay slots.



Example — Memory Addressing

Consider the computation ((M1 % M2)+ M3) — M4 where each Mi indicates the content
of a memory location.

1. Write an assembly program for the above computation using minimum number of
registers.

2. Show the delay slots when the code is executed on a five-stage pipeline. Assume that
instructions and data have to be loaded from main memory. Assume that there is an
instruction window IW, where fetched and decoded instructions can be stored until
they can be further processed (out-of-order if possible).

3. Repeat the previous item, but now assume that instructions and data are loaded
from onboard caches.



Comprehensive Example

Consider the computation (M1 % M2) + (M3 x M4).

1. Write a program in assembly language that performs the above computation. Try to
use a minimal number of registers.

2. Draw a diagram showing the execution of your program on a five-stage pipeline using
in-order execution.

3. Draw a diagram showing the execution of your program on a five-stage pipeline using
out-of-order execution.

4. Identify the dependencies in your code.

5. Remove as many dependencies as possible from your code (by using register renam-
ing) and reorder the code to minimize the number of delay slots when executed on a
five-stage pipeline. Show the pipeline activity in a diagram.

You can assume that there is an onboard instruction cache from which the instructions
are fetched (so there is no resource conflict between fetching an instruction and executing
a data-transfer instruction) and that there is an instruction window, where fetched and
decoded instructions are stored.



