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Abstract

The problem of determining “the right number of clusters” in K-Means has attracted considerable interest, especially in the recent years. However, to the authors’ knowledge, no experimental results of their comparison have been reported so far. This paper intends to present some results of such a comparison involving eight cluster selection options that represent four different approaches. The data are generated according to a Gaussian-mixture distribution with the clusters’ spread and sizes variant. Most consistent results are shown by the silhouette width based method by Kaufman and Rousseeuw (1990) and iK-Means by Mirkin (2005).

1 Introduction

The problem of determining “the right number of clusters” attracts considerable interest (see, for instance, references in Jain & Dubes (1998) and Mirkin (2005)). Experimental comparison of different selection options has been performed mostly for hierarchical clustering methods (Milligan and Cooper 1985). This paper focuses upon setting of an experiment at comparison of various options for selecting the number of clusters with a most popular partition method, K-Means clustering (see Hartigan 1975, Jain and Dubes 1988, Mirkin 2005) and analysis of its results. The setting of our experiment is described in section 2.  Section 3 is devoted to description of all the clustering algorithms involved. The Gaussian-mixture data generator utilized is described in section 4. Our evaluation criteria are described in section 5. The results are presented and discussed in section 6. The conclusion is devoted to issues and future work.  

2 Setting of the experiment

To set a computational experiment on comparison of different computational methods, one needs to specify its setting including: 

(i)  set of algorithms under comparison, along with all their parameters;

(ii) data sets at which the selected algorithms will be executed; and

(iii) criterion or criteria for evaluation of the results.

These will be discussed briefly here and described in sufficient detail in the follow up sections.

2.1 Selection of algorithms

K-Means has been developed as a method in which the number of clusters, K, is pre-specified (see McQueen 1967, Jains and Dubes 1988). Currently, a most popular approach to selection of K involves multiple running K-Means at different K with the follow-up analysis of results according to a criterion of correspondence between a partition and a cluster structure. Such, “internal”, criteria have been developed using various probabilistic hypotheses of the cluster structure by Hartigan (Hartigan 1975), Calinski and Harabasz (see Calinski and Harabasz 1974), Tibshirani, Walther and Hastie 2001 (Gap criterion), Sugar and James 2003 (Jump statistic), and Krzanowski and Lai 1985. We have selected three of the internal indexes as a representative sample. 

There are some other approaches to choosing K, such as that based on the silhouette width index (Kaufman and Rousseeuw 1990). Another one can be referred to as the consensus approach (Monti, Tamayo, Mesirov, Golub 2003). Other methods utilise a data based preliminary search for the number of clusters. Such is the method iK-Means (Mirkin 2005). We consider two versions of this method – one utilising the least squares approach and the other the least moduli approach in fitting the corresponding data model. Thus, altogether we compare eight algorithms for choosing K in K-Means clustering (see section 3).

2.2  Data generation

There is a popular distribution in the literature on computational intelligence, the mixture of Gaussian distributions, which can supply a great variability of cluster shapes, sizes and structures (Banfield and Raftery 1993 and McLachlan and Basford 1988). However, there is an intrinsic difficulty related to the huge number of parameters defining a Gaussian mixture distribution. These are: (a) priors, the cluster probabilities; (b) cluster centres; and (c) cluster covariance matrices, of which the latter involve KM2/2 parameters, where M is the number of features, which is about a 1000 at K=10 and M=15 – by far too many for modelling in an experiment. However, there is a model involving the so-called Probabilistic Principal Components framework that uses an underlying simple structure covariance model (Roweis 1998 and Tipping and Bishop 1999). A version of this model has been coded in a MatLab based environment (Generation of Gaussian mixture distributed data 2006). Wasito and Mirkin (2006) further elaborated this procedure to allow more control over cluster sizes and their spread; we dwell on this approach (see section 4). 

2.3. Evaluation criteria

A partition clustering can be characterised by (1) the number of clusters, (2) the cluster centroids, and (3) the cluster contents. Thus we use criteria based on comparing either of these characteristics in the generated data with those in the resulting clustering (see section 5).

3 Description of the algorithms

3.1 Generic k-means

K-Means is an unsupervised clustering method that applies to a data set represented by the set of N entities, I, the set of M features, V, and the entity-to-feature matrix Y=(yiv), where yiv is the value of feature v
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V at entity i
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I. The method produces a partition S={S1, S2,…, SK} of I in K non-overlapping classes Sk, referred to as clusters, each with a specified centroid ck=(ckv), an M-dimensional vector in the feature space (k=1,2,…K). Centroids form set C={c1, c2,…, cK}.The criterion, minimised by the method, is the within-cluster summary distance to centroids:

                W(S, C)=
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where d is typically the Euclidean distance squared or the Manhattan distance. In the former case criterion (1) is referred to as the square error criterion and in the latter, the absolute error criterion. 

       Given K M-dimensional vectors ck as cluster centroids, the algorithm updates cluster lists Sk according to the Minimum distance rule. For each entity i in the data table, its distances to all centroids are calculated and the entity is assigned to the nearest centroid. This process is reiterated until clusters do not change. Before running the algorithm, the original data needs to be pre-processed (standardized) by taking the original data table minus the grand mean then divide by the range. The above algorithm is referred to as straight K-means.


We use either of two methods for calculating the centroids: one by averaging the entries within clusters and another by taking the within-cluster median. The former corresponds to the least-squares criterion and the latter to the least-moduli criterion (Mirkin 2005).

3.2 Selection of the number of clusters with the straight K-means 

We use six different internal indexes for scoring the numbers of clusters. These are: Hartigan’s index (Hartigan 1975), Calinski and Harabasz’s index (Milligan and Cooper 1985), Jump Statistic (Sugar and James 2003), Silhouette width, Consensus distribution’s index (Monti, Tamayo, Mesirov and Golub 2003) and the Davdis index, which involves the mean of the consensus distribution.
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Before applying these indexes, we run the straight K-Means algorithm for different values of K in a range from START value (typically 4, in our experiments) to END value (typically, 14). Given K, the smallest W(S, C) among those found at different K-Means initializations, is denoted by WK. The algorithm is in the box above.

In the following subsections, we describe the statistics used for selecting “the right” K at the clustering results.

3.2.1 Variance based statistics

Of many indexes based on WK to estimate the number of clusters, we choose the following three: Hartigan (Hartigan 1975), Calinski & Harabasz (Milligan and Cooper 1985) and Jump Statistic (Sugar and James 2003), as a representative set for our experiments. Jump Statistic is based on the extended W, according to the Gaussian mixture model. The threshold 10 in Hartigan’s index of estimating the number of clusters is “a crude rule of thumb” suggested by Hartigan (1975), who advised that the index is proper to use only when the K-cluster partition is obtained from a (K-1)-cluster partition by splitting one of the clusters. The three indexes are described in the box below.
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3.2.2 Structure based statistics

Instead of relying on the overall variance, The Silhouette Width index (Kaufman and Rousseeuw 

1990) is based on evaluation of the relative closeness of the individual entities to their clusters. It calculates the silhouette width for each entity, the average silhouette width for each cluster and the overall average silhouette width for a total data set. Using this approach each cluster could be represented by the so-called silhouette, which is based on the comparison of its tightness and separation. The silhouette width s(i) for entity i(I is defined as:



       s(i)=
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where a(i) is the average dissimilarity between i and all other entities of the cluster to which i belongs and b(i) is the minimum of the average dissimilarity of i and all the entities in the other cluster. 


The silhouette width values lie in the range [–1, 1]. If the silhouette width value is close to 1, it means that sample is well clustered. If the silhouette width value for an entity is about zero, it means that that the entity could be assigned to another cluster as well. If the silhouette value is close to –1, it means that the entity is misclassified. 

       The largest overall average silhouette width indicates the best number of clusters. Therefore, the number of clusters with the maximum overall average silhouette width is taken as the optimal number of the clusters.
3.2.3 Consensus based statistics

We apply the following two consensus-based statistics for estimating the number of clusters: Consensus distribution area (Monti, Tamayo, Mesirov and Golub 2003) and davdis. These two statistics represent the consensus over multiple runs of K-means for different initializations at a specified K. First of all, consensus matrix is calculated. The consensus matrix C(K) is an N(N matrix that stores, for each pair of entities, the proportion of clustering runs in which the two entities are clustered together.


An ideal situation is when the matrix contains 0’s and 1’s only: all runs lead to the same clustering. Consensus distribution is based on the assessment of how the entries in a consensus matrix are distributed within the 0-1 range. The cumulative distribution function (CDF) is defined over the range [0, 1] as follows:

        CDF(x)= 
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where 1{cond} denotes the indicator function that is equal to 1 when cond is true, and 0 otherwise. The difference between two cumulative distribution functions can be partially summarized by measuring the area under the two curves. The area under the CDF corresponding to C(K) is calculated using the following formula:

                        A(K)=
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where set {x1,x2,…,xm} is the sorted set of entries of C(K). We can calculate the proportion increase in the CDF area as K increases, computed as follows: 

           Δ(K+1)=
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The number of clusters is selected when a large enough increase in the area under the corresponding CDF, which is to find the K which maximize Δ(K). The index davdis is based on the entries of the consensus matrix C(k)(i,j) obtained from the consensus distribution algorithm. The mean and the variance of these entries μKand σK2 for each K can be obtained following Mirkin (2005), p. 229. We calculate avdis(K)= μK*(1- μK)- σK2, which is the average distance M({St})=
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 according to the same distribution, where M=(|Γs|+|ΓT|-2a)/
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in the contingency table of the two partitions, which will be described in section 5.3. The index is defined as davdis(K)=(avdis(K)-

avdis(K+1))/avdis(K+1). The estimated number of clusters is decided by the maximum value of davis(K).

3.3 Selection of the number of clusters with sequential cluster extraction

Another approach to selecting the number of clusters is proposed in Mirkin (2005) as the so-called intelligent K-Means. It initialises K-Means with the so-called Anomalous pattern approach, which is described in the box below:
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The intelligent K-Means algorithm iteratively applies the Anomalous pattern procedure and after no unclustered entities remain, removes the singletons and takes the centroids of remaining clusters and their quantity to initialise K-Means. The algorithm is as follows:
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The distance and centroid in the iK-means with the Least Squares criterion are the Euclidean squared and the average of the within-cluster entries, respectively, whereas the iK-means with the Least Modules criterion are the Manhattan distance and the median of the within- cluster entries, respectively.

3.4 Selection

Here is the list of the methods for finding the number of clusters in our experiment, with the acronyms assigned:

	Method
	Acronym 

	Hartigan
	HK

	Calinski & Harabasz
	CH

	Jump Statistic
	JS

	Silhouette Width
	SW

	Consensus Distribution area
	CD

	Davdis
	DD

	Least Square
	LS

	Least Moduli
	LM


4 Data generator for the experiments

The Gaussian mixture distribution data are generated using the functions in Neural Network NetLab, which is applied as implemented in a MATLAB Toolbox freely available on the web (Generation of Gaussian mixture distributed data 2006). Our sampling functions are based on a modified version of that proposed in Wasito and Mirkin (2006). The mixture model type in the functions defines the covariance structure. We use either of two types: the spherical shape or the probabilistic principal component analysis (PPCA) shape (Tipping and Bishop 1999). The cluster spatial sizes are taken constant at the spherical shape, and variant at the PPCA shape. The spatial cluster size with the PPCA structure can be defined by multiplying its covariance matrix by a factor. We maintain two types of the spatial cluster size factors within a partition: the linear and quadratic distributions of the factors. To implement these, we take the factors to be proportional to the cluster’s index k (the linear distribution being k-proportional) or k2 (the quadratic distribution being k2-proportional) (k=1,…,K).

        Cluster centroids are generated randomly from a normal distribution with mean 0 and standard deviation 1 and then they are scaled by a factor expressing spread of the clusters. Table 1 presents the spread values, which are used in the experiments. The PPCA model runs with the manifest number of features 15 and the dimension of the PPCA subspace 6. 

In the experiments, we generated Gaussian mixtures with 6, 7 and 9 clusters. The cluster proportions (priors) we taken uniformly random.

	Spread
	Spherical
	PPCA

	
	
	k-proport.
	k2-proport.

	Large
	2 (()
	10 (()
	10 (()

	Small
	0.2 (()
	0.5 (()
	2 (()


Table 1 The spread values used in the experiments along with the indexing of different options from ( to (.

Typical structures of the data sets generated are presented at Figure 1.
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Figure 1 9 Clusters are shown using different symbols: *, ., +, o, x, (, (, (, (. Examples of different patterns of cluster spread used in the experiments, from the most confusing pattern on the top left (PPCA clusters with the k2-proportional sizes and spread=2) to the least confusing pattern on the bottom right (PPCA clusters with the k2-proportional sizes and spread=28).

5 Evaluation Criteria

5.1 [image: image24.wmf]2
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Number of clusters

This criterion is based on the difference between the number of generated clusters (6, 7 or 9) and that in the selected clustering. 

The number of clusters measure is rather rough; it does not take into account the clusters’ content, that is, similarity between generated clusters and those found with the algorithms.

5.2 Distance between centroids.
This is not quite an obvious criterion when the number of clusters in a resulting partition is greater than the number of clusters generated. In our procedure, we use three steps to score the similarity between the real and obtained centroids: (i) assignment, (b) distancing and (c) averaging. Given the obtained centroid e1,e2,…eL at clusters q1,q2,…qL, and the generated centroids g1,g2,…,gK at clusters p1, p2, …, pK,  the algorithm is as follows:

5.3 Partition confusion measures

To measure the similarity between two partitions, their contingency (confusion) table is to be calculated. The entries in the contingency table are the co-occurrences of the generated partition clusters (row category) and the obtained clusters (column category), that is, counts of numbers of entities that fall simultaneously in both clusters. The generated cluster (row category) is denoted by k
[image: image16.wmf]Î

T, the obtained partition (column category) is denoted by l
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U and the co-occurrences counts are denoted by Nkl. The frequencies of row and column categories usually are called marginals and denoted by Nk+ and N+l . The probabilities are defined accordingly: pkl=Nkl/N, pk+=Nk+/N, and p+l=N+l/N, where N is the total number of entities. Of the four used contingency-based measures (the relative distance, Tchouproff coefficient, the average overlap, and the adjusted Rand index), only the adjust Rand index will be presented since the other evaluation criteria behave rather similarly. 

The adjusted Rand index (Hubert and Arabie 1985, Yeung and Ruzzo 2001) is defined as follows:
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6 Results

The results of our experiments related to the generated 7 and 9 Gaussian clusters datasets are presented in Table 3 and Table 4, respectively. Table 2 is the visual representations of the results, where the intensity of the filling reflects the number of times at which the item has been on record. The cluster shape, spread and spatial sizes are labelled according to Table 1 in section 4.

       The number of clusters is best reproduced with HK when the number of generated clusters is relatively small. When the number of clusters increases to 9, LS joins in as another winner. For other, more substantive, evaluation measures we observe the following. At 9 clusters, SW and CD are winners over the distance between centroids, with HK, DD, and LS slightly lagging behind. In terms of the similarity between partitions, the winners are LS and LM. 

       When the number of generated clusters is 7, LS and CD are winning over the distance between centroids at the large spread. At the small spread, the picture is not that uniform: different methods win at different data models. At the clusters contents measured with the ARI, LS and SW win over the others at the large spread and they are joined in by CH and JS at the small spread values. 

       Overall, there is no obvious all-over winner, but three procedures, LS, LM, and SW, should be pointed out as the winners in many situations.
7 Conclusion

This research can be enhanced in at least two ways: first, by enlargement of the set   of algorithms under investigation and, second, by extending the data generation models. These two are directions for the future work. Also, an important direction is of theoretical underpinning of the experimental observations.
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Table 1 Results at 9-clusters data sets for large spread and small spread values in Error! Reference source not found..  


Intelligent K-means:


Put t=1 and It the original entity set. 


Apply AP to It to find St and Ct. 


If there are un-clustered entities left, put It(It-St and t=t+1 and go to step 1.


Remove all the found clusters which the cluster size is smaller than 1. Denote the number of remaining clusters by K and their centroids by c1, c2,…, ck.


Do Straight K-means with c1, c2,…, ck as initial centroids.














Anomalous Pattern (AP):


Find an entity in I, which is the farthest from the origin and put it as the AP centroid c.


Calculate distances d(yi,c) and d(yi,0) for each i in I, and if d(yi,c)<d(yi,0), yi is assigned to the AP cluster list S.


Calculate the centroid c’ in the S. If c’ differs from c, put c’ as c, and go to step 2, otherwise go to step 4


Output S and its centroid as the Anomalous Pattern.














Hartigan (HT):


calculate HT=(Wk/Wk+1-1)(N-k-1), where N is the number of entities


find the k which HT is less than a threshold 10





Calinski and Harabasz (CH):


calculate CH=((T-Wk)/(k-1))/(Wk/(N-k)), where T= � EMBED Equation.3  ���is the data scatter


find the k which maximize CH





Jump Statistic (JS):


for each entity i, clustering S={S1,S2,…,Sk}, and centroids C={C1,C2,…,Ck}


calculate d(i, Sk)=(yi-Ck)TΓ-1(yi-Ck) and dk=(� EMBED Equation.3  ���d(i, Sk))/P*N, where P is the number of features, N is the number of rows and Γ is the covariance matrix of Y


select a transformation power, typically P/2


calculate the jumps JS=d� EMBED Equation.3  ���-d� EMBED Equation.3  ��� and d� EMBED Equation.3  ���≡0


find the k which maximize JS








K-Means Results Generation 


For K=The number of clusters START: END


For diff_init=1: number of different K-means initializations


     - 	randomly select K entities as initial centroids


run Straight K-Means algorithm


calculate the WK, the value of W(S, C) (1) at the found clustering


for each K , take the clustering corresponding to the smallest WK among different initialisations 


end diff_init


end K





Distance between two sets of centroids


1. Assignment


for each k=1,….K


   Find el that is the closest to gk and store it


   If there is any un-chosen ei, find gk that is the closet to each of the un-chosen ei


end


2. Distancing


Denote EK those el that have been assigned to gk.


for k=1,…,K


   dis(k)=(� EMBED Equation.3  ���ql*d(gk,el))/|EK|


end


3. Averaging


Average distance between centroids D=� EMBED Equation.3  ���





�
Estimated number of clusters�
Distance between Centroids�
Adjust Rand Index�
�
�
Large spread�
Small spread�
Large spread�
Small spread�
Large spread�
Small spread�
�
HK�
8.33


8.50


9.10�
7.89


9.10


9.44�
47293.32/�1332058.56/�1495325.18�
742.47/�409831.54/�51941.10�
0.89/�0.90/�0.84�
0.54/�0.53/�0.29�
�
CH�
11.55


12.20


10.90�
4.00


6.60


4.11�
53057.85/�1462774.95/�1560337.21�
832.87/�465599.77/�50703.90�
0.83/�0.81/�0.79�
0.46/�0.39/�0.20�
�
JS�
12.44


12.60


11.90�
5.00


6.80


4.00�
55417.22/�1548757.47/�1570361.91�
798.96/�510687.27/�50716.82�
0.73/�0.82/�0.78�
0.50/�0.42/�0.20�
�
SW�
5.78


7.00


7.10�
4.78


5.00


4.22�
46046.56/�1299190.70/�1462999.91�
805.30/�393227.66/�50383.53�
0.92/�0.92/�0.83�
0.49/�0.46/�0.21�
�
CD�
5.22


5.30


5.20�
5.11


5.10


5.22�
47122.13/�1305051.80/�1350841.29�
791.76/�394572.84/�51968.86�
0.78/�0.77/�0.71�
0.49/�0.44/�0.24�
�
DD�
5.67


5.00


6.00�
5.44


5.40


5.89�
47190.83/�1306014.88/�1394892.59�
792.15/�395524.66/�50813.28�
0.77/�0.74/�0.70�
0.47/�0.40/�0.26�
�
LS�
8.67


8.80


7.95�
13.00


10.80


13.44�
49095.21/�1485719.73/�1444645.99�
1110.88/�486979.24/�51226.10�
0.99/�0.99/�0.90�
0.71/�0.61/�0.44�
�
LM�
9.33


8.80


10.00�
25.00


16.10


23.11�
54478.33/�1487335.77/�2092537.57�
705.61/�487940.63/�50506.80�
0.92/�0.99/�0.84�
0.60/�0.56/�0.40�
�
Table � SEQ Table \* ARABIC �4�. The average values of evaluation criteria at 9-clusters data sets for large spread and small spread values in � REF _Ref139287652 \h � \* MERGEFORMAT �Table 1�. The standard deviations are not supplied for the sake of space. The three values in a cell refer to the three cluster structure models: the spherical on top, the PPCA with k-proportional cluster sizes in the middle, and the PPCA with k2-proportional clusters in the bottom. Two winners are highlighted using the bold font, for each of the options.
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Estimated number of clusters�
Distance between Centroids�
Adjust Rand Index�
�
�
Large spread�
Small spread�
Large spread�
Small spread�
Large spread�
Small spread�
�
HK�
�
�
�
�
�
�
�
CH�
�
�
�
�
�
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�
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�
�
�
�
�
�
�
SW�
�
�
�
�
�
�
�
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�
�
�
�
�
�
�
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�
�
�
�
�
�
�
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�
�
�
�
�
�
�
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�
�
�
�
�
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�
Table � SEQ Table \* ARABIC �2�  A visual representations of the results in � REF _Ref139423088 \h ��Table 3� and � REF _Ref139423089 \h ��Table 4�; the best performers are shown in grey and the worst performers in a grid style. The intensity of the filling reflects the number of times at which the item has been on record: from the dark (5-6 times) to the just (3-4 times) to the light (1-2 times).





�
Estimated number of clusters�
Distance between Centroids�
Adjust Rand Index�
�
�
Large spread�
Small spread�
Large spread�
Small spread�
Large spread�
Small spread�
�
HK�
7.67


7.30


7.40�
6.60


9.89


9.70�
128684.97/�1799188.85/�1746987.36�
390.98/�3030.92/�60371.09�
0.71/�0.74/�0.73�
0.36/�0.37/�0.49�
�
CH�
7.78


10.70


8.30�
4.00


4.00


4.30�
48116.80/�1558562.68/�1595574.32�
360.91/�3621.98/�55930.42�
0.78/�0.65/�0.75�
0.42/�0.26/�0.46�
�
JS�
10.67


10.00


10.40�
4.00


9.78


10.80�
51148.43/�1456705.09/�1766608.06�
360.90/�3441.78/�72390.75�
0.59/�0.72/�0.67�
0.42/�0.39/�0.55�
�
SW�
4.89


6.60


5.60�
4.40


5.44


7.50�
44560.63/�1412019.54/�1696914.01�
359.24/�3375.02/�62581.11�
0.94/�0.98/�0.96�
0.42/�0.37/�0.60�
�
CD�
5.22


5.00


5.00�
5.00


5.00


5.00�
45201.58/�1365256.89/�1390176.82�
476.60/�3178.91/�56446.03�
0.79/�0.78/�0.79�
0.36/�0.31/�0.49�
�
DD�
5.00


6.70


6.20�
6.20


5.11


5.30�
45638.01/�1423139.34/�1488715.14�
483.02/�3849.27/�56111.21�
0.81/�0.75/�0.69�
0.35/�0.28/�0.47�
�
LS�
5.44


5.90


5.40�
17.90


10.89


9.40�
44586.72/�1358256.30/�1348704.94�
1142.03/�2869.79/�60274.25�
0.97/�0.98/�0.95�
0.41/�0.33/�0.53�
�
LM�
16.78


7.70


9.10�
35.00


17.67


18.10�
58992.53/�1513975.39/�1499187.03�
439.60/�2883.21/�64655.17�
0.46/�0.63/�0.54�
0.28/�0.28/�0.37�
�
Table � SEQ Table \* ARABIC �3�. The average values of evaluation criteria at 7-clusters data sets for large spread and small spread values in � REF _Ref139287652 \h � \* MERGEFORMAT �Table 1�. The standard deviations are not supplied for the sake of space. The three values in a cell refer to the three cluster structure models: the spherical on top, the PPCA with k-proportional cluster sizes in the middle, and the PPCA with k2-proportional clusters in the bottom. Two winners are highlighted using the bold font, for each of the options.
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