The material below is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

 

 

A. Editorships (books/special issues) 

 

1.    Magoulas G.D., Investigations into Living Systems, Artificial Life, and Real-World Solutions, IGI Global, 2013.

2.    Magoulas G.D., E-Infrastructures and Technologies for Lifelong Learning, IGI Global, 2011.

3.    Magoulas G.D. Artificial Intelligence Tools in Human–Computer Interaction, special issue of the International Journal on Artificial Intelligence Tools, vol.19(6), December 2010, pp. 713-715.

4.    Roussos G., Musolesi M., Magoulas G.D., Human Behaviour in Ubiquitous Environments: Modeling of Human Mobility Patterns, special issue of Pervasive and Mobile Computing Journal, vol. 6(4), August 2010, pp. 399-400.

5.    Roussos G., Musolesi M., Magoulas G.D, Human Behavior in Ubiquitous Environments: Experience and interaction design, special issue of Pervasive and Mobile Computing, vol. 6(5), October 2010, pp. 497-498.

6.    Magoulas G.D., and Dounias G., Computational Intelligence in Medicine and Biology, special issue of the journal Applied Intelligence: The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies, vol. 27(3), December, 2007 pp. 189-192.

7.    Magoulas G. D., and Ghinea G., Intelligence-based Adaptation for Ubiquitous Multimedia Communications, special issue of the Journal of Network and Computer Applications, vol. 30(3), August 2007, pp. 955-1083.

8.    Magoulas G.D., Lepouras G, and Vassilakis C., Virtual Reality in the e-Society, special Issue of the journal Virtual Reality, vol. 11(2-3), June, 2007, pp. 71-184.

9.    Magoulas G.D, and Chen Y., Human Factors in Personalised Systems and Services, special issue of the journal Interacting with Computers, vol. 18(3), May 2006, pp 327-506.

10. Magoulas G.D, and Chen S., Advances in Web-based Education: Personalized Learning Environments, Information Science Publishing, 2006 (ISBN: 1-59140-691-9).

11. Magoulas G.D., and Dounias G., Intelligent Technologies in Bioinformatics and Medicine, special issue of the journal Computers in Biology and Medicine, vol. 36(10), October 2006, pp. 1045-1184.

12. Magoulas G.D., Dounias G. Linkens D.A., Intelligent Tools for Problem Solving in Bioinformatics and Medicine, special issue of the International Journal of Artificial Intelligence Tools, vol. 15(3), June 2006, pp. 331-432.

13. Chen S., and Magoulas G.D., Adaptable and Adaptive Hypermedia Systems, IRM Press, 2005 (ISBN: 1-59140-567-X).

14. Dounias G., Magoulas G. and Linkens D., Intelligent Technologies in Bioinformatics and Medicine (Workshop Proceedings) Published by the Univ. of the Aegean and the European Network on Intelligent Technologies (EUNITE) for Smart Adaptive Systems, 2004 (ISBN: 960-7475-28-3).

 

 

Home - Teaching - Publications - Bio - Blog - Department

 

 

 

B. Journal papers 

 

1.   Papanikolaou K.A., Makrh K., Magoulas G.D., Chinou D., Georgalas A., Roussos P., Synthesizing Technological and Pedagogical Knowledge in Learning Design: a Case Study in Teacher Training on Technology Enhanced Learning, International Journal of Digital Literacy and Digital Competence, forthcoming.

2.   Sikora T., Magoulas G.D., Evolutionary Approaches to Signal Decomposition in an Application Service Management System, Soft Computing, forthcoming.

3.    Cocea M. and Magoulas G.D., Participatory Learner Modelling Design: a Methodology for Iterative Learner Models Development, Information Sciences, 321, 48–70, 2015.

4.    Adam S.P., Karras D.A., Magoulas G.D., Vrahatis M.N, Solving the linear interval tolerance problem for weight initialization of neural networks, Neural Networks, 54, 17–37, 2014.

5.    Sikora T., Magoulas G.D. Neural adaptive control in application service management environment, Evolving Systems, 4(4), 267-287, 2013.

6.    Laurillard, D., Charlton, P., Craft, B., Dimakopoulos, D., Ljubojevic, D., Magoulas, G., Masterman, E., Pujadas, R., Whitley, E.A., Whittlestone, K., A constructionist learning environment for teachers to model learning designs, Journal of Computer Assisted Learning, 29(1), 15–30, 2013.

7.    Gutierrez-Santos S., Mavrikis M., and Magoulas G.D., A Separation of Concerns for Engineering Intelligent Support for Exploratory Learning Environments, Journal of Research and Practice in Information Technology, 44(3), 347-360, 2012.

8.    Charlton P., Magoulas G. and Laurillard D., Enabling Creative Learning Design through Semantic Technologies, Technology, Pedagogy and Education, 21(2), 231-253, 2012.

9.    Cocea M., Magoulas G.D., User Behaviour-driven Group Formation through Case-based Reasoning and Clustering, Expert Systems with Applications, 39(10), 8756-8768, 2012.

10. Noss R., Poulovassilis A., Geraniou E., Gutierrez-Santos S., Hoyles C., Kahn K., Magoulas G.D., Mavrikis M., The design of a system to support exploratory learning of algebraic generalisation, Computers and Education, 59(1), 63–81, 2012.

11. Peng C.-C. and Magoulas G.D., Nonmonotone Levenberg-Marquardt Training of Recurrent Neural Architectures for Processing Symbolic Sequences, Neural Computing & Applications, 20(6), 897-908, 2011.

12. Peng C.-C. and Magoulas G.D., Nonmonotone BFGS-trained Recurrent Neural Networks for Temporal Sequence Processing, Applied Mathematics and Computation, 217(12), 5421-5441, 2011.

13. de Freitas S., Rebolledo-Mendez G., Liarokapis F., Magoulas G., Poulovassilis A., Learning as immersive experiences: Using the four-dimensional framework for designing and evaluating immersive learning experiences in a virtual world, British Journal of Educational Technology, 41(1), 69-85, 2010.

14. Cocea M., Magoulas G.D., Hybrid Model for Learner Modelling and Feedback Prioritisation in Exploratory Learning, International Journal of Hybrid Intelligent Systems, 6(4), 211-230, 2009.

15. Dimakopoulos D.N. and Magoulas G. D., Interface design and evaluation of a personal information space for mobile learners, International Journal of Mobile Learning and Organisation, vol.3(4), 440 – 463,  2009.

16. Peng C.-C. and Magoulas G.D., Advanced Adaptive Nonmonotone Conjugate Gradient Training Algorithm for Recurrent Neural Networks, International Journal of Artificial Intelligence Tools, vol. 17(5), 963-984, 2008.

17. Anastasiadis A.D., Magoulas G.D., Particle Swarms and Nonextensive Statistics for Nonlinear Optimisation, The Open Cybernetics and Systemics Journal, vol. 2, 173-179, 2008.

18. de Freitas S., Harrison I., Magoulas G.D., Mee A., Mohamad F., Oliver M., Papamarkos G., Poulovassilis A., The Development of a System for Supporting the Lifelong Learner, British Journal of Educational Technology, 37(6), pp 867-880, 2006.

19. O'Neill P.D., Magoulas G.D., Liu X. Applying Wave Processing Techniques to Clustering of Gene Expressions, Journal of Intelligent Systems, vol. 15(1-4), 107–128, 2006.

20. Anastasiadis A. and Magoulas G.D., Analysing the Localisation Sites of Proteins through Neural Networks Ensembles, Neural Computing & Applications, vol. 15(3), 277 – 288, 2006.

21. Anastasiadis A., Magoulas G.D., and Vrahatis M.N, Improved sign-based learning algorithm derived by the composite nonlinear Jacobi process, Journal of Computational and Applied Mathematics, vol. 191, 166 – 178, 2006.

22. Anastasiadis A. and Magoulas G.D., Evolving Stochastic Learning Algorithm based on Tsallis Entropic index, The European Physical Journal B, vol. 50, 277–283, 2006.

23. Frias-Martinez E., Magoulas G. D., Chen S. Y., Macredie R. D., Automated User Modeling for Personalized Digital Libraries, International Journal of Information Management, vol. 26(3), 179-260, 2006.

24. Magoulas G.D., Anastasiadis A.D., Approaches to Adaptive Stochastic Search Based on the Nonextensive q-Distribution, International Journal of Bifurcation and Chaos, Vol. 16, No. 7, 2081-2091, 2006.

25. Magoulas G. D., Neuronal networks and textural descriptors for automated tissue classification in endoscopy, Oncology Reports, vol. 15, 997-1000, 2006.

26. Magoulas G. and Vrahatis M.N., Adaptive Algorithms for Neural Network Supervised Learning: A Deterministic Optimization Approach, International Journal of Bifurcation and Chaos, vol. 16(7), 1929–1950, 2006.

27. Plagianakos, V. P., Magoulas G. D. and Vrahatis M. N., Evolutionary training of hardware realizable multilayer perceptrons, Neural Computing & Applications, vol. 15(1), 33-40, 2006.

28. Plagianakos, V. P., Magoulas G. D. and Vrahatis M. N., Distributed Computing Methodology for Training Neural Networks in an Image-guided Diagnostic Application, Computer Methods and Programs in Biomedicine, vol. 81(3), 228-235, 2006.

29. Anastasiadis A., Magoulas G.D., and Vrahatis M.N., New Globally Convergent Training Scheme Based on the Resilient Propagation Algorithm, Neurocomputing, vol. 64, 253-270, March, 2005.

30. Anastasiadis A., Magoulas G. D., and Vrahatis M.N, Sign-based Learning Schemes for Pattern Classification, Pattern Recognition Letters, vol. 26, 1926–1936, 2005.

31. Chen S.Y., Magoulas G.D., and Dimakopoulos D., A Flexible Interface Design for Web Directories to Accommodate Different Cognitive Styles, Journal of the American Society for Information Science and Technology, vol. 56(1), 70-83, 2005.

32. Frias-Martinez E., Magoulas G., Chen S., Macredie R. , Modeling Human Behavior in User-Adaptive Systems: Recent Advances Using Soft Computing Techniques, Expert Systems with Applications, vol. 29(2), 320–329, 2005.

33. Ghinea G., Magoulas G.D., and Siamitros C., Multi-criteria Decision Making for Enhanced Perception-based Multimedia Communication, IEEE Tr. Systems, Man and Cybernetics: part A, vol. 35(6), 855-866, 2005.

34. Ghinea G., Magoulas G.D., and Siamitros C., Intelligent Synthesis Mechanism for Deriving Streaming Priorities of Multimedia Content, IEEE Tr. Multimedia, vol. 7(6), 1047-1053, 2005.

35. Ghinea G., Thomas J. P., Magoulas G.D., and Heravi S., Adaptation as a premise for perceptual-based multimedia communications, Int. J. Information Technology and Management, vol. 4(4), 405-422, 2005.

36. Stathacopoulou R., Magoulas G. D., Grigoriadou M. and Samarakou M., Neuro-fuzzy knowledge processing in intelligent learning environments for improved student diagnosis, Information Sciences, vol. 170(2), 273-307, 2005.

37. Anastasiadis A., and Magoulas G.D., Nonextensive statistical mechanics for hybrid learning of neural networks, Physica A: Statistical Mechanics and its Applications, vol. 344, 372-382, 2004.

38. Chen S., Magoulas G.D. and Macredie R. Cognitive Styles and Users’ Reponses to Structured Information Representation, International Journal on Digital Libraries, vol. 4(2), 93-107, 2004.

39. Ghinea G., Magoulas G. D. and Frank A.O. Intelligent protocol adaptation in a medical e-collaboration environment, International Journal of Artificial Intelligence Tools, Vol. 13(1), 199-218, 2004.

40. Ghinea G., Magoulas G. D., and Frank A. O., Intelligent Multimedia Communication for Enhanced Medical e-Collaboration in Back Pain Treatment, Transactions of Institute Measurement Control, vol. 26(3), 223-244, 2004.

41. Magoulas G.D., Karkanis S.A., Karras D.A. and Vrahatis M.N., Evaluation of texture-based schemes in neural classifiers training, WSEAS Transactions on Computers, vol. 3(6), 1729-1735, December 2004.

42. Magoulas G.D., Plagianakos V.P., and Vrahatis M.N., Neural Network-based Colonoscopic Diagnosis Using On-line Learning and Differential Evolution, Applied Soft Computing, Vol. 4(4), 369-379, 2004.

43. Hossain S., Pouloudi A., Magoulas G.D. and Grigoriadou M., IT Adoption in British and Greek Secondary Education: Issues and Reflections, Themes in Education, vol. 4(2), 123-154, 2003.

44. Magoulas G.D., Papanikolaou K.A., and Grigoriadou M., Adaptive web-based learning: accommodating individual differences through system’s adaptation, British Journal of Educational Technology, vol. 34(4), 511 – 527, 2003.

45. O’Neill P., Magoulas G. D., and Liu X., Improved Processing of Microarray Data using Image Reconstruction Techniques, IEEE Tr. Nanobioscience, vol. 2(4), 176-183, 2003.

46. Papanikolaou K., Grigoriadou M., Kornilakis H., and Magoulas G.D., Personalising the Interaction in a Web-based Educational Hypermedia System: the case of INSPIRE, User-Modeling and User-Adapted Interaction, vol. 13, 213-267, 2003.

47. Vrahatis M.N., Magoulas G.D. and Plagianakos V.P., From linear to nonlinear iterative methods, Applied Numerical Mathematics, vol. 45(1), 59 - 77, 2003.

48. Magoulas G.D., Plagianakos V.P., and Vrahatis M.N., Globally convergent algorithms with local learning rates, IEEE Tr. Neural Networks, vol. 13(3), 774-779, 2002.

49. Papanikolaou K., Grigoriadou M., Magoulas G.D., and Kornilakis H., Towards New Forms of Knowledge Communication: the Adaptive Dimension of a Web-based Learning Environment, Computers and Education, vol. 39, 333-360, 2002.

50. Plagianakos V. P., Magoulas G.D., and Vrahatis M.N., Deterministic Nonmonotone Strategies for Effective Training of Multi-layer Perceptrons, IEEE Tr. Neural Networks, vol. 13(6), 1268-1284, 2002.

51. Magoulas G.D. , Papanikolaou K.A., and Grigoriadou M. Neurofuzzy Synergism for Planning the Content in a Web-based Course, Informatica, vol. 25, 39-48, 2001.

52. Magoulas G.D., Plagianakos G.D., Androulakis G.S. and Vrahatis M.N., A Framework for the Development of Globally Convergent Adaptive Learning Rate Algorithms, International Journal of Computer Research, vol. 10(1), 1-10, 2001.

53. Magoulas G.D., Plagianakos V.P. and Vrahatis M.N., Adaptive stepsize algorithms for on-line training of neural networks, Nonlinear Analysis: Theory, Methods and Applications, vol. 47, 3425-3430, 2001.

54. Parsopoulos K.E. , Plagianakos V.P. , Magoulas G.D. and Vrahatis M.N., Objective function ``stretching’’ to alleviate convergence to local minima, Nonlinear Analysis: Theory, Methods and Applications, vol. 47, 3419-3424, 2001.

55. Plagianakos V.P. , Magoulas G.D. and Vrahatis M.N. , Learning in multilayer perceptrons using global optimization strategies, Nonlinear Analysis: Theory, Methods and Applications, vol. 47, 3431-3436, 2001.

56. Karkanis S., Magoulas G.D. and Theofanous N., Image Recognition and Neuronal Networks: Intelligent Systems for the Improvement of Imaging Information, Minimally Invasive Therapy and Allied Technologies, vol. 9(3-4), 225-230, August 2000.

57. Magoulas G.D. and Vrahatis M.N., A Class of Adaptive Learning Rate Algorithms Derived by One-Dimensional Subminimization Methods, Neural, Parallel and Scientific Computations, vol. 8, 147-168, 2000.

58. Pouloudi A. and Magoulas G.D. , Neural Expert Systems in Medical Image Interpretation: Development, Use and Ethical Issues, Journal of Intelligent Systems, vol.10 (5-6), 451-471, 2000.

59. Vrahatis M.N., Androulakis G.S., Lambrinos J.N. and Magoulas G.D., A class of gradient unconstrained minimisation algorithms with adaptive stepsize, Journal of Computational and Applied Mathematics, vol. 114, 367-386, 2000.

60. Vrahatis M.N., Magoulas G.D. and Plagianakos V.P., Globally convergent modification of the Qprop method, Neural Processing Letters, vol. 12(2), 159-170, October 2000.

61. Magoulas G.D., Vrahatis M.N. and Androulakis G.S., Improving the convergence of the back-propagation algorithm using learning rate adaptation methods, Neural Computation, vol. 11, 1769-1796, 1999.

62. Androulakis G.S., Magoulas G.D. and Vrahatis M.N., Geometry of learning: visualizing the performance of neural network supervised training methods, Nonlinear Analysis: Theory, Methods and Applications, vol. 30, 4539-4544, 1997.

63. Magoulas G.D., Vrahatis M.N. and Androulakis G.S., Effective back-propagation training with variable stepsize, Neural Networks, vol.10, 69-82, 1997.

64. Magoulas G.D., Vrahatis M.N. and Androulakis G.S., On the alleviation of the problem of local minima in back-propagation, Nonlinear Analysis: Theory, Methods and Applications, vol. 30, 4545-4550, 1997.

65. Vrahatis M.N., Androulakis G.S. and Magoulas G.D., On the acceleration of the back-propagation training algorithm, Nonlinear Analysis: Theory, Methods and Applications, vol. 30, 4551-4554, 1997.

66. King R.E., Magoulas G.D. and Stathaki A.A., Multivariable fuzzy controller design, Control Engineering Practice, vol.2, 431-437, 1993.

67. Magoulas G.D., King R.E. and Stathaki A.A., Design of industrial multivariable fuzzy controllers, Studies in Informatics and Control, vol.2, 253-261, 1993.

 

 

 

Home - Teaching - Publications - Bio - Blog - Department

 

 

 

 

C.  Articles in books and edited volumes 

 

1.    Sikora T.D., Magoulas G. D., Finding Relevant Dimensions in Application Service Management Control. Liming Chen, Supriya Kapoor, Rahul Bhatia (Eds.), Intelligent Systems for Science and Information, Extended and Selected Results from the Science and Information Conference, Studies in Computational Intelligence, vol. 542, pp 335-353, 2014.

2.    Charlton P. & Magoulas G.D. Context-aware Framework for Supporting Personalisation and Adaptation in Creation of Learning Designs. S. Graf, F. Lin, Kinshuk & R. McGreal (Eds.) Intelligent and Adaptive Learning Systems: Technology Enhanced Support for Learners and Teachers. Hershey, PA: IGI Global, 2011.

3.    Peng C-C and Magoulas G.D., Nonmonotone Learning of Recurrent Neural Networks in Symbolic Sequence Processing Applications, Palmer-Brown, D., Draganova, Ch., Pimenidis, E., Mouratidis, H. (Eds.), Engineering Applications of Neural Networks, Communications in Computer and Information Science Series, Springer Berlin Heidelberg, vol. 43, pp. 325-335, 2009, ISBN: 978-3-642-03969-0.

4.    Charlton, P. and Magoulas, G. D. Next Generation Environments for Context-Aware Learning Design, Hatzilygeroudis, I. and Prentzas, J. (eds.), Combinations of Intelligent Methods and Applications, vol. 8, Smart Innovation, Systems and Technologies Series, Springer Berlin Heidelberg, pp. 125-143, 2011, ISBN: 978-3-642-19618-8.

5.    Van Labeke N., Magoulas G.D. and Poulovassilis A., Searching for “People Like Me” in a Lifelong Learning System, Learning in the Synergy of Multiple Disciplines, Proceedings of the 4th European Conference on Technology Enhanced Learning (EC-TEL 2009) Nice, France, Sept 29–Oct 2, 2009, U. Cress, V. Dimitrova, M. Specht (Eds.), Lecture Notes in Computer Science, Volume 5794, Springer, pp. 106-111, 2009.

6.    Van Labeke N., Poulovassilis A. and Magoulas G.D., Using Similarity Metrics for Matching Lifelong Learners, Intelligent Tutoring Systems, Lecture Notes in Computer Science, vol. 5091, Proceedings of the 9th International Conference on Intelligent Tutoring Systems (ITS 2008), B. P.Woolf, E. Aïmeur, R. Nkambou, S. Lajoie (Eds.), Springer, pp. 142-151, 2008.

7.    Dimakopoulos D. and Magoulas G.D., An architecture for a personalised mobile environment to facilitate contextual lifelong learning, H. Ryu and D. Parsons (eds.), Innovative Mobile Learning, chapter 12, 2009.

8.    Peng C.-C. and Magoulas G.D., Sequence Processing with Recurrent Neural Networks, Encyclopedia of Artificial Intelligence, forthcoming.

9.    de Freitas S., Harrison I., Magoulas G.D., Papamarkos G., Poulovassilis A., Van Labeke N., Mee A., and Oliver M., L4All: a Web-Service Based System for Lifelong Learners, S. Salerno, M. Gaeta, P. Ritrovato, N. Capuano, F. Orciuoli, S. Miranda and A. Pierri (eds.), The Learning Grid Handbook: Concepts, Technologies and Applications, Volume 2: The Future of Learning, IOS Press, 2008, ISBN: 978-1-58603-829-8.

10. Magoulas G.D., User Modeling in Information Portals, Encyclopedia of Portal Technologies and Applications, Arthur Tatnall (ed.), vol II, Information Science Reference, ISBN: 978-1-59140-989-2, April 2007.

11. Peng C.-C. and Magoulas G.D., Adaptive Self-scaling Non-monotone BFGS Training Algorithm for Recurrent Neural Networks, Artificial Neural Networks, J. Marques de Sá et al. (eds.), Proceedings of the 17th ICANN 2007, Part I, Lecture Notes in Computer Science vol. 4668, pp. 259–268, 2007.

12. Plagianakos V.P., Magoulas G.D. and Vrahatis M.N., Improved learning of neural nets through global search, Global Optimization - Scientific and Engineering Case Studies, János D. Pintér (ed.), Series: Nonconvex Optimization and Its Applications, Vol. 85, Springer-Verlag New York Inc, pp. 361- 388, 2006 (ISBN: 0-387-30408-8).

13. Magoulas G.D, Web-based instructional systems, Encyclopedia of Human Computer Interaction, Claude Ghaoui (ed.), IDEA publishing, ISBN: 1-59140-562-9, pp. 729-738, 2005.

14. Magoulas G.D. and Vrahatis M.N., Parameter optimization algorithm with improved convergence properties for adaptive learning, In the Frontiers of Computational Science, Lecture Series on Computer and Computational Sciences, Vol. 3, G. Maroulis and Th. Simos (eds.), Brill Academic Publishers, Leiden, The Netherlands, pp.384-398, 2005 (ISBN 90-6764-442-0).

15. Vrahatis M.N. and Magoulas G.D., Computational Approaches to Artificial Intelligence: Theory, Methods, Applications. Lecture Series on Computer and Computational Sciences, Advances in Computational Methods in Sciences and Engineering 2005, Selected papers from the International Conference of Computational Methods in Sciences and Engineering (ICCMSE 2005), Th. Simos, G. Maroulis, (eds.), Volume 4B, 2005, pp.1413-1415, VSP/Brill Academic Publishers, The Netherlands, (ISBN: 9067644447).

16. Vrahatis, M.N. and Magoulas G.D, Advances in Computational Intelligence: Theory, Methods, Applications. Selected papers from the International Conference of Numerical Analysis and Applied Mathematics (ICNAAM), Lecture Series on Computer and Computational Sciences, T. Simos, G. Psihoyios, G. Tsitouras (eds), Wiley-Vch, 869-871, 2005 (ISBN: 3-527-40652-2).

17. Dounias G., Magoulas G. and Linkens D., Intelligent Technologies in Bioinformatics and Medicine: An Introduction to the Present Edition, in G. Dounias, G. Magoulas and D. Linkens (eds.), Intelligent Technologies in Bioinformatics and Medicine, Published by the Univ. of the Aegean and EUNITE (2004), pp. 1-4.

18. Frias-Martinez E., Magoulas G.D., Chen S., and Macredie R. Recent Soft Computing Approaches to User Modeling in Adaptive Hypermedia. Lecture Notes in Computer Science, vol. 3137, Adaptive Hypermedia and adaptive web-based systems, Proceedings of 3rd Int Conf Adaptive Hypermedia, Paul De Bra, Wolfgang Nejdl (eds), Springer, pp. 104-113, 2004.

19. Magoulas, G. D., Chen, S. Y., and Dimakopoulos, D. A Personalised Interface for Web Directories based on Cognitive Styles. Lecture Notes in Computer Science, vol. 3196, User-Centered Interaction Paradigms for Universal Access in the Information Society: Revised Selected Papers of the 8th ERCIM Workshop on User Interfaces for All, Springer-Verlag, pp. 159-166, 2004, ISBN: 3-540-23375-X.

20. Stathacopoulou R., Grigoriadou M., Samarakou M., Magoulas G.D., Using Simulated Students for Machine Learning. Lecture Notes in Computer Science, vol. 3220, Proceedings of the 7th International Conference on Intelligent Tutoring Systems (ITS 2004), James C. Lester, Rosa Maria Vicari, Fabio Paraguau, Springer, pp. 889-891, 2004.

21. Anastasiadis A.D., Magoulas G.D., and Liu X. Classification of Protein Localisation Patterns via Supervised Neural Network Learning. Lecture Notes in Computer Science, vol. 2810, Advances in Intelligent Data Analysis V, Proceedings of the 5th International Symposium on Intelligent Data Analysis, M. Berthold, H.-J. Lenz, E. Bradley et al. (eds.), Berlin: Springer-Verlag, pp. 430-439, 2003.

22. O’Neill P., Magoulas G. D., and Liu X. Obtaining Quality Microarray Data via Image Reconstruction. Lecture Notes in Computer Science, vol. 2810, Advances in Intelligent Data Analysis V, Proceedings of the 5th International Symposium on Intelligent Data Analysis, M. Berthold, H.-J. Lenz, E. Bradley et al. (eds.), Berlin: Springer-Verlag, pp. 364-375, 2003.

23. Grigoriadou, M., Kornilakis, H., Papanikolaou, K.A., and Magoulas, G.D. Fuzzy Inference for Student Diagnosis in Adaptive Educational Systems. Lecture Notes in Artificial Intelligence, vol. 2308, Methods and Applications of Artificial Intelligence: Proceedings of the 2nd Hellenic Conference on AI, SETN2002, Vlahavas and C.D. Spyropoulos (eds.), Berlin: Springer-Verlag, pp. 191-202, 2002.

24. Papanikolaou K.A., Grigoriadou M., Kornilakis H., and Magoulas G.D. INSPIRE: an INtelligent System for Personalized Instruction in a Remote Environment. Lecture Notes in Computer Science, vol. 2266, Hypermedia: Openess, Structural Awareness, and Adaptivity, S. Reich. M. Tzagarakis, P.M.E. De Bra, Berlin, Heidelberg: Springer-Verlag, pp. 215-225, 2002.

25. Ghinea G. and Magoulas G. D., Perceptual considerations for quality of service management: an integrated architecture. Lecture Notes in Computer Science, Proceedings of the User Modeling Conference, Springer, 234-236, 2001.

26. Magoulas G.D. and Prentza A., Machine learning in medical applications, in Machine Learning and its Applications: Advanced Lectures, G. Paliouras, V. Karkaletsis and C.D. Spyropoulos (Eds.), Lecture Notes in Artificial Intelligence, vol. 2049, Springer-Verlag, pp. 300-307, 2001.

27. Parsopoulos, K., Plagianakos, V.P., Magoulas, G.D., and Vrahatis M.N., Improving the particle swarm optimizer by function “stretching”, in Advances in convex analysis and global optimization, Hadjisavvas N. and Pardalos P. (ed.), vol. 54, Noncovex Optimization and its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001, Chapter 28, pp.445-457, ISBN 0-7923-6942-4.

28. Plagianakos V.P., Magoulas G.D. and Vrahatis M.N., Supervised training using global search methods, in Advances in convex analysis and global optimization, Hadjisavvas N. and Pardalos P. (ed.), vol. 54, Noncovex Optimization and its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001, Chapter 26, pp.421-432, ISBN 0-7923-6942-4.

29. Plagianakos V.P., Magoulas G.D. and Vrahatis M.N., Learning rate adaptation in stochastic gradient descent, in Advances in convex analysis and global optimization, vol. 54, Noncovex Optimization and its Applications, Hadjisavvas N. and Pardalos P. (ed.), Kluwer Academic Publishers, Dordrecht, The Netherlands, 2001, Chapter 27, pp.433-444, ISBN 0-7923-6942-4.

30. Papanikolaou K., Magoulas G.D., and Grigoriadou M., A connectionist approach for supporting personalized learning in a web-based learning environment. Lecture Notes in Computer Science, vol. 1892, Proceedings of the International Conference on Adaptive Hypermedia and Adaptive Web-based Systems, Springer, pp. 189-201, 2000.

31. Magoulas G.D., Plagianakos V.P., Androulakis G.S. and Vrahatis M.N., A framework for the development of globally convergent adaptive learning rate algorithms. Advances in Intelligent Systems and Computer Science, N.E. Mastorakis ed., World Scientific and Engineering Society Press, pp.207-212, 1999.

32. Magoulas G.D., Plagianakos V.P., Androulakis G.S. and Vrahatis M.N., A framework for the development of globally convergent adaptive learning rate algorithms, in Advances in Intelligent Systems and Computer Science, N.E. Mastorakis ed., World Scientific and Engineering Society Press, 1999, pp.207-212.

33. Plagianakos V.P., Magoulas G.D., Androulakis G.S. and Vrahatis M.N., Global search methods for neural network training. Advances in Intelligent Systems and Computer Science, N.E. Mastorakis ed., World Scientific and Engineering Society Press, pp.47-52, 1999.

34. Magoulas G.D. and Vrahatis M.N., A model for local convergence analysis of batch-type training algorithms with adaptive learning rates, in Recent Advances in Circuits and Systems, Mastorakis, N. E. (ed.), World Scientific, pp. 321-326, 1998.

35. Magoulas G.D., Vrahatis M.N., Grapsa T. N. and Androulakis G.S., A training method for discrete multilayer neural networks, in Mathematics of Neural Networks: Models, Algorithms & Applications, Ellacot, S. W., Mason J. C. and I. J. Anderson (eds.), Kluwer Academic Publishers, Operations Research/Computer Science Interfaces series, chapter 41, pp. 245-249, 1997.

36. Magoulas G.D., Vrahatis M.N., Grapsa T. N. and Androulakis G.S., Neural network supervised training based on a dimension reducing method, in Mathematics of Neural Networks: Models, Algorithms & Applications, Ellacot, S. W., Mason, J. C. and Anderson, I. J. (eds.), Kluwer Academic Publishers, Operations Research/Computer Science Interfaces series, chapter 42, pp. 250-254, 1997.

37. Androulakis G.S., Magoulas G.D. and Vrahatis M.N., Minimization techniques in neural network supervised training, In Selected Works of the 6th International Colloquium on Differential Equations, VSP International Science Publishers, pp. 9-16, 1996.

 

 

 

Home - Teaching - Publications - Bio - Blog - Department

 

D. Conference and workshop papers 

 

1.         Mosca A., and Magoulas G.D. Adapting Resilient Propagation for Deep Learning, Proceedings of the 15th UK Workshop on Computational Intelligence, University of Exeter, 7-9 September 2015, http://arxiv.org/pdf/1509.04612.pdf.

2.         Stamate C. , Magoulas G.D., Thomas M.S.C. Transfer learning approach for financial applications, Proceedings of the 15th UK Workshop on Computational Intelligence, University of Exeter, 7-9 September 2015, http://arxiv.org/pdf/1509.02807.pdf.

3.         Adam S., Karras D., Magoulas G.D. and Vrahatis M., Reliable estimation of a neural network's domain of validity through interval analysis based inversion, Proceedings of the International Joint Conference Neural Networks, 12-17 July 2015, Killarney, IEEE, Official URL: http://dx.doi.org/10.1109/IJCNN.2015.7280794

4.         Maitrei K.i, Magoulas G.D., Thomas M.S.C., Transfer learning across heterogeneous tasks using behavioural genetic principles, Proceedings of the 13th UK Workshop on Computational Intelligence, pp.151-158, 2013.

5.         Sikora, T.D.; Magoulas, G.D., Finding relevant dimensions in Application Service Management control: A features selection approach, IEEE Science and Information Conference (SAI), 2013, pp.387-395, 7-9 Oct. 2013.

6.         Sikora T. and Magoulas G.D., Neural Adaptive Control in Application Service Management Environment, In Proc. of the 13th International Conference on Engineering Applications of Neural Networks, 20-23 September 2012, London, C. Jayne, S. Yue, and L. Iliadis (eds.), Springer CCIS 311, pp. 223–233, 2012.

7.         Adam S.P., Magoulas G.D., and Vrahatis M.N., Direct Zero-Norm Minimization for Neural Network Pruning and Training, In Proc. of the 13th International Conference on Engineering Applications of Neural Networks, 20-23 September 2012, London, C. Jayne, S. Yue, and L. Iliadis (eds.), Springer CCIS 311, pp. 295–304, 2012.

8.         Kohli M., Magoulas G.D., and Thomas M., Hybrid Computational Model for Producing English Past Tense Verbs, In Proc of the 13th International Conference on Engineering Applications of Neural Networks (EANN), 20-23 September 2012, London, C. Jayne, S. Yue, and L. Iliadis (eds.), Springer CCIS 311, pp. 315–324, 2012.

9.         Cocea M. and Magoulas G.D., Learning Task-related Strategies from User Data through Clustering, In Proc of 12th IEEE International Conference on Advanced Learning Technologies, 400-404, 2012.

10.      Cocea M. and Magoulas G.D., Context-dependent Feedback Prioritisation in Exploratory Learning Revisited, In Proc UMAP 2011, Girona, Spain.

11.      Charlton P., Magoulas G.D., Autonomic Computing and Ontologies to Enable Context-aware Learning Design, Proc. 22nd International Conference on Tools with Artificial Intelligence, 27-29 Oct. 2010, Arras, France, pp. 286-291.

12.      Lewis T.E., Magoulas G.D., Tweaking a Tower of Blocks Leads to a TMBL: Pursuing Long Term Fitness Growth in Program Evolution, Proc. IEEE Conference Evolutionary Computation, WCCI 2010 IEEE World Congress on Computational Intelligence July, 18-23, 2010 - CCIB, Barcelona, Spain, pp. 4465-4472.

13.      Voulgaris Z, Magoulas G.D., Discernibility-based Algorithms for Classification. In Proc. Conf. Numerical Analysis (NumAn2010), Chania, Crete, Greece, pp. 266-272 (ISBN 978-960-8475-14-4).

14.      Cocea M., Gutierrez-Santos S., Magoulas G.D., Adaptive Modelling of Users’ Strategies in Exploratory Learning Using Case-Based Reasoning. In Proc. 14th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems (KES 2010), 8-10 September 2010 Cardiff, Wales, UK, Rossitza Setchi, Ivan Jordanov, Robert J. Howlett and Lakhmi C. Jain (eds), Lecture Notes in Computer Science, vol. 6277, pp. 124-134.

15.      Cocea M., Magoulas G.D., Group Formation for Collaboration in Exploratory Learning Using Group Technology Techniques, In Proc. 14th International Conference on Knowledge-Based and Intelligent Information & Engineering Systems (KES 2010), 8-10 September 2010 Cardiff, Wales, UK, Rossitza Setchi, Ivan Jordanov, Robert J. Howlett and Lakhmi C. Jain (eds), Lecture Notes in Computer Science, vol. 6277, pp. 103-113.

16.      Gutiérrez Santos S., Mavrikis M., Magoulas G.D., Layered Development and Evaluation for Intelligent Support in Exploratory Environments: The Case of Microworlds. In Proc of the Intelligent Tutoring Systems Conference, vol. 1, 2010, pp. 105-114.

17.      Charlton P., Magoulas G.D., Self-configurable framework for enabling context-aware learning design. In Proc. IEEE Conf. of Intelligent Systems, 2010, pp. 1-6.

18.      Gutiérrez Santos S., Mavrikis M., Magoulas G.D., Sequence Detection for Adaptive Feedback Generation in an Exploratory Environment for Mathematical Generalisation. In Proc. 14th International Conference on Artificial Intelligence: Methodology, Systems, and Applications (AIMSA 2010), Varna, Bulgaria, September 8-10. 2010, Darina Dicheva and Danail Dochev (eds), Lecture Notes in Computer Science, vol. 6304, 2010,pp 181-190.

19.      Gutiérrez Santos S., Cocea M., Magoulas G.D., A Case-Based Reasoning Approach to Provide Adaptive Feedback in Microworlds. In Proc. Intelligent Tutoring Systems Conference, vol. 2, 2010, pp. 330-333.

20.      Cocea M., Magoulas G.D., Identifying user strategies in exploratory learning with evolving task modelling. In Proc. IEEE Conf. of Intelligent Systems, 2010, pp. 13-18.

21.      Cocea, M, Gutierrez-Santos, S. Magoulas, G.D. Enhancing Modelling of Users’ Strategies in Exploratory Learning through Case-base Maintenance. In Proceedings of 14th UK Workshop on Case-Based Reasoning, 2009, pp. 2-13.

22.      Lewis T.E., Magoulas G.D. Strategies to Minimise the Total Run Time of Cyclic Graph Based Genetic Programming with GPUs, The ACM Genetic and Evolutionary Computation Conference (GECCO-2009), pp. 1379-1386.

23.      Cocea M., Magoulas G., Context-dependent Personalised Feedback Prioritisation in Exploratory Learning for Mathematical Generalisation. Proceedings of the 17th International Conference User Modelling, Adaptation and Personalisation Conference, UMAP 2009 (formerly UM and AH), pp. 271-282.

24.      Cocea, M., Magoulas, G. Identifying strategies in users exploratory learning behaviour for mathematical generalisation. In Proc. 14th International Conference on Artificial Intelligence in Education (AIED 2009), Building Learning Systems that Care: From Knowledge Representation to Affective Modelling, vol. 200 Frontiers in Artificial Intelligence and Applications, V. Dimitrova, R. Mizoguchi, B. Du Boulay and A. Graesser (eds.), July 2009, pp 626-628.

25.      Cocea, M., Magoulas, G. Task-oriented modeling of learner behaviour in exploratory learning for mathematical generalisation. In Proceedings of the 2nd  International Workshop on Intelligent Support for Exploratory Environments (ISEE’09), in conjunction with the 14th International Conference on Artificial Intelligence in Education (AIED 2009),  pp. 16-24.

26.      de Freitas, S. Rebolledo-Mendez, G., Liarokapis, F., Magoulas, G., Poulovassilis, A. Developing an evaluation methodology for immersive learning experiences in a virtual world. In Rebolledo-Mendez, G., Liarokapis, F., de Freitas, S. (Eds) Proceedings of 2009 Conference in Games and Virtual Worlds for Serious Applications, IEEE, pp 43-50.

27.      Cocea M., Gutierrez-Santos S. and Magoulas G., Challenges for Intelligent Support in Exploratory Learning: the case of ShapeBuilder. In Proceedings of the 1st International Workshop on Intelligent Support for Exploratory Environments (ISEE08), in conjunction with the third European Conference on Technology-Enhanced Learning (EC-TEL ’08).

28.      Cocea M. and Magoulas G., Combining intelligent methods for learner modelling in exploratory learning environments, in Proceedings of the 1st International Workshop on Combinations of Intelligent Methods and Applications (CIMA 2008), in conjunction with the 18th European Conference on Artificial Intelligence (ECAI-08), pp. 13–18.

29.      Lewis T. E and Magoulas G.D., TREAD: A New Genetic Programming Representation Aimed at Research of Long Term Complexity Growth, The ACM Genetic and Evolutionary Computation Conference (GECCO’08), July 12–16, 2008, Atlanta, Georgia, USA, pp. 1339-1340.

30.      Voulgaris Z. and Magoulas G. D., A discernibility-based approach to feature selection for microarray data, Proceedings of IEEE International Conference of Intelligent Systems, Varna, Bulgaria, Sept. 2008, vol.3,  pp. 21.2-21.7.

31.      Voulgaris Z. and Magoulas G. D., Dimensionality reduction for feature and pattern selection in classification problems. Proceeding of The Third International Multi-Conference on Computing in the Global Information Technology, Athens, Greece, July 2008, pp. 160-165.

32.      Voulgaris Z. and Magoulas G.D., Extensions of the k Nearest Neighbour Methods for Classification Problems, Proc. of the 26th IASTED International Conference on Artificial Intelligence and Applications, AIA 2008, Innsbruck, Austria, February 11 – 13, 2008, pp. 23-28.

33.      Anastasiadis A.D., Georgoulas G., Magoulas G.D., and Tzes A., Adaptive Particle Swarm Optimizer with Nonextensive Schedule, Proceedings of the Genetic and Evolutionary Computation Conference 2007 (GECCO’07), July 7–11, 2007, London, UK, pp. 168.

34.      Anastasiadis A.D., Magoulas, G.D., Georgoulas G., and Tzes A., Nonextensive Particle Swarm Optimization Methods, Proceedings of the Conference in Numerical Analysis (NumAn2007), September 3-7, Kalamata, pp. 15-18.

35.      Baajour H., Magoulas G. D., and Poulovassilis A., Modelling the lifelong learner in a services-based environment, Proceedings of the 2nd International Conference on Internet Technologies and Applications (ITA 07), Wrexham, North East Wales, UK 4-7 September 2007, pp. 191-201.

36.      Baajour H., Magoulas G. D., and Poulovassilis A., Designing services-enabled personalisation for planning of lifelong learning based on individual and group characteristics, Proceedings of the Workshop on Personalisation in E-Learning Environments at Individual and Group Level, 11th International Conference on User Modeling (UM 2007), Corfu, Greece, 25-29 June 2007, pp. 8-15.

37.      Peng C.-C., and Magoulas G.D. Effective Modification of the BFGS Method for Training Recurrent Neural Networks, Proceedings of the Conference in Numerical Analysis (NumAn2007), September 3-7, Kalamata, pp. 113-117.

38.      Peng C.-C. and Magoulas G.D., Adaptive Nonmonotone Conjugate Gradient Training Algorithm for Recurrent Neural Networks, Proc. 19th IEEE International Conference on Tools with Artificial Intelligence 2007 (ICTAI’07), 29-31 October 2007, Patras, Greece, pp. 374-381.

39.      Dimakopoulos, D.N. and Magoulas, G.D. A personalised mobile environment for lifelong learners, Proceedings of IADIS International Conference on WWW/Internet 2006, October 5-8, 2006, Murcia, Spain, 31-38.

40.      Magoulas, G.D. and Dimakopoulos, D. An Adaptive Fuzzy Model for Personalization with Evolvable User Profiles, Proceedings of IEEE 2nd International Symposium on Evolving Fuzzy Systems, September 7-9, 2006, Ambelside, Lake District, UK, 336-341.

41.      Magoulas G.D., Papamarkos G., Poulovassilis A., A Services-enabled Environment for Personalising Lifelong Learning Pathways, Proceedings of Workshops held at the 4th International Conference on Adaptive Hypermedia and Adaptive Web-based Systems, Dublin, Ireland, June 20, 2006, Lecture Notes in Learning and Teaching, Weibelzahl, S., Cristea, A., editors, Dublin: National College of Ireland, 2006. (ISSN 1649-8623), 140-147.

42.      de Freitas S., Magoulas G.D., Oliver M., Papamarkos G., Poulovassilis A., Harrison I, Mee A., L4All - a web-service based system for Lifelong Learners, Proceedings of eChallenges'2006, Workshop on Next Generation in Technology Enhanced Learning, October 25-27, 2006, Barcelona, IOS Press, pp 1477-1484.

43.      Magoulas G.D. and Anastasiadis A., A nonextensive probabilistic model for global exploration of the search space. In T. Simos, G. Psihoyios, G. Tsitouras, Proceedings of International Conference of Numerical Analysis and Applied Mathematics (ICNAAM), 16-20 September 2005, Rhodes, Greece, Wiley-Vch, 878-881 (ISBN: 3-527-40652-2).

44.      Magoulas G.D. and Dimakopoulos D.N. Designing Personalised Information Access to Structured Information Spaces, Proceedings of the Workshop on New Technologies for Personalized Information Access, 10th International conference on User Modeling, July 24-29, 2005, Edinburgh, Scotland, UK, 64-73.

45.      Magoulas, G.D. and Dimakopoulos, D. Personalisation in e-learning: an approach based on services, Proceedings of IADIS International Conference on WWW/Internet 2005, October 19-22, 2005, Lisbon, Portugal, 312-316.

46.      Anastasiadis A.D., and Magoulas G.D., Nonextensive Entropy and Regularization for Adaptive Learning, Proc. of the IEEE International Joint Conference on Neural Networks (IJCNN-04), Budapest, Hungary, 25-29 July, 2004, vol. 2, 1067-1072.

47.      Anastasiadis A.D., Magoulas G.D., and Vrahatis M.N., A New Learning Rates Adaptation Strategy for the Resilient Propagation Algorithm. In M. Verleysen (ed.), Proceedings of the 12th European Symposium on Neural Networks (ESANN-04), April 28-30, Bruges, Belgium, D-side Publications: Evere, 1-6, 2004.

48.      Magoulas G.D., Plagianakos V.P., Tasoulis D.K., and Vrahatis M.N., Tumor detection in colonoscopy using the unsupervised k-windows clustering algorithm and neural networks. In Proceedings of the Fourth European Symposium on Biomedical Engineering, Session 3, June 25-27, 2004, Patras, Greece.

49.      Ghinea G. and Magoulas G. Integrating Perceptech Requirements through Intelligent Computation of Priorities in Multimedia Streaming, Lecture Series on Computer and Computational Sciences, Vol. 1, Proceedings of the International Conference of Computational Methods in Sciences and Engineering 2004 (ICCMSE 2004), VSP International Science Publishers, Zeist, The Netherlands, 2004,pp.856-859.

50.      Anastasiadis A.D., Magoulas G.D. and Vrahatis M.N., A globally convergent Jacobi-bisection method for neural network training, Lecture Series on Computer and Computational Sciences, Vol. 1, Proceedings of the International Conference of Computational Methods in Sciences and Engineering 2004 (ICCMSE 2004), VSP International Science Publishers, Zeist, The Netherlands, 2004, pp.843-848.

51.      Stathacopoulou R., Samarakou M., Grigoriadou M., Magoulas G.D., A Neuro-Fuzzy Approach to Detect Student's Motivation. In Kinshuk, Chee-Kit Looi, Erkki Sutinen, Demetrios G. Sampson, Ignacio Aedo, Lorna Uden and Esko Kahkonen, Proceedings of the IEEE International Conference on Advanced Learning Technologies (ICALT 2004), 30 August-1 September 2004, Joensuu, Finland, 71-75, IEEE Computer Society.

52.      O'Neill P., Magoulas G.D., Liu X., Quality Processing of Microarray Image Data through Image Inpainting and Texture Synthesis. In Proceedings of the 2004 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI 2004), Arlington, VA, USA, 15-18 April 2004, vol. 1, 117-120.

53.      Magoulas G.D., Building diverse neural ensembles for bioinformatics applications, Proceedings of the Workshop on Intelligent Technologies in Bioinformatics and Medicine, European Symposium on Intelligent Technologies, Hybrid Systems and their Implementation on Smart Adaptive Systems (EUNITE 2004), Aachen, Germany, June 10-12, 2004.

54.      Chen, S. Y. and Magoulas, G. D. The Relationships between Cognitive Styles and Information Representation in Web Directories. In Proceedings of the LIDA Conference 2003, Libraries in the Digital Age, May 26-30, 2003.

55.      Ghinea G., Magoulas G. D. and Frank A.O. Intelligent Protocol Adaptation for Enhanced Medical e-Collaboration. In Proceedings of the International FLAIRS Conference, May 12-14, 2003 St. Augustine, Florida.

56.      Ghinea G., Magoulas G. D. and Thomas J.P., Intelligent Management of QoS requirements for Perceptual Benefit. In Proceedings 3rd Conference on Intelligent Systems Design and Applications, pp. 437-446, Tulsa, USA, 2003.

57.      Anastasiadis A. and Magoulas G.D. Neural Network-based Prediction of Proteins Localisation Sites. In Proceedings of European Symposium on Intelligent Technologies, Hybrid Systems and their implementation on Smart Adaptive Systems, 10-12 July 2003, Oulu, Finland, 318 – 325.

58.      Anastasiadis A.D., Magoulas G.D., and Vrahatis M.N., An efficient improvement of the Rprop algorithm. In M. Gori and S. Marinai (eds.), Artificial Neural Networks in Pattern Recognition, Proceedings of the 1st Int Association of Pattern Recognition-TC3 Workshop, Florence, Italy, September 2003, 197-201. Firenze: Stampa Digitale.

59.      Magoulas, G. D., Chen, S. Y., and Papanikolaou , K. A. Integrating Layered and Heuristic Evaluation for Adaptive Learning Environments. In Proceedings of the Second Workshop on Empirical Evaluation of Adaptive Systems, 9th International Conference on User Modeling UM2003, June 22-26, 2003.

60.      Plagianakos V .P .,Magoulas G .D .and Vrahatis M .N ., On-line neural network training (in Greek), Order and Chaos in Nonlinear Dynamical Systems Vol .8, Proc. of the 9th Panhellenic Conference /14th Summer School on Non -linear dynamics chaos and complexity, Patras , July 23 –August 2, 2001, T .Bountis S .Ichtiaroglou and S .Pnevmatikos (eds.).,K . Sfakianaki Editions, Thessaloniki, pp .329 –340, 2003.[SET 960-7258-16-9 ][ISBN 960-87136-2-5 ].

61.      Magoulas, G.D., Eldabi, T., and Paul R.J., Adaptive Stochastic Search Methods for Parameter Adaptation of Simulation Models, in Proceedings of the IEEE International Symposium on Intelligent Systems, Varna, Bulgaria, Sept. 10-12, 2002, vol. 2, 23-27.

62.      Ghinea G., Magoulas G.D., and Frank A.O., Intelligent Multimedia Transmission for Back Pain Treatment, in Proceedings of European Symposium on Intelligent Technologies, Hybrid Systems and their Implementation on Smart Adaptive Systems (EUNITE 2002), Session "Intelligent E-health Applications in Medicine", 19-21 September 2002, Albufeira, Portugal, 309-316.

63.      Magoulas G.D., Eldabi T., and Paul R.J., Global search strategies for simulation optimization, in E. Yücesan, C.-H. Chen, J. L. Snowdon, and J. M. Charnes, eds., Proceedings of the Winter Simulation Conference, December 8-11, 2002, San Diego, California, vol. 2, 1978-1985.

64.      Vrahatis M .N .,Magoulas G .D .and Plagianakos V .P ., Introduction to artificial neural networks (in Greek), Order and Chaos in Nonlinear Dynamical Systems Vol .7, Proceedings of the 8th Panhellenic Conference /13th Summer School on Non-linear dynamics chaos and complexity, Patras July 17 –28, 2000, T .Bountis D .Ellinas and I .Grispolakis (eds.), Pnevmatikos publications Athens pp .225 –247, 2002.

65.      Plagianakos V .P .,Magoulas G .D .and Vrahatis M .N .,Tumor detection in colonoscopic images using hybrid methods for on –line neural network training, Proc. Neural Networks and Expert Systems in Medicine and Healthcare ,(NNESMED 2001), G .M .Papadourakis (ed.), Technological Educational Institute of Crete Heraklion 2001, pp .59 –64 [ISBN 9608531659].

66.      Ghinea G. and Magoulas G. D., A novel application of the analytic hierarchy process in “perceived” quality of service management, in Proceedings of IASTED International Conference on Applied Informatics, Innsbruck, Austria, February 19-22, 2001, pp. 43-47.

67.      Grigoriadou M., Papanikolaou K., Kornilakis H., and Magoulas G., Towards new forms of communication of knowledge in educational hypermedia systems, in Proceedings of the Computer-Aided Learning Conference (CAL2001), April 2-4, 2001, University of Warwick, Coventry, UK.

68.      Pouloudi A., Magoulas G. D., Grigoriadou M., Hossain S., and Kanidis V., IT supported learning in schools: insights from the british and greek experience, in Proceedings of the Computer-Aided Learning Conference (CAL2001), April 2-4, 2001, University of Warwick, Coventry, UK.

69.      Parsopoulos, K., Plagianakos, V.P., Magoulas, G.D., and Vrahatis M.N., Stretching technique for obtaining global minimizers through particle swarm optimization, in Proceedings of the Particle Swarm Optimization Workshop, April 6-7, 2001, Indiana, USA, pp. 22-29.

70.      Stathacopoulou R., Magoulas G.D., Grigoriadou M., and Mitropoulos D., Neural network-based fuzzy modeling of the diagnostic process, in Proceedings of the 10th International Conference on Artificial Intelligence in Education (AI-ED 2001), San Antonio, Texas, May 19-23 2001, USA.

71.      Grigoriadou M., Papanikolaou K., Kornilakis H., and Magoulas G., INSPIRE: an INtelligent System for Personalized Instruction in a Remote Environment, in P. De Bra, P. Brusilovsky & A. Kobsa (eds), Pre-Workshop Proceedings: Third Workshop on Adaptive Hypertext and Hypermedia, 8th International Conference on User Modeling (UM2001), Sonthofen, Germany, July 13, 2001, 31-40.

72.      Magoulas G.D. and Ghinea G., Neural network-based interactive multicriteria decision making in a quality of perception-oriented management scheme, in Proceedings of the INNS-IEEE International Joint Conference on Neural Networks, Washington DC, 15-19 July 2001, USA, vol. 4, 2536-2541.

73.      Plagianakos V.P., Magoulas  G.D.,  Nousis N.K., and Vrahatis M.N., Training multilayer networks with discrete activation functions, in Proceedings of the INNS-IEEE International Joint Conference on Neural Networks, Washington DC, 15-19 July 2001, USA, vol. 4, 2805-2810.

74.      Plagianakos V.P., Magoulas  G.D.,  Nousis N.K., and Vrahatis M.N., PVM-based training of large neural architectures, in Proceedings of the INNS-IEEE International Joint Conference on Neural Networks, Washington DC, 15-19 July 2001, USA, vol. 4, 2584-2589.

75.      Magoulas G.D., Plagianakos V.P., and Vrahatis M.N., Hybrid methods using evolutionary algorithms for on-line training, in Proceedings of the INNS-IEEE International Joint Conference on Neural Networks, Washington DC, 15-19 July 2001, USA, vol. 3, 2218-2223.

76.      Ghinea G. and Magoulas G.D., Quality of Service for Perceptual Considerations: An Integrated Perspective, in Proceedings of 2001 IEEE International Conf. on Multimedia & Expo (ICME2001), 22-25 August 2001, Tokyo, Japan, 571-574.

77.      Ghinea G., Magoulas G. D. and Siamitros C., Perceptual considerations in a QoS framework: a fuzzy logic formulation, in Proceedings of the 4th IEEE Workshop on Multimedia Signal Processing, October 3-5, 2001,  Cannes, France, 353-358.

78.      Karkanis S.A., Magoulas G.D., Iakovidis D.K., Karras D.A. and Maroulis D.E., Evaluation of textural feature extraction schemes for neural network-based interpetation of regions in medical images, in Proceedings of IEEE International Conference on Image Processing (ICIP-2001), October 7-10, 2001, Thessaloniki, Greece, vol. 1, 281-284.

79.      Magoulas G.D., Plagianakos V.P. and Vrahatis M.N., Improved Neural Network-based Interpretation of Colonoscopy Images Through On-line Learning and Evolution, in Proceedings of European Symposium on Intelligent Technologies, Hybrid Systems and their Implementation on Smart Adaptive Systems (EUNITE 2001), 12-14 December  2001, Tenerife, Spain, 402-407. Also in Adaptive Systems and Hybrid Computational Intelligence in Medicine G .D .Dounias and D .A .Linkens (eds.),European Network of Excellence on Intelligent Technologies for Smart Adaptive Systems Published by the University of the Aegean Chios Greece 2001,pp .38 –43,[ISBN 960-7475-19-4 ].

80.      Papanikolaou K., Magoulas G.D., and Grigoriadou M., The role of the educational material for personalised learning in a web-based course, in Proceedings of the 1st Research Workshop of the European Distance Education Network (EDEN-2000): Research and Innovation in Open and Distance Learning, Prague, Czech Republic, 16-17 March 2000, 151-154.

81.      Magoulas, G.D., Plagianakos, V.P., and Vrahatis, M.N., Global learning rate adaptation in on-line neural network training, in Proceedings of the 2nd International ICSC Symposium on Neural Computation, May 23-26, 2000, Technical University of Berlin, Germany.

82.      Vrahatis, M.N., Magoulas, G.D., and Plagianakos, V.P., Neural network supervised training as minimization problem (in Greek), Dymamical Systems Vol. 6, Proc. of the 7th Panhellenic Conference/12th Summer School on Non-linear dynamics, chaos and complexity, Patras, July 14-24, 1999, Pnevmatikos publications, Athens, pp. 243-262, 2000.

83.      Papanikolaou K., Magoulas G.D., and Grigoriadou M., Computational intelligence in adaptive educational hypermedia, in Proceedings of the INNS-IEEE International Joint Conference on Neural Networks, 24-27 July 2000, Como, Italy, vol. 6, 629-634.

84.      Magoulas, G.D., Plagianakos, V.P., and Vrahatis, M.N., Development and convergence analysis of training algorithms with local learning rate adaptation, in Proceedings of the INNS-IEEE International Joint Conference on Neural Networks, 24-27 July 2000, Como, Italy, vol. 1, 21-26.

85.      Karkanis, S.A., Magoulas, G.D., Iakovidis, D.K., Maroulis, D.E., and Schurr, M.O., On the importance of feature descriptors for the characterisation of texure, in Proceedings of the World Multi-conference on Systemics, Cybernetics and Informatics, July 23-26, 2000, Orlando, Florida, U.S.A.

86.      Karkanis, S.A., Iakovidis, D.K., Maroulis, D.E., Magoulas, G.D., and Theofanous, N.G., Tumor recognition in endoscopic video images using artificial neural network architectures, Proceedings of the 26th Euromicro Conference, Workshop on Medical Informatics, 5th-7th 5-7 September, 2000, Maastricht, the Netherlands, vol. 2, 423-429.

87.      Hossain S., Pouloudi A., and Magoulas G. D., Issues of IT adoption in schools, in Proceedings of the Business Information Technology Conference- BIT 2000, November 1-2, 2000, Manchester, U.K.

88.      Vrahatis M .N .,Magoulas G .D .,Parsopoulos K .E .and Plagianakos V .P ., Introduction to artificial neural network training and applications, Proceedings of the 15th Annual Conference of Hellenic Society for Neuroscience (Neuroscience 2000), October 27 –29, 2000, Patras Greece.

89.      Magoulas G. D. , Papanikolaou K. and Grigoriadou M., Adaptive lesson presentation based on connectionist knowledge representation, in Proceedings of the International Conference in Technology and Education, Edinbrough, March 1999.

90.      Grigoriadou M., Magoulas G. D. and Panagiotou M., A hybrid decision making model for intelligent tutoring systems, in Proceedings of the 5th International Conference of the Decision Sciences Institute, 195-197, Athens, Greece, July 1999.

91.      Magoulas G.D. and Vrahatis M.N., Analysis and synthesis of a class of neural network training algorithms derived by one-dimensional subminimization methods, in Integrating Technology and Human Decisions: Global Bridges into the 21 ST Century, Proceedings of the5th International Conference of the Decision Sciences Institute, D .K .Despotis and C .Zopounidis eds ., Athens, Greece, July 1999, vol. 1, pp .512 –514. 512-514, 1999.

92.      Magoulas G.D., A new sign-method in neural network training for embedded control applications, Proceedings of the 5th International Conference of the Decision Sciences Institute, 2001-2003, Athens, Greece, July 1999.

93.      Stathacopoulou R. , Magoulas G.D. and Grigoriadou M., Neural network-based fuzzy modeling of the student in intelligent tutoring systems, Proceedings of the INNS-IEEE International Joint Conference on Neural Networks, Washington, U.S.A., 10-16 July 1999, vol. 5, 3517-3521.

94.      Papanikolaou K., Magoulas G.D., and Grigoriadou M., A connectionist approach for adaptive lesson presentation in a distance learning course, Proceedings of the INNS-IEEE International Joint Conference on Neural Networks, Washington, U.S.A., 10-16 July 1999, vol. 5, 3522-3526.

95.      Magoulas G. D., Plagianakos V., and Vrahatis M. N., Sign-methods for training with imprecise error function and gradient values, Proceedings of the INNS-IEEE International Joint Conference on Neural Networks, Washington, U.S.A., 10-16 July 1999, vol. 3, 1768-1773.

96.      Plagianakos V., Vrahatis M. N. and Magoulas G. D., Nonmonotone methods for backpropagation training with adaptive learning rate, Proceedings of the INNS-IEEE International Joint Conference on Neural Networks, Washington, U.S.A., 10-16 July 1999, vol. 3, 1762-1767.

97.      Vrahatis M. N., Magoulas G. D., and Plagianakos V., Convergence analysis of the quickprop method, in Proceedings of the INNS-IEEE International Joint Conference on Neural Networks, Washington, U.S.A., 10-16 July 1999, vol. 2, 1209-1214.

98.      Karkanis, S.A., Magoulas, G.D., Grigoriadou, M. and Schurr, M., Detecting abnormalities in colonoscopic images by textural description and neural networks, in Proceedings of the Workshop "Machine Learning in Medical Applications", 59-62, Chania, Greece, July 1999.

99.      Plagianakos V., Magoulas G. D. and Vrahatis M. N., Nonmonotone learning rules for backpropagation networks, Proceedings of the 6th IEEE International Conference on Electronics, Circuits and Systems, vol. 1, 291-294, Paphos, Cyprus, 5-8 September 1999.

100.   Magoulas G. D., Plagianakos V., and Vrahatis M. N., Effective neural network training with a different learning rate for each weight, Proceedings of the 6th IEEE International Conference on Electronics, Circuits and Systems, Paphos, Cyprus, 5-8 September 1999, vol. 1, 591-594, 1999.

101.   Karkanis, S., Magoulas, G.D., Karras, D. and Grigoriadou, M., Neural network-based textural labeling of images in multimedia applications, in Proceedings of the 25th Euromicro Conference, 8-10 September 1999, Milan, Italy, vol. 2, 392-396.

102.   Plagianakos, V.P., Magoulas, G.D., Androulakis, G.S., and Vrahatis, M.N., Global search methods for neural network training, in Proceedings of the 3rd IEEE-IMACS World Multiconference on Circuits, Systems, Communications and Computers, vol. 1, 3651-3656, Athens, Greece, July 1999. Also in Advances in Intelligent Systems and Computer Science N.E. Mastorakis ed .,World Scientific and Engineering Society Press, pp .47 –52, 1999.

103.   Magoulas, G.D., Plagianakos, V.P., Androulakis, G.S., and Vrahatis, M.N., A framework for the development of globally convergent batch training algorithms, in Proceedings of the 3rd IEEE-IMACS World Multiconference on Circuits, Systems, Communications and Computers, vol. 1, 3641-3646, Athens, Greece, July 1999. Also in Advances in Intelligent Systems and Computer Science N .E .Mastorakis ed., World Scientific and Engineering Society Press, pp .207 –212, 1999.

104.   Magoulas, G.D., Karkanis, S., Karras, D. and Vrahatis, M.N., Comparison study of textural descriptors for training neural network classifiers, in Proceedings of the 3rd IEEE-IMACS World Multiconference on Circuits, Systems, Communications and Computers, vol. 1, 6221-6226, Athens, Greece, July 1999. Also in Computers and Computational Engineering in Control N .E .Mastorakis (ed.),World Scientific and Engineering Society Press 1999,pp. 193 –198.

105.   Magoulas G. D., Papanikolaou K. and Grigoriadou M., Towards a computationally intelligent lesson adaptation for a distance learning course, in Proceedings of the 11th IEEE International Conference on Tools with Artificial Intelligence, Chicago, 9-11 November 1999, pp. 5-11.

106.   Magoulas G. D. and Pouloudi A., Ethical issues in the use of neural network-based methodologies for image interpretation in medicine, in Proceedings of ETHICOMP99 - The 5th International Conference on the Social and Ethical Impacts of Information and Communication Technologies, LUISS Guido Carli University, Rome, Italy, October 1999.

107.   Plagianakos, V.P., Magoulas, G.D., and Vrahatis, M.N., Optimization strategies and backpropagation neural networks, in Proceedings of the 7th Hellenic Conference on Informatics, D.I. Fotiadis and S.D. Nikolopoulos (eds.), Ioannina Greece August 26 –29, 1999, pp .V .88 –V .95.

108.   Magoulas G.D. and Vrahatis M.N., A model for local convergence analysis of batch-type training algorithms with adaptive learning rates, In Proceedings of the 2nd IMACS International Conference on Circuits Systems & Computers, vol. 1, 86-91, Athens, Greece, 1998. Also In Recent Advances in Circuits and Systems N .E. Mastorakis ed., World Scientific Publishing Co .Pte .Ltd, 1998, pp .321 –326.

109.   Magoulas G.D. and Vrahatis M.N., New optimization algorithms for efficient neural network training, in Lipitakis E.A. (ed.) Proceedings of the 4th Hellenic-European Research Conference on Computational Mathematics and Applications, Athens, Greece, Sept. 24-26, p. 209-216, 1998 [ISBN 960-85176-7-2].

110.   Papaspyridis A., Janetis J. Berger R. and Magoulas G. D., Designing mixed fuzzy logic and PID embedded automotive control systems with FLDE Autostudio&trade, in Proceedings of the 6th European Congress on Intelligent Techniques and Soft Computing-EUFIT'98, 1998.

111.   Androulakis G.S., Magoulas G.D. and Vrahatis M.N., Minimization techniques in neural network supervised training, In Proceedings of the 6th International Colloquium on Differential Equations, Bulgaria, 1996.

112.   Magoulas G.D., Vrahatis M.N. and Androulakis G.S., A new method in neural network supervised training with imprecision, In Proceedings of the 3rd IEEE International Conference on Electronics Circuits & Systems, vol. 1, 287-290, 13-16 October, Rodos, Greece, 1996.

113.   Magoulas G.D., Vrahatis M.N., Grapsa T. N. and Androulakis G.S., Neural network supervised training based on a dimension reducing method, in Proceedings of the 1st International Conference on Mathematics of Neural Networks and Applications, Lady Margaret Hall, Oxford, England, 1995.

114.   Magoulas G.D., Vrahatis M.N., Grapsa T. N. and Androulakis G.S., A training method for discrete multilayer neural networks, in Proceedings of the 1st International Conference on Mathematics of Neural Networks and Applications, Lady Margaret Hall, Oxford, England, 1995.

115.   Michos S.E., Magoulas G.D. and Fakotakis N., A hybrid knowledge representation model in a natural language interface to MS-DOS, In Proceedings of the 7th IEEE International Conference on Tools with Artificial Intelligence, 480-483, 5-8 November, Washington, U.S.A., 1995.

116.   Michos S.E. and Magoulas G.D., A hybrid approach to knowledge representation and learning in a natural language interface to operating systems, in Proceedings of the 5th Hellenic Conference on Informatics, 431-440, Athens, Greece, 1995.

117.   King R.E. and Magoulas G.D., Adaptive digital laguerre filters, In Proceedings of the International Conference on Digital Signal Processing, vol.1, 46-53, 1993.

  

 

 

Home - Teaching - Publications - Bio - Blog - Department

 

 

 

E. Articles that cite my work (this list is under construction; citations are also on Scholar and on ResearchGate, albeit these lists are incomplete)

 

 

In journals

 

-         Sotiropoulos D.G., Stavropoulos E.C. and Vrahatis M.N., A new hybrid genetic algorithm for global optimization, Nonlinear Analysis, Theory, Methods & Applications, 30 (7), 4529-4538, 1997.

-         Thangavadivelu S., Colvin T.S., Fuzzy-logic-based decision support system for scheduling tillage operations, Engineering Applications of Artificial Intelligence, 10(5), 463-472, 1997.

-         RoyChowdhury P.,Singh Y .P .and Chansarkar R .A., Dynamic tunneling technique for efficient training of multilayer perceptrons, IEEE Transactions on Neural Networks, 10(1), 48-55, 1999.

-         Dawson C .W. and Wilby R .L., A comparison of artificial neural networks used for river flow forecasting Hydrology and Earth System Sciences, 3(4), 529 –540, 1999.

-         Nakanishi I., Itoh Y., Fukui Y. (2000). Introduction of orthonormal transform into neural filter for accelerating convergence speed, IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, E83A, 2, 367-370, 2000.

-         Likothanassis S.D., Georgopoulos E.F., Adamopoulos A.V., Structure determination and training of neural networks using evolution programs, Neural Parallel and Scientific Computations, 8, 29-48, 2000.

-         Yuqian D .and Jiali H .,A hybrid learning algorithm for neural network based distance protection Dianli Xitong Zidonghue /Automation of Electric Power Systems,  24(3), 22-47, 2000.

-         Yuqian D .and Jiali H ., Radial basis function network (RBFN )based distance protection Dianli Xitong Zi-donghue/Automation of Electric Power Systemsm, 24(21) ,.23 –26, 2000.

-         Giles, M.J., Anomalous scaling in homogeneous isotropic turbulence, Journal of Physics A: Mathematical and General, 34 (21), pp. 4389-4435, 2001.

-         Tsirogiannis G.A., Beligiannis G.N., Likothanassis S.D., Vrahatis M.N., Evolutionary algorithms for computing zeros of nonlinear functions, Nonlinear Analysis, Theory, Methods and Applications, 47(5), 3437-3442, 2001.

-         Manioudakis G.D., Demiris E.N. and Likothanassis S.D., A self-organized neural network based on the multi-model partitioning theory, Neurocomputing, 37, 1-29, 2001.

-         Dawson C.W., Wilby R.L. (2001). Hydrological modelling using artificial neural networks, Progress in Physical Geography, 25(1), 90-108, 2001.

-         Vrahatis M.N., Ragos O., Androulakis G.S., Computing families of periodic orbits through optimization methods, Nonlinear Analysis: Theory, Methods and Applications, 47(5), 3449-3454, 2001.

-         Satoh K., Yoshikawa N., Nakano Y., Yang W.J., Whole learning algorithm of the neural network for modeling nonlinear and dynamic behavior of RC members, Structural Engineering and Mechanics, 12(5), 527-540, 2001.

-         Boutsinas B. and Vrahatis M.N., Artificial nonmonotonic neural networks, Artificial Intelligence, 132 (1), 1-38, 2001.

-         Engelbrecht A .P .,Sensitivity analysis for selective learning by feedforward neural networks Fundamenta Infortmaticae, 45(1), 295 –328, 2001.

-         Schwenker F., Kestler H.A., Palm G., Three learning phases for radial-basis-function networks Neural Networks, 14(4-5), 439-458, 2001.

-         Buhot A., Gordon M.B., Robust learning and generalization with support vector machines, Journal of Physics A-Mathematical and General, 34(21), 4377-4388, 2001.

-         Jiang M.H., Zhang B., Zhu X.Y., Jinag M.Y., A fast hybrid algorithm of global optimization for feedforward neural networks, Chinese Journal of Electronics, 10(2), 214-218, 2001.

-         Hsieh S.J., Hsieh P.Y., Intelligent tutoring system authoring tool for manufacturing engineering education. International Journal of Engineering Education, 17(6), 569-579, 2001.

-         Barandela, R., Gasca, E., Alejo, R., Correccion de la Muestra para el Aprendizaje del Perceptron Multicapa, Inteligencia Artificial: Ibero-American Journal of Artificial Intelligence, 13(2-9), 2001 [ISSN: 1137-3601].

-         Cristea, A.I. and Okamoto, T. Object-oriented Collaborative Course Authoring Environment supported by Concept Mapping in MyEnglish Teacher. Educational Technology & Society 4, 2001.

-         Abbod M. F., Linkens D. A., Mahfouf M. and Dounias G. Survey on the use of smart and adaptive engineering systems in medicine, Artificial Intelligence in Medicine, vol. 26(3), 179-209, 2002.

-         Istook E .and Martinez T., Improved backpropagation learning in neural networks with windowed momentum International Journal of Neural Systems, 12(3 –4), 303-318, 2002.

-         Nyoungui A.N., Tonye E. and Akono A., Evaluation of speckle filtering and texture analysis methods for land cover classification from SAR images, International Journal of Remote Sensing, 23(9), 1895-1925, 2002.

-         Kärkkäinen T., MLP in Layer-Wise Form with Applications to Weight Decay Neural Computation, 14(6), 1451–1480, 2002.

-         Abdulkader H .,Langlet F .,Roviras D .and Castanie F .,Natural gradient algorithm for neural networks applied to non -linear high power amplifiers, International Journal of Adaptive Control and Signal Processing, 16(8), 557 –576, 2002.

-         Andreou, A.S., Parsopoulos, K.E., Vrahatis, M.N., Zombanakis, G.A., Optimal versus required defence expenditure: The case of the Greek-Turkish arms race, Defence and Peace Economics, 13 (4), pp. 329-347, 2002.

-         Kestler H.A., Muller A., Hombach V. , Wohrle J., Grebe O., Palm G., Hoher M. and Schwenker F., Decision fusion of micro -variability and signal averaged ECG parameters from the QRS complex with RBF networks, Computers in Cardiology, 29, 297 –300, 2002.

-         Chand S., Om H., Buffer evaluation in variable bandwidth channelization for videos, IEEE Transactions on Consumer Electronics, 49(2), 354-358, May 2003.

-         Ηο L .S. and Rajapakse J. C., Splice site detection with a higher-order Markov model implemented on a neural network, Genome Informatics, 14, 64 –72, 2003.

-         Gallagher M. and Downs T., Visualization of learning in multi–layer perceptron networks using PCA, IEEE Transactions on Systems, Man and Cybernetics, Part B: Cybernetics, 33(1), 28–34, 2003.

-         Daqi G. and Genxing Y., Influences of variable scales and activation functions on the performances of multilayer feedforward neural networks Pattern Recognition, 36(4), 869–878, 2003.

-         Karkanis, S.A., Iakovidis, D.K., Maroulis, D.E., Karras, D.A., Tzivras, M., Computer-Aided Tumor Detection in Endoscopic Video Using Color Wavelet Features, IEEE Transactions on Information Technology in Biomedicine, 7 (3), pp. 141-152, 2003.

-         Laskari, E.C., Parsopoulos, K.E., Vrahatis, M.N., Evolutionary operators in global optimization with dynamic search trajectories, Numerical Algorithms, 34 (2-4), pp. 393-403, 2003.

-         Meletiou G.C., Tasoulis D.K, and Vrahatis M.N., Cryptography through interpolation approximation and computational inteligence methods, Bulletin of the Greek Mathematical Society, 48:61-75, 2003.

-         Hsiao T.-C. R., Lin C.-W., Chiang H. K., Partial least-squares algorithm for weights initialization of backpropagation network, Neurocomputing, 50, 237-247, 2003.

-         Ma L., and Khorasani K., A new strategy for adaptively constructing multilayer feedforward neural networks, Neurocomputing, 51, 361-385, 2003.

-         Maroulis, D.E., Iakovidis, D.K., Karkanis, S.A., Karras, D.A., CoLD: A versatile detection system for colorectal lesions in endoscopy video-frames, Computer Methods and Programs in Biomedicine, 70 (2), pp. 151-166, 2003.

-         Ilonen J., Kamarainen J.-K . and Lampinen J., Differential evolution training algorithm for feed-forward neural networks, Neural Processing Letters, 17(1), 93 –105, March 2003.

-         Jiang M.-H., Gielen G., Zhang B. and Luo Z.-S., Fast learning algorithms for feedforward neural networks, Applied Intelligence, 18(1), 37–54, January-February 2003.

-         Patankar S.J. and Jurs P.C., Classification of HIV protease inhibitors on the basis of their antiviral potency using radial basis function neural networks, Journal of Computer-Aided Molecular Design, 17(2-4), 155 –171, February 2003.

-         Andreou, A.S., Parsopoulos, K.E., Vrahatis, M.N., Zombanakis, G.A., An alliance between Cyprus and Greece: Assessing its partners' relative security contribution, Defence and Peace Economics, 15 (5), pp. 481-495, 2004.

-         Fernandes, A.M., Utkin, A.B., Lavrov, A.V., Vilar, R.M., Neural network based recognition of smoke signatures from lidar signals, Neural Processing Letters, 19 (3), pp. 175-189, 2004.

-         Fraser K., O'Neill P., Wang Z., and Liu, X., Copasetic analysis: a framework for the blind analysis of microarray imagery, IEE Proceedings Systems Biology, 1(1), 190-196, June 2004.

-         Goltsev, A., Secondary learning in the assembly neural network, Neurocomputing, 62 (1-4), pp. 405-426, 2004.

-         Hatzilygeroudis, I., Prentzas, J., Using a hybrid rule-based approach in developing an intelligent tutoring system with knowledge acquisition and update capabilities, Expert Systems with Applications, 26 (4), pp. 477-492, 2004.

-         Iakovidis, D.K., Maroulis, D.E., Karkanis, S.A., Papageorgas, P., Tzivras, M., Texture multichannel measurements for cancer precursors' identification using support vector machines, Measurement: Journal of the International Measurement Confederation, 36 (3-4), pp. 297-313, 2004.

-         Jiang H.-M ., Xie K. and Wang Y.-F., Design of multi-pumped Raman fiber amplifier by particle swarm optimization, Guangdianzi Jiguang/Journal of Optoelectronics Laser, 15(10), 1190–1193, October 2004.

-         Kumar D.N., Raju K.S. and Sathish T., River flow forecasting using recurrent neural networks, Water Resources Management, 18(2), 143 –161, April 2004.

-         Lukac R., Plataniotis K.N., Smolka B., Venetsanopoulos A.N., A multichannel order-statistic technique for cDNA microarray image processing, IEEE Transactions on NanoBioscience, 3(4), 272-285, Dec. 2004.

-         Ma L. and Khorasani K., New training strategies for constructive neural networks with application to regression problems, Neural Networks, 17(4), 589–609, 2004.

-         Müller H., Michoux N., Bandon D., and Geissbuhler A., A review of content-based image retrieval systems in medical applications—clinical benefits and future directions, International Journal of Medical Informatics, vol. 73(1), 1-23, 2004.

-         Parsopoulos, K.E., Vrahatis, M.N., On the Computation of all global minimizers through particle swarm Optimization, IEEE Transactions on Evolutionary Computation, 8 (3), pp. 211-224, 2004.

-         Shi Z.-J. Convergence of line search methods for unconstrained optimization, Applied Mathematics and Computation, 157(2), 393-405, 2004.

-         Shi Z.-J., Convergence of multi-step curve search method for unconstrained optimization, Journal of Numerical Mathematics, 12(4), 297 –309,2004.

-         Shi Z.-J. and Shen J., A gradient-related algorithm with inexact line searches, Journal of Computational and Applied Mathematics, 170(2), 349–370, 2004.

-         Stefansson Gunnar, The tutor-web: An educational system for classroom presentation, evaluation and self-study, Computers & Education, vol. 43(4), 315-343, 2004.

-         Yang, W., Li, Q., Survey on Particle Swarm Optimization Algorithm, Engineering Science, 6 (5), pp. 87-94, 2004.

-         Yuan P., Wang G.-X. and Zhang Y.-Y., Particle swarm optimization approach of solving communication optimization problems, Dongbei Daxue Xuebao/Journal of Northeastern University, 25(10), 934–937, 2004.

-         Zhang, Z., Xue, R., To Solve Nonlinear Constrained Optimization Problems with Particle Swarm Algorithm, Computer Engineering and Applications, 40 (25), pp. 90-92, 2004.

-         Zhang, Z., Li, Y., To Solve Nonlinear Constrained Optimization Problems with Hybrid Particle Swarm Algorithm, Computer Applications and Software, 21 (8), pp. 114-115, 2004.

-         Ribeiro MV, Learning rate updating methods applied to adaptive fuzzy equalizers for broadband power line communications, EURASIP Journal Applied Signal Processing, 16, 2592-2599, 2004.

-         Tar J.K., Rudas I.J., Bitó J.F., Simulation Based Verification of the Applicability of a Novel Branch of Computational Cybernetics in the Adaptive Control of Imperfectly Modeled Physical Systems of Asymmetric Delay Time and Strong Non-linearities, Acta Polytechnica Hungarica, Issue Number 1 May 2004 [http://www.bmf.hu/journal/Issue1.htm].

-         Wang Feng-Hsu, A fuzzy neural network for item sequencing in personalized cognitive scaffolding with adaptive formative assessment, Expert Systems with Applications, vol. 27(1), 11-25, 2004.

-         Wu Y. and Wang S-J., Novel quick convergence back-propagation algorithm, Tongji Daxue Xuebao/Journal of Tongji University, 32(8), pp. 1092–1095, August 2004.

-         Zhang X.J., Chen K.Z. and Feng X.A., Optimization of material properties needed for material design of components made of multi-heterogeneous materials, Materials and Design, 25(5), 369–378, 2004.

-         Bergasa-Suso J., Sanders D.A. and Tewkesbury G.E., Intelligent browser-based systems to assist Internet users, IEEE Transactions on Education, 48(4), 580-585, Nov. 2005.

-         Devaney A.J., Marengo E.A. and Gruber F.K., Time-reversal-based imaging and inverse scattering of multiply scattering point targets, J. Acoust. Soc. Am., 118 (6), 3129–3138, 2005.

-         Ghinea G. and Thomas J.P., Quality of perception: user quality of service in multimedia presentations, IEEE Transactions on Multimedia, 7(4), 786-789, Aug. 2005.

-         Jin, Y.-X., Cheng, H.-Z., Wang, C.-M., Yan, J.-Y. , Zhang, L., New Parallel Particle Swarm Optimization and its Application on Power Transmission Network Planning, WSEAS Transactions on Circuits and Systems, 4(8), pp. 960-968, 2005.

-         Chen, G.-C., Yu, J.-S., Particle Swarm Optimization Algorithm, Information and Control, 34 (3), pp. 318-324, 2005.

-         Chen, S.Y., Liu, X., Data mining from 1994 to 2004: An application-orientated review, International Journal of Business Intelligence and Data Mining, 1 (1), pp. 4-21, 2005.

-         Chen S. Y., Macredie R. D., The assessment of usability of electronic shopping: A heuristic evaluation, International Journal of Information Management, vol. 25(6), 516-532, 2005.

-         Goltsev A. and Rachkovskij D., Combination of the assembly neural network with a perceptron for recognition of handwritten digits arranged in numeral strings, Pattern Recognition, 38(3), 315–322, March 2005.

-         Gore R.G., Li J., Manry M.T., Liu L.M., Yu C. and Wei J., Iterative design of neural network classifiers through regression, International Journal on Artificial Intelligence Tools, 14(1-2), 281–301, 2005.

-         Guzman, E., Conejo, R., Garcia-Hervas, E., An authoring environment for adaptive testing, Educational Technology and Society, 8 (3), pp. 66-76, 2005.

-         Jin, Y.-X., Cheng, H.-Z., Yan, J.-Y., Zhang, L., Local best embranchment based convergence guarantee particle swarm optimization and its use in transmission network planning, Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 25 (23), pp. 12-18, 2005.

-         Karampiperis, P., Sampson, D., Adaptive learning resources sequencing in educational hypermedia systems, Educational Technology and Society, 8 (4), pp. 128-147, 2005.

-         Kodogiannis V.S., Boulougoura M. and Wadge E., Improved neural network -based interpretation of capsule endoscopic images, WSEAS Transactions on Systems, 4(9), 1499-1507, 2005.

-         Kuljis, J., Liu, F., A comparison of learning style theories on the suitability for eLearning, Proceedings of the IASTED International Conference on Web Technologies, Applications, and Services, WTAS 2005, pp. 191-197, 2005.

-         Lee Catherine Hui Min,  Cheng Yuk Wing,  Rai Shri, Depickere A., What affect student cognitive style in the development of hypermedia learning system? Computers & Education, vol. 45(1), 1-19, 2005.

-         Li, Q., Fraley, C., Bumgarner, R.E., Yeung, K.Y., Raftery, A.E., Donuts, scratches and blanks: Robust model-based segmentation of microarray images, Bioinformatics, 21 (12), pp. 2875-2882, 2005.

-         Liu H., Chen X. and Chen Y., Wavelet transform and real -time learning method for myoelectric signal in motion discrimination, Journal of Physics: Conference Series, 13(1), 250–253, 2005.

-         Mahfouf, M., Nunes, C.S., Linkens, D.A., Peacock, J.E., Modelling and multivariable control in anaesthesia using neural-fuzzy paradigms: Part II. Closed-loop control of simultaneous administration of propofol and remifentanil, Artificial Intelligence in Medicine, 35 (3), pp. 207-213, 2005.

-         Moshou D., Hostens I., Papaioannou G. and Ramon H., Dynamic muscle fatigue detection using self–organizing maps, Applied Soft Computing, 5(4), 391–398, 2005.

-         Papageorgiou E.I. and Groumpos P.P., A new hybrid method using evolutionary algorithms to train fuzzy cognitive maps, Applied Soft Computing, 5(4), 409–431, 2005.

-         Papageorgiou, E.I., Parsopoulos, K.E., Stylios, C.S., Groumpos, P.P., Vrahatis, M.N., Fuzzy cognitive maps learning using particle swarm optimization, Journal of Intelligent Information Systems, 25 (1), pp. 95-121, 2005.

-         Pavlidis, N.G., Parsopoulos, K.E., Vrahatis, M.N., Computing Nash equilibria through computational intelligence methods, Journal of Computational and Applied Mathematics, 175 (1), pp. 113-136, 2005.

-         Rajapakse J.C. and Ηο L.S., Markov encoding for detecting signals in genomic sequences IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2(2), 131–142, 2005.

-         Schmidt H. and Thierauf G., A combined heuristic optimization technique, Advances in Engineering Software, 36(1), 11–19, 2005.

-         Skokos, Ch., Parsopoulos, K.E., Patsis, P.A., Vrahatis, M.N., Particle swarm optimization: An efficient method for tracing periodic orbits in three-dimensional galactic potentials, Monthly Notices of the Royal Astronomical Society, 359 (1), pp. 251-260, 2005.

-         Shi Z.-J. and Shen J., A new descent algorithm with curve search rule, Applied Mathematics and Computation, 161(3), 753–768, 2005.

-         Shi Z.-J. and Shen J., Convergence of descent method without line search, Applied Mathematics and Computation, 167(1), 94–107, 2005.

-         Shi Z.-J. and Shen J., A new super-memory gradient method with curve search rule, Applied Mathematics and Computation, 170(1), 1 –16, 2005.

-         Wang, J.-N., Shen, Q.-T., Shen, H.-Y., Zhou, X.-C., A Clustering-Based Niching Particle Swarm Optimization, Information and Control, 34 (6), pp. 680-684, 2005.

-         Xiong, Y., Lu, W.-C., Mo, Y.-B., Hu, S.-X., Particle Swarm Optimization Based on Rotate Surface Transformation, Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 39 (12), pp. 1946-1949+1978, 2005.

-         Wei, J.-L., Wang, J.-H., Wu, Q.-H., Lu, N., Power System Aggregate Load Area Modelling by Particle Swarm Optimization, International Journal of Automation and Computing, 2 (2), pp. 171-178, 2005.

-         Wu Y. and Wang S-J., Neural network with linear -nonlinear combined output nodes, Tongji Daxue Xuebao/ Journal of Tongji University, 33(4), 516–519, 2005.

-         Yu C., Manry M.T. and Li J., Effects of nonsingular preprocessing on feedforward network training, International Journal of Pattern Recognition and Artificial Intelligence, 19(2), 217–247, 2005.

-         Adjeroh D.A., Zhang Y., Parthe, R., On denoising and compression of DNA microarray images, Pattern Recognition 39 (12), pp. 2478-2493, 2006.

-         Ali S. and Smith K.A., On learning algorithm selection for classification, Applied Soft Computing, 6(2), 119-138, 2006.

-         Barcelos M., Bavestrello H. and Maute K., A Schur-Newton-Krylov solver for steady-state aeroelastic analysis and design sensitivity analysis, Computer Methods in Applied Mechanics and Engineering, 195(17-18), 2050-2069, 2006.

-         Lin, W., Chen, T., Analysis of two restart algorithms, Neurocomputing, 69 (16-18), pp. 2301-2308, 2006.

-         Lloyd, T., Bull, S., A haptic learner model, International Journal of Continuing Engineering Education and Life-Long Learning, 16 (1-2), pp. 137-149, 2006.

-         Castellano G., Fanelli A.M., Torsello M.A., A fuzzy clustering approach to derive profiles from access log data, WSEAS Transactions on Information Science and Applications 3 (12), pp. 2464-2470, 2006.

-         Chen Nian-Shing, Kinshuk, Wei Chun-Wang and Chen Hong-Jhe, Mining e-Learning domain concept map from academic articles, Computers & Education (2006), doi:10.1016/j.compedu.2006.10.001

-         Chetwynd, D., Worden, K., Manson, G., An application of interval-valued neural networks to a regression problem, Proceedings of the Royal Society-Mathematical, Physical and Engineering Sciences (Series A), 462(2074), 3097-3114, 2006.

-         Cui Z., Zeng J., Sun G. Hybrid method to computing global minima combined with PSO and BPR , Chinese Journal of Electronics, 15(4A), 949-952, October 2006.

-         Cui Zhi-hua, and Zeng Jian-chao, Analysis and Improvement About Particle Swarm Optimization Based on Linear Control Theory, Mini-Micro Systems, vol.27, no.5, pp.849-853, 2006.

-         Dai Y .H .and Yang X .Q .,A new gradient method with an optimal stepsize property, Computational Optimization and Applications, 33(1), 73-88, 2006.

-         de Freitas, S.I., Using games and simulations for supporting learning, Learning, Media and Technology, 31 (4), pp. 343-358, 2006.

-         Dong Chaojun, and Qiu Zulian, Particle Swarm Optimization Algorithm Based on the Idea of Simulated Annealing, International Journal of Computer Science and Network Security, vol.6, no.10, pp. 152-156, 2006.

-         Dukkipati A, Murty M.N. and Bhatnagar S., Nonextensive triangle equality and other properties of Tsallis relative-entropy minimization, Physica A: Statistical Mechanics and its Applications, 361 (1), pp. 124-138, 2006.

-         Flaounas, I.N., Iakovidis, D.K., Maroulis, D.E., Cascading SVMS as a tool for medical diagnosis using multi-class gene expression data, International Journal on Artificial Intelligence Tools, 15 (3), pp. 335-352, 2006.

-         Gao F, Tong H.-Q., Nonlinear least squares estimation based on improved particle swarm optimization, Systems Engineering and Electronics, 28(5), 775-778, 2006.

-         Goel AK, Saxena SC, Bhanot S., A fast learning algorithm for training feedforward neural networks, International Journal of System Sciences, 37 (10), 709-722, 2006.

-         Gao F, Tong H.-Q., Parameter estimation for chaotic system based on particle swarm optimization, Acta Physica Sinica, 55 (2): 577-582, 2006.

-         Georgiou, V.L., Pavlidis, N.G., Parsopoulos, K.E., Alevizos, Ph.D., Vrahatis, M.N., New self-adaptive probabilistic neural networks in bioinformatic and medical tasks, International Journal on Artificial Intelligence Tools, 15 (3), pp. 371-396, 2006.

-         Guang-Bin Huang, Qin-Yu Zhu, Mao K.Z., Chee-Kheong Siew, Saratchandran P., and Sundararajan, N., Can threshold networks be trained directly? IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 53(3), 187-191, March 2006.

-         Ho L.S. and Rajapakse J.C., Input encoding method for identifying transcription start sites in RNA polymerase II promoters by neural networks, Soft Computing -A Fusion of Foundations, Methodologies and Applications, 10(4), 331–337, 2006.

-         Iakovidis D.K., Maroulis D.E. and Karkanis S.T., An intelligent system for automatic detection of gastrointestinal adenomas in video endoscopy, Computers in Biology and Medicine Pages, 36(10), 1084-1103, 2006.

-         Kelly, D., Tangney, B., Adapting to intelligence profile in an adaptive educational system, Interacting with Computers, 18 (3), pp. 385-409, 2006.

-         Kocsis, L., Szepesvari, C., Universal parameter optimisation in games based on SPSA, Machine Learning, 63 (3), pp. 249-286, 2006.

-         Lappas, G., Frank, R.J., Albrecht, A.A., A computational study on circuit size versus circuit depth, International Journal on Artificial Intelligence Tools, 15 (2), pp. 143-161, 2006.

-         Laskari E.C., Meletiou G.C., Tasoulis D.K., and Vrahatis M.N., Studying the performance of artificial neural networks on problems related to cryptography, Nonlinear Analysis Series B: Real World Applications, 7(5), 937-942, 2006.

-         Lekakos G., Giaglis G.M., Improving the prediction accuracy of recommendation algorithms: Approaches anchored on human factors, Interacting with Computers, vol. 18(3), 410-431, 2006.

-         Li J. and Duckett T., Growing RBF networks for learning reactive behaviours in mobile robotics, International Journal of Vehicle Autonomous Systems (IJVAS), 4 (2-4), pp. 285-307, 2006.

-         Lu Chun-tao, Some Modified Step-size Rules and the Convergence Properties, Journal of Guangxi Teachers Education University (Natural Science Edition), vol.23, no.2, pp. 13-19, 2006.

-         Lukac, R., Plataniotis, K.N., cDNA microarray image segmentation using root signals, International Journal of Imaging Systems and Technology, 16 (2), pp. 51-64, 2006.

-         Mestre, L., Accommodating diverse learning styles in an online environment, Reference and User Services Quarterly, 46 (2), pp. 27-32, 2006.

-         Mangal M., Singh M.P., Analysis of pattern classification for the multidimensional parity-bit-checking problem with hybrid evolutionary feed-forward neural network, Neurocomputing (2006), doi:10.1016/j.neucom.2006.02.022

-         Mourrain B., Pavlidis N.G., Tasoulis D.K. and Vrahatis M.N., Determining the number of real roots of polynomials through neural networks, Computers and Mathematics with Applications, 51 (3-4), 527-536, 2006.

-         Niu Yi-feng, and Shen Lin-cheng, Multiobjective Optimization for Multifocus Image Fusion Using IMOPSO, Acta Electronica Sinica, vol.34, no.9, pp. 1578-1583, 2006.

-         Nykänen, O., Inducing fuzzy models for student classification, Educational Technology and Society, 9 (2), pp. 223-234, 2006.

-         Parrott, D., Li, X., Locating and Tracking Multiple Dynamic Optima by a Particle Swarm Model Using Speciation, IEEE Transactions on Evolutionary Computation, 10 (4), pp. 440-458, 2006.

-         Pavlidis N. G., Plagianakos V. P., Tasoulis D. K., and Vrahatis M. N., Financial forecasting through unsupervised clustering and neural networks, Operational Research - An International Journal, 6(2) 2006 [ISSN:1109-2858].

-         Pavlidis N.G., Tasoulis D.K., Plagianakos V.P., and Vrahatis M.N., Computational Intelligence Methods for Financial Time Series Modeling, International Journal of Biffurcation and Chaos, 16(7), 2053-2062, 2006.

-         Papanikolaou, K.A., Mabbott, A., Bull, S., Grigoriadou, M., Designing learner-controlled educational interactions based on learning/cognitive style and learner behaviour, Interacting with Computers, 18 (3), pp. 356-384, 2006.

-         Ribeiro M.V., daR.Lopes R., Romano J.M.T. and Duque C.A., Impulse Noise Mitigation Based on Computational Intelligence for Improved Bit Rate in PLC-DMT, IEEE Transactions on Power Delivery, 21(1), 94-101, Jan. 2006.

-         Ruan Xiao-Gang, Ding Ming-Xiao, Yu Nai-Gong and Liu Liang, Design and Simulation of Predictive Feedback Error Learning Model, Journal of System Simulation, vol.18, no.11, pp. 3227-3246, 2006.

-         Saidi, H., Khelil, N., Hassouni, S., Zerarka, A., Energy Spectra of the Schrodinger Equation and the Differential Quadrature Method: Improvement of the Solution Using Particle Swarm Optimization, Applied Mathematics and Computation, 182 (1), 559-566, 2006.

-         Santally, M.I., Alain, S., Personalisation in Web-based learning environments, International Journal of Distance Education Technologies, 4 (4), pp. 15-35, 2006.

-         Siller, M., Woods, J. Using an agent based platform to map quality of service to experience in conventional and active networks, IEE Proceedings: Communications, 153 (6), pp. 828-840, 2006.

-         Shi Z.-J., Convergence of quasi-Newton method with new inexact line search, Journal of Mathematical Analysis and Applications, 315(1), 120–131, 2006.

-         Shi Z.-J. and Shen J., Convergence of nonmonotone line search method, Journal of Computational and Applied Mathematics, 193(2), 397-412, 2006.

-         Shi Z.-J. and Shen J., On memory gradient method with trust region for unconstrained optimization, Numerical Algorithms, 41(2), 173-196, 2006.

-         Spina R., Optimisation of injection moulded parts by using ANN-PSO approach, Journal of Achievements in Materials and Manufacturing Engineering, vol. 15, No 1-2, 146-152, March-April 2006.

-         Song Yu, Kou Lisong, and Ren Yongkai, Application of Low Strain Stir Measure Technique on a Bridge Bored Pile of Guilin, Anhui Architecture, vol.13, no.4, pp. 154-156, 2006.

-         Tasoulis D.K., Plagianakos V.P., and Vrahatis M.N., Unsupervised clustering in mRNA expression profiles, Computers in Biology and Medicine, 36(10), 1126-1142, 2006.

-         Tasoulis, D.K., Spyridonos, P., Pavlidis, N.G., Plagianakos, V.P., Ravazoula, P., Nikiforidis, G., Vrahatis, M.N., Cell-nuclear data reduction and prognostic model selection in bladder tumor recurrence, Artificial Intelligence in Medicine, 38 (3), pp. 291-303, 2006.

-         Tasoulis D.K. and Vrahatis M.N., Unsupervised clustering Using Fractal Dimension, International Journal of Biffurcation and Chaos, 16(7), 2073-2079, 2006.

-         van den Bergh F. and Engelbrecht A .P., A study of particle swarm optimization particle trajectories, Information Sciences, 176(8), 937-971, 2006.

-         Yannibelli, V., Godoy, D., Amandi, A., A genetic algorithm approach to recognise students' learning styles, Interactive Learning Environments, 14 (1), pp. 55-78, 2006.

-         Yu Min, Sun Jun, Xu Wenbo, and Jiang Jiabao, QPSO Algorithm Based on Stretching Technique, Computer Engineering and Applications, vol.42, no.16, 32-72, 2006.

-         Yu, C., Manry, M.T., Li, J., Lakshmi Narasimha, P., An efficient hidden layer training method for the multilayer perceptron, Neurocomputing, 70 (1-3), pp. 525-535, 2006.

-         Yuan, Y-X, A New Stepsize for the Steepest Descent Method, Journal of Computational Mathematics, 24(2), 149-156, 2006.

-         Zerarka, A., Khelil, N., Saidi, H., A Generalised Integral Quadratic Method: Improvement of the Solution for One Dimensional Volterra Integral Equation Using Particle Swarm Optimisation, International Journal of Simulation and Process Modeling, 2 (1-2), pp. 85-91, 2006.

-         Zhang, Z.-Y., Ge, S.-Y., Liu, Z.-F., Particle Swarm Optimization Algorithm and its Application in Unit Commitment, Electric Power Automation Equipment, 26 (5), pp. 28-31, 2006.

-         Zhang, H., Tam, C.M., Li, H., Shi, J.J., Particle swarm optimization-supported simulation for construction operations, Journal of Construction Engineering and Management, 132 (12), pp. 1267-1274, 2006.

-         Argamon, S., Whitelaw, C., Chase, P., Hota, S.R., Garg, N., Shlomo Levitan, L., Stylistic text classification using functional lexical features, Journal of the American Society for Information Science and Technology, 58 (6), pp. 802-822, 2007.

-         Bennett, T.B., Nicholson, S.W., Connecting users to numeric and spatial resources, Social Science Computer Review, 25 (3), pp. 302-318, 2007.

-         Barcelos M., Maute K., Aeroelastic design optimization for laminar and turbulent flows, Comput. Methods Appl. Mech. Engrg. (2007), doi:10.1016/j.cma.2007.03.009

-         Brits R., Engelbrecht A.P., van den Bergh F., Locating multiple optima using particle swarm optimization, Applied Mathematics and Computation, 189, 1859–1883, 2007.

-         Castro E.G. and Tsuzuki M.S.G., Swarm Intelligence applied in synthesis of hunting strategies in a three-dimensional environment, Expert Systems with Applications (2007), doi:10.1016/j.eswa.2007.02.031

-         Charvillat V., Grigoraş R., Reinforcement learning for dynamic multimedia adaptation, Journal of Network and Computer Applications, vol. 30(3), 1034-1058, 2007.

-         Chen G.D., Chang C.K., Wang C.Y., Using adaptive e-news to improve undergraduate programming courses with hybrid format, Computers & Education (2007), doi:10.1016/j.compedu.2007.05.007

-         Dukkipati, A., Bhatnagar, S., Murty, M.N., On measure-theoretic aspects of nonextensive entropy functionals and corresponding maximum entropy prescriptions, Physica A: Statistical Mechanics and its Applications, 384 (2), pp. 758-774, 2007.

-         Erdem R., A non-extensive statistical mechanical approach to define the equilibrium value function in the kinetics of voltage-gated ion channels, Physica A: Statistical and Theoretical Physics, 373, pp. 417-424, 2007.

-         Englund, C., Verikas, A., A SOM-based data mining strategy for adaptive modelling of an offset lithographic printing process, Engineering Applications of Artificial Intelligence, 20 (3), pp. 391-400, 2007.

-         Frias-Martinez, E., Chen, S.Y., Liu, X., Automatic cognitive style identification of digital library users for

-         Personalization, Journal of the American Society for Information Science and Technology, 58 (2), pp. 237-251, 2007.

-         Garcia, P., Amandi, A., Schiaffino, S., Campo, M., Evaluating Bayesian networks' precision for detecting students' learning styles, Computers and Education, 49 (3), pp. 794-808, 2007.

-         Guzman, E., Conejo, R., Perez-De-La-Cruz, J.-L. Adaptive testing for hierarchical student models, User Modelling and User-Adapted Interaction, 17 (1-2), pp. 119-157, 2007.

-         Huaxiang Zhang, Ying Fan, An adaptive policy gradient in learning Nash equilibria, Neurocomputing, doi:10.1016/j.neucom.2007.12.007

-         Jiang Y., Hu Tiesong, Huang ChongChao, Wu Xianing, An improved particle swarm optimization algorithm, Applied Mathematics and Computation (2007), doi:10.1016/j.amc.2007.03.047

-         Ju, Z., Wells, M.C., Walter, R.B., DNA microarray technology in toxicogenomics of aquatic models: Methods and applications, Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, 145 (1), pp. 5-14, 2007.

-         Kodogiannis V.S., Boulougoura M., Lygouras J.N. and Petrounias I., A neuro-fuzzy-based system for detecting abnormal patterns in wireless-capsule endoscopic images , Neurocomputing, 70(4-6), pp. 704-717, 2007.

-         Kodogiannis, V.S., Boulougoura, M., Wadge, E., Lygouras, J.N., The usage of soft-computing methodologies in interpreting capsule endoscopy, Engineering Applications of Artificial Intelligence, 20 (4), pp. 539-553, 2007.

-         Kosba, E., Dimitrova, V., Boyle, R., Adaptive feedback generation to support teachers in web-based distance education, User Modelling and User-Adapted Interaction, 17 (4), pp. 379-413, 2007.

-         Kranzusch K.M., Abort determination with non-adaptive neural networks for the Mars precision landers, Acta Astronautica (2007), doi: 10.1016/j.actaastro.2006.12.021

-         Kurubacak, G., Building knowledge networks through project-based online learning: A study of developing critical thinking skills via reusable learning objects, Computers in Human Behavior, 23 (6), pp. 2668-2695, 2007.

-         Laskari, Elena C., Meletiou, G.C., Stamatiou, Y.C., Vrahatis, M.N., Cryptography and cryptanalysis through computational intelligence, Studies in Computational Intelligence, 57, pp. 1-49, 2007.

-         Laskari, E.C., Meletiou, G.C., Stamatiou, Y.C., Tasoulis, D.K., Vrahatis, M.N., Assessing the effectiveness of artificial neural networks on problems related to elliptic curve cryptography, Mathematical and Computer Modelling, 46 (1-2), pp. 174-179. 2007.

-         Lei, T., Yang, Y., Aesthetic preference based on users' cognitive styles in mobile interaction, Journal of Computational Information Systems, 3 (2), pp. 533-539, 2007.

-         Liang, J.S., Evaluation of inspection ability promotion for learning mechanical product Web-based inspection course in CAD education, Computer-Aided Design and Applications, 4 (1-6), pp. 449-458, 2007.

-         Liu W.-B., Wang X.-J., An evolutionary game based particle swarm optimization algorithm, J. Comput. Appl. Math., 2007, doi: 10.1016/j.cam.2007.01.028

-         Lonnie Hamm, Wade Brorsen B., Martin Hagan T., Comparison of Stochastic Global Optimization Methods to Estimate Neural Network Weights, Neural Processing Letters, 2007, doi: 10.1007/s11063-007-9048-7.

-         Mangal M., Singh P. Analysis of pattern classification for the multidimensional parity-bit-checking problem with hybrid evolutionary feed-forward neural network, Neurocomputing, vol. 70(7-9), 1511-1524, 2007.

-         Mandal, S., Sivaprasad, P.V., Venugopal, S., Capability of a feed-forward artificial neural network to predict the constitutive flow behavior of as cast 304 stainless steel under hot deformation, Journal of Engineering Materials and Technology, Transactions of the ASME, 129 (2), pp. 242-247, 2007.

-         Milosevic, D., Brkovic, M., Sendelj, R., LeMONT: An ontology-based learner modeling system, WSEAS Transactions on Computers, 6 (3), pp. 455-462, 2007.

-         Danchenko, P., Lifshits, F., Orion, I., Koren, S., Solomon, A.D., Mark, S., NNIC-neural network image compressor for satellite positioning system, Acta Astronautica, 60 (8-9), pp. 622-630, 2007.

-         Han Yanfang, Shi Pengfei, An adaptive level-selecting wavelet transform for texture defect detection, Image and Vision Computing, vol. 25(8), 1239-1248, 2007.

-         Guang-Bin Huang; Qin-Yu Zhu; Mao, K.Z.; Chee-Kheong Siew; Saratchandran, P.; Sundararajan, N.; Can threshold networks be trained directly? IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 53, no. 3, pp.187-191, 2006.

-         Liu Danyu, Cao Yu, Kim Ki-Hwan, Stanek Sean, Doungratanaex-Chai Bancha, Lin Kungen, Tavanapong Wallapak, Wong J., Oh JungHwan and de Groen P. C. Arthemis: Annotation software in an integrated capturing and analysis system for colonoscopy, Computer Methods and Programs in Biomedicine (2007), doi:10.1016/j.cmpb.2007.07.011

-         Parrott, D.; Xiaodong Li; Locating and tracking multiple dynamic optima by a particle swarm model using speciation, IEEE Transactions on Evolutionary Computation, vol. 10, no. 4, pp.440-458, 2006.

-         del Puerto Paule Ruiz M, Jesús Fernández Díaz M, Ortín Soler Francisco, and Pérez Pérez J. R., Adaptation in current e-learning systems, Computer Standards & Interfaces (2007), doi:10.1016/j.csi.2007.07.006

-         Kodogiannis V. S., Decision support systems in Wireless Capsule Endoscopy: Revisited, Intelligent Decision Technologies 1 (2007) 17–31 17.

-         Ruan, X., Ding, M., Gong, D., Qiao, J., On-line adaptive control for inverted pendulum balancing based on feedback-error-learning, Neurocomputing, 70 (4-6), pp. 770-776, 2007.

-         Ridgway, G.R., Godsill, S.J., Bayesian image modeling of cDNA microarray spots, IEEE Signal Processing Letters, 14 (10), pp. 653-656, 2007.

-         Serban, N., MICE: Multiple-peak identification, characterization, and estimation, Biometrics, 63 (2), pp. 531-539+638, 2007.

-         Stathacopoulou R., Grigoriadou M., Samarakou M., Mitropoulos D., Monitoring students' actions and using teachers' expertise in implementing and evaluating the neural network-based fuzzy diagnostic model, Expert Systems with Applications 32 (4), pp.955-975, 2007.

-         Wang, T.H., What strategies are effective for formative assessment in an e-learning environment? Journal of Computer Assisted Learning, 23 (3), pp. 171-186, 2007.

-         Wang Wan-liang, Tang Yu, The state of art in particle swarm optimization algorithms, Journal of Zhejiang University of Technology, vol.35, no.2, 136-141, 2007.

-         Wang, Y.-J., Zhang, J.-S., An efficient algorithm for large scale global optimization of continuous functions, Journal of Computational and Applied Mathematics, 206 (2), pp. 1015-1026, 2007.

-         Yeh, I-Cheng, Analysis-adjustment-synthesis networks, Connection Science, 19(3), 261–277, 2007.

-         Yang Fang-Ying and Tsai Chin-Chung, Investigating university student preferences and beliefs about learning in the web-based context, Computers & Education (2007), doi:10.1016/j.compedu.2006.12.009

-         Yan Jiang, Tiesong Hu, ChongChao Huang, Xianing Wu, An improved particle swarm optimization algorithm, Appl. Math. Comput., vol. 193(1), 231-239, 2007.

-         Yoo, S.J., Park, J.B., Choi, Y.H., Indirect adaptive control of nonlinear dynamic systems using self recurrent wavelet neural networks via adaptive learning rates, Information Sciences, 177 (15), pp. 3074-3098, 2007.

-         Yu Min, Xu Wenbo, Sun Jun, Application of QPSO algorithm based on repulsion technique in Nash equilibria, Computer Engineering and Applications, vol.43, no.7, 31-33, 2007.

-         Zhang Xuejun, Harding J., Personalised online sales using web usage data mining, Computers in Industry, vol. 58(8-9), 772-782, 2007.

-         Le Han, Gaohang Yu, Lutai Guan, Multivariate spectral gradient method for unconstrained optimization, Applied Mathematics and Computation (2008), doi:10.1016/j.amc.2007.12.054

-         Macklin P.,·Lowengrub J.S., A New Ghost Cell/Level Set Method for Moving Boundary Problems: Application to Tumor Growth, Journal of Scientific Computing (2008), doi: 10.1007/s10915-008-9190-z

-         Passaro A., Starita A., Particle Swarm Optimization for Multimodal Functions: a Clustering Approach, Journal of Artificial Evolution and Applications (2008), http://www.hindawi.com/journals/jaea/aip.482032.html

-         Zhihua Ruan, Huiming Wang, Yanrong Ren, Yongwen Chen, Junfeng Han, Xueli Pang, Houjie Liang,Yuzhang Wu, Pseudo receptor probes: A novel pseudo receptor-based QSAR method and application into studies on a new kind of selective vascular endothelial growth factor-2 receptor inhibitors: Chemometr. Intell. Lab. Syst. (2008), doi:10.1016/j.chemolab.2008.02.007

-         Chen M. J., Wu B. and Chen C., Determination of shortest distance to voltage instability with particle swarm optimization algorithm, Euro. Trans. Electr. Power (2008), vol. 19, no. 8, 1109–1117, 2009.

-         Das, R., Turkoglu, I., Sengur, A., Effective diagnosis of heart disease through neural networks ensembles, Expert Systems with Applications, vol. 36, no. 4, 7675 – 7680, 2009.

-         Mandal S., Sivaprasad P.V., Venugopal S., Murthy K.P.N, Artificial neural network modeling to evaluate and predict the deformation behavior of stainless steel type AISI 304L during hot torsion, Applied Soft Computing, vol. 9, no. 1, 237-244, 2009.

-         Tsallis, C., Computational applications of nonextensive statistical mechanics, Journal of Computational and Applied Mathematics, vol. 227, no.1, 51 – 58, 2009.

-         Yuan G. and Wei Z., New line search methods for unconstrained optimization, Journal of the Korean Statistical Society, vol. 38, no. 1, pp. 29–39, 2009.

-         Menéndez de Llano, R., Bosque, J.L., Study of neural net training methods in parallel and distributed architectures, Future Generation Computer Systems, vol.26, no. 2, 267 – 275, 2010.

-         Epitropakis, M.G., Plagianakos, V.P., Vrahatis, M.N., Hardware-friendly Higher-Order Neural Network Training using Distributed Evolutionary Algorithms, Applied Soft Computing Journal, vol. 10, no. 2, 398 – 408, 2010.

-         Akbulut, Y., Cardak, C.S, Adaptive educational hypermedia accommodating learning styles: A content analysis of publications from 2000 to 2011, Computers and Education, vol. 58, no. 2, pp. 835 – 842, 2012.

-         García-Cuesta, E., Iglesias, J.A., User modeling: Through statistical analysis and subspace learning, Expert Systems with Applications, vol. 39, no. 5, pp. 5243 – 5250, 2012.

-         Özyurt, Ö., Özyurt, H., Baki, A., Güven, B., Karal, H., Evaluation of an adaptive and intelligent educational hypermedia for enhanced individual learning of mathematics: A qualitative study, Expert Systems with Applications, vol. 39, no. 15, pp. 12092 – 12104, 2012.

 

 

Home - Teaching - Publications - Bio - Blog - Department

 

 

 

In books, edited volumes and PhD dissertations

 

-         Tzafestas S.G. and Anthopoulos Y., Supervised learning in multilayer perceptrons: the back-propagation algorithm. In Soft Computing in Systems and Control Technology, World Scientific Series in Robotics and Intelligent Systems, Vol. 18, Chapter 1, S.G. Tzafestas (ed.), World Scientific, Singapore, August 1999, pp.3-30 [ISBN: 9810233817].

-         Alexopoulos S., Μια κλάση αλγορίθµων µε την ιδιότητα της συζυγίας για τη βελτιστοποίηση µη γραµµικών συναρτήσεων χωρίς περιορισµούς (A class of algorithms with the conjugate property for unconstrained optimization of nonlinear functions), PhD dissertation, Department of Mathematics, University of Patras, 1999.

-         Gallagher M. R., Multi-layer Perceptron Error Surfaces: Visualization, Structure and Modelling, PhD dissertation, Department of Computer Science and Electrical Engineering, University of Queensland, St Lucia 4072, Australia, January, 2000.

-         van den Bergh F., An analysis of particle swarm optimisers, PhD dissertation, University of Pretoria, November 2001.

-         Manioudakis G., Αλγόριθµοι µάθησης µε εφαρµογή σε αναγνώριση δυναµικών συστη µάτων (Learning algorithms with application to dynamic systems recognition), PhD dissertation, Department of Computer Engineering and Informatics, University of Patras, 2001.

-         Skurichina M .,Stabilizing weak classifiers PhD thesis Quantitative Imaging Group Department of Imaging Science and Technology Faculty of Applied Sciences Delft University of Technology Delft The Netherlands, October 15, 2001.

-         Buendia F. and Diaz P. A Framework for Educational Adaptive Hypermedia Applications. Ιn: P. De Bra, P. Brusilovsky, and R. Conejo (eds.): Adaptive Hypermedia and Adaptive Web-based Systems. Lecture Notes in Computer Science, Vol. 2347, 476-479. Berlin Heidelberg: Springer-Verlag, 2002.

-         Carlisle, A.J., Applying the Particle Swarm Optimizer to Non-Stationary Environments, PhD thesis, Auburn University, USA, 2002.

-         Coello Coello, C.A., Van Veldhuizen, D.A., Lamont, G.B., Evolutionary Algorithms for Solving Multi-Objective Problems, Springer, 2002, ISBN: 0306467623.

-         Chen Z .,Li J .,Yue Y .,Gao Q .,Zhao H .and Xu Z ., A neural network online training algorithm based on compound gradient vector. In R.I .McKay and J. Slaney (Eds .):AI 2002, Lecture Notes in Computer Science (LNAI), vol. 2557, pp .374-384,Springer-Verlag Berlin Heidelberg 2002.

-         Fukuyama, Y., Fundamentals of Particle Swarm Techniques. In Lee K.Y. and El-Sharkawi M.A. (eds.), Modern Heuristic Optimization techniques with Applications to Power Systems, chapter 5, pp. 45-51, IEEE Power Engineering Society (PES) 2002. Also available on-line at http://homepage2.nifty.com/fukuyama-yoshikazu/ECTutorial.htm

-         Buckner, M.A., Learning from Data with Localized Regression and Differential Evolution, Ph.D. Thesis, University of Tennessee, Knoxville, USA, 2003.

-         Tasoulis D.K., Spyridonos P., Pavlidis N.G., Cavouras D., Ravazoula P., Nikiforidis G. and Vrahatis M.N., Urinary bladder tumor grade diagnosis using on-line trained neural networks, Lecture Notes in Computer Science (LNAI), 2773, October 2003, pp.199-206.

-         Chen Z., Dong Ch., Zhou Q. and Zhang Sh., An improved compound gradient vector based neural network on-line training algorithm P .W. H. Chung C .J .Hinde M .Ali (eds .), IEA /AIE 2003, Lecture Notes in Computer Science, (LNAI) 2718 pp 316-325, Springer-Verlag Berlin Heidelberg 2003.

-         Karagiozov V., Artificial Neural Networks: Enhanced Back Propagation in Character Recognition, in Information Technology & Organizations: Trends, Issues, Challenges & Solutions, Mehdi Khosrow-Pour (ed.), Information Resources Management Association, USA, pp. 263-265, 2003.

-         Sirlantzis K .,Algorithmic synthesis in neural network training for pattern recognition. In Pattern Recognition and String Matching Series :Combinatorial Optimization vol 13, D. Chen and X. Cheng (eds.), Kluwer Academic Publishers Dordrecht, pp .703–739, 2003 [ISBN :1-4020-0953-4 ].

-         Tasoulis D.K., Vladutu L., Plagianakos V.P., Bezerianos A., and Vrahatis M.N., On-line neural network training for automatic ischemia episode detection. In Leszek Rutkowski, Jörg H. Siekmann, Ryszard Tadeusiewicz, and Lotfi A. Zadeh, editors, Lecture Notes in Computer Science, 3070:1062-1068. Springer-Verlag, 2004.

-         Fieldsend, J.E., Novel Algorithms for Multi-Objective Search and their Application in Multi-Objective Evolutionary Neural Network Training, PhD thesis, University of Exeter, U.K, 2004.

-         Mendes, R., Population Topologies and their Influence in Particle Swarm Performance, PhD thesis, Departamento de Informatica, Escola de Engenharia, Universidade do Minho, Portugal, 2004.

-         Krusienski, D.J., Enhanced Structured Stochastic Global Optimization Algorithms for IIR and Nonlinear Adaptive Filtering, PhD thesis, Department of Electrical Engineering, The Pennsylvania State University, USA, August 2004.

-         Chen Z., Chen X., Zhang J. and Liu L., Convergence analysis of a neural network based on generalised compound gradient vector, B. Orchard, Ch. Yang, M. Ali (eds.): IEA /AIE 2004, Lecture Notes in Computer Science (LNAI ), vol. 3029, pp. 1174–1183, Springer-Verlag Berlin Heidelberg, 2004.

-         Petalas, Y.G., Tasoulis, D.K., Vrahatis, M.N., Dynamic search trajectory methods for neural network training, Lecture Notes in Artificial Intelligence, vol. 3070, pp. 241-246, 2004.

-         Vladutu L., Computational intelligence methods on biomedical signals analysis and data mining in medical records, PhD thesis, Department of Medical Physics School of Medicine University of Patras, Patras, Greece, 2004.

-         Zhang X.-J., An effective design method for components made of a multiphase perfect material, PhD thesis, Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 2004.

-         Encheva, S., Tumin, S., Cooperative shared learning objects in an intelligent web-based tutoring  environment, Lecture Notes in Computer Science, vol. 3675, pp. 227-234, 2005.

-         Lee, J., Jun, W., Design and implementation of a web-board system for the adaptive school web site construction, Lecture Notes in Computer Science, vol. 3807, pp. 94-103, 2005.

-         Engelbrecht, A.P., Fundamentals of Computational Intelligence, Wiley, 2005 [ISBN: 0-470-09191-6].

-         Schmitt S., The diamond operator implementation of exact real algebraic numbers, Lecture Notes in Computer Science, 3718, pp. 355-366, 2005.

-         Schoeman, L., Engelbrecht, A.P., A Parallel Vector-Based Particle Swarm Optimizer, in Adaptive and Natural Computing Algorithms, Proc. International Conference on Artificial Neural Networks and Genetic Algorithms (ICANNGA 2005), Portugal, B .Ribeiro R.F., Albrecht A .Dobnikar D .W .Pearson and N .C. Steele (eds .), Springer -Verlag New York, pp. 268–271 [ISBN :3-211-24934-6 ]

-         Anastasiadis A, Neural network training and applications using biological data, PhD thesis, Birkbeck College, University of London, 2006.

-         Brusilovsky, P., Sosnovsky, S., Yudelson, M., Addictive links: The motivational value of adaptive link annotation in educational hypermedia, Lecture Notes in Computer Science, vol. 4018, pp. 51-60, 2006.

-         Bull, S., Mabbott, A., 20000 inspections of a domain-independent open learner model with individual and comparison views, Lecture Notes in Computer Science, vol. 4053, pp. 422-432, 2006.

-         Herrera B.M., Ribas L., dos Santos Coelho L. Nonlinear identification method of a yo-yo system using fuzzy model and fast particle swarm optimization. In Applied Soft Computing Technologies: The Challenge of Complexity, Ajith Abraham, Bernard de Baets, Mario Köppen and Bertram Nickolay, (eds.), Advances in Soft Computing Series, Springer, pp. 303-314, 2006.

-         Kelly, D., Tangney, B., Using multiple intelligence informed resources in an adaptive system, Lecture Notes in Computer Science, vol. 4053, pp. 412-421, 2006.

-         Li J., Learning Reactive Behaviors with Constructive Neural Networks in Mobile Robotics, PhD thesis, Orebro University, Orebro Studies in Technology 23, Sweden 2006 [ISSN 1651-8896] [ISBN 91-7668-490-3]. Available online at: www.diva-portal.org/diva/getDocument?urn_nbn_se_oru_diva-629-2__fulltext.pdf

-         Nguyen M.-H., Cooperative Coevolutionary Mixture of Experts: A Neuro Ensemble Approach of Automatic Decomposition of Classification Problems, PhD thesis, School of Information Technology and electrical Engineering, Australian Defence Force Academy, University of New South Wales, Sydney, Australia, February 2006. http://www.library.unsw.edu.au/~thesis/adt-ADFA/uploads/approved/adt-ADFA20061024.142217/public/

-         Garcia-Palomares, U.M., Non monotone algorithms for unconstrained minimization: upper bounds on function values. In System Modeling and Optimization, vol. 199, Ceragioli F., Dontchev A, Furuta H., Marti K., Pandolfi L. (eds), IFIP International Federation for Information Processing, Springer, pp. 91-100, 2006.

-         Pritchard D., Negoita M.Gh., A fuzzy-Ga hybrid technique for optimization of teaching sequences presented in ITSs, In Computational Intelligence, Theory and Applications: Proc 8th International Conference Fuzzy Days in Dortmund, Germany, Sept. 29–Oct. 01, 2004, Bernd Reusch (ed.), Advances in Soft Computing Series, Springer, pp. 311-316, 2006.

-         O'Keeffe, I., Conlan, O., Wade, V., A unified approach to adaptive hypermedia personalisation and adaptive service composition, Lecture Notes in Computer Science, vol. 4018, pp. 303-307, 2006.

-         Schoeman I., Engelbrecht A., Niching for dynamic environments using particle swarm optimization. In Tzai-Der Wang, Xiaodong Li, Shu-Heng Chen, Xufa Wang, Hussein A. Abbass, Hitoshi Iba, Guoliang Chen and Xin Yao (eds.), Simulated Evolution and Learning, Lecture Notes in Computer Science, vol.4247 LNCS, 2006, pp. 134-141.

-         Spyridonos, P., Vilarino, F., Vitria, J., Azpiroz, F., Radeva, P., Anisotropic feature extraction from endoluminal images for detection of intestinal contractions, Lecture Notes in Computer Science vol. 4191, Proc. 9th International Conference on Medical Image Computing and Computer Assisted Intervention, pp. 161-168, 2006.

-         Tar JK, Rudas IJ, Szeghegyi A, Kozlowski K., Novel adaptive control of partially modeled dynamic systems, Robot Motion and Control: Recent Developments, Lecture Notes in Control and Information Sciences, vol. 335, 99-111, 2006.

-         Wang, Z., Cao, Y., Short-term load forecasting based on mutual information and artificial neural network, Lecture Notes in Computer Science, vol. 3972, pp. 1246-1251, 2006.

-         Wikstrand G., Human Factors and Wireless Network Applications: More Bits and Better Bits, PhD thesis, Department of Computing Science, Umea University, UMINF 06.34, Umea 2006 [ISSN 0348–0542] [ISBN 91–7264–205–X]. Available online at: www.diva-portal.org/diva/getDocument?urn_nbn_se_umu_diva-910-2__fulltext.pdf

-         Du K.-L. and Swamy M.N.S., Neural Networks in a Soft Computing Framework, Springer, London, April 2006, ISBN: 1-84628-302-7

-         Sae Hwang, Automatic Content Analysis of Endoscopy Video: Endoscopic Multimedia Information System, PhD thesis, The University of Texas at Arlington, May 2007.

-         Fernando Vilari, Gerard Lacey, Jiang Zhou, Hugh Mulcahy, and Stephen Patchett, Automatic Labeling of Colonoscopy Video for Cancer Detection, J. Martı et al. (Eds.): IbPRIA 2007, Part I, Lecture Notes in Computer Science, vol. 4477, pp. 290–297, Springer-Verlag Berlin Heidelberg 2007

-         Chen Guolong, Chen Qingliang, and Guo Wenzhong, A PSO-Based Approach to Rule Learning in Network Intrusion Detection, B.-Y. Cao (Ed.): Fuzzy Information and Engineering (ICFIE), ASC 40, pp. 666–673, Springer-Verlag Berlin Heidelberg 2007

-         Hui Wang, Sanyou Zeng, Yong Liu, Wenjun Wang, Hui Shi, and Gang Liu, Re-diversification Based Particle Swarm Algorithm with Cauchy Mutation, in L. Kang, Y. Liu, and S. Zeng (Eds.): ISICA 2007, Lecture Notes in Computer Science book series, vol. 4683, pp. 362–371, 2007.

-         Iakovidis D. K., Savelonas M. A., and Maroulis D., Adaptive Vision System for Segmentation of Echographic Medical Images Based on a Modified Mumford-Shah Functional, in J. Blanc-Talon et al. (Eds.): ACIVS 2007, Lecture Notes in Computer Science book series, vol. 4678, pp.565–574, 2007.

-         Xinmei Liu, Jinrong Su, and Yan Han, An Improved Particle Swarm Optimization for Traveling Salesman Problem, in D.-S. Huang, L. Heutte, and M. Loog (Eds.):ICIC 2007, Lecture Notes in Artificial Intelligence series, vol. 4682, pp. 803–812, 2007.

-         Khosrow Kaikhah, A New Hybrid Learning Algorithm for Drifting Environments, H.G. Okuno and M. Ali (Eds.): IEA/AIE 2007, Lecture Notes in Artificial Intelligence series, vol. 4570, pp. 705–714, 2007.

-         Bumghi Choi, Ju-Hong Lee, and Tae-Su Park, Dual Gradient Descent Algorithm on Two-Layered Feed-Forward Artificial Neural Networks, in H.G. Okuno and M. Ali (Eds.): IEA/AIE 2007, Lecture Notes in Artificial Intelligence series, vol. 4570, pp. 696–704, 2007.

-         Stefan Duffner and Christophe Garcia, An Online Backpropagation Algorithm with Validation Error-Based Adaptive Learning Rate, J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, Lecture Notes in Computer Science series, vol. 4668, pp. 249–258, 2007.

-         Stefan Duffner, Face Image Analysis With Convolutional Neural Networks, PhD thesis, Albert-Ludwigs-Universitat Freiburg im Breisgau, 2007.

-         Jiang Yan, Hu Tiesong, Huang Chongchao, Wu Xianing, and Gui Faling, A Shuffled Complex Evolution of Particle Swarm Optimization Algorithm, in B. Beliczynski et al. (Eds.): ICANNGA 2007, Part I, Lecture Notes in Computer Science series, vol. 4431, pp. 341–349, 2007.

-         Jian-Xun Peng; Kang Li; Irwin, G.W.; A New Jacobian Matrix for Optimal Learning of Single-Layer Neural Networks, IEEE Transactions on Neural Networks, vol. 19, no. 1, pp.119-129, 2008.

-         Zhao Zhongyu; Wenfang Xie; Herry Hong, Identification of Takagi-Sugeno (TS) fuzzy model with Evolutionary Parallel Gradient Search, Proc. Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS-2008), pp. 1 – 6, 2008.

 

 

 Home - Teaching - Publications - Bio - Blog - Department

 

In conference and workshop proceedings

 

-         Engelbrecht A .P .and Cloete I .,Selective learning using sensitivity analysis In :IEEE World Congress on Computational Intelligence, International Joint Conference on Neural Networks Anchorage Alaska May 4 –9, pp .1150 –1155,1998.

-         Kumar D .N .and Sathish T ., Forecasting hydrologic time series using artificial neural networks, Proc. of the International Conference on Theoretical ,Applied ,Computational and Experimental Mechanics Kharagpur India December 1 –5, 1998.

-         Manioudakis G .D .,Demiris E .N .and Likothanassis S .D .,A self -organized neural network based on the multi-model partitioning theory, Proc. of the World Multiconference on Systems, Cybernetics and Informatics, Communication Systems Internet and Mobile /Wireless Computing, vol .4 Orlando Florida USA, July 31 –August 4,1999.

-         Tar, J.K.; Rudas, I.J.; Kozlowski, K.; Bito, J.F., Dynamic parameter tuning in a particular branch of soft computing specially designed for mechanical systems' control, Proc. of the 25th Annual Conference of the IEEE Industrial Electronics Society (IECON '99), vol.2, pp.1002-1007, 1999.

-         Chambers J .A ., Sherliker W .and Mandic D .P ., A normalized gradient algorithm for an adaptive recurrent perceptron, Proc. of the IEEE International Conference on Acoustics ,Speech and Signal Processing (ICASSP ’00), Istanbul Turkey vol .1 pp .396 –399, 2000.

-         Dawson CW., Wilby RL., Harpham C. and Brown MR., Modelling Ranunculus Presence in the Rivers Test and Itchen Using Artificial Neural Networks, Proceedings of GeoComputation 2000, University of Greenwich, UK.

-         Atkinson, C., Eldabi, T., Paul, R.J. and  Pouloudi, A., The Centre for Health Informatics and Computing (CHIC). Proceedings of the 22nd International Conference on Information Technology Interfaces (ITI '2000), D. Kalpic & V.H. Dobric (Eds.), pp. 3-21, SRCE University Computing Centre, University of Zagreb, June 13-16, 2000, Pula, Croatia.

-         Atkinson C., Eldabi T., Paul R.J., and Pouloudi A., Investigating integrated socio-technical approaches to health informatics, Proc. of the 34th Annual Hawaii International Conference on System Sciences, Jan 3-6 2001, 10 pp.

-         Golovko V., Savitsky Y., Laopoulos T., Sachenko A. and Grandinetti L., Technique for learning rate estimation for efficient training of MLP, Proc. IEEE International Joint Conference on Neural Networks, Como, Italy, July 24 –27, 2000, vol .1, pp .1323 –1330, 2000.

-         Hu, X., Eberhart, R., Tracking Dynamic Systems with PSO: Where's the Cheese?, Particle Swarm Optimization Workshop, April 6-7, 2001, Indianapolis, Indiana, U.S.A, pp.80-83, 2001.

-         Karkanis, S.A., Iakovidis, D.K., Karras, D.A., Maroulis, D.E., Detection of lesions in endoscopic video using textural descriptors on wavelet domain supported by artificial neural network architectures, IEEE International Conference on Image Processing, 2, pp. 833-836, 2001.

-         Lee C-S, Singh, Y.P. A Case-based Agent Framework for Adaptive Learning. IEEE International Conference on Advanced Learning Technologies, paper-id 095, Madison, Wisconsin, August 2001.

-         Mizutani E., Dreyfus S., On the complexity analysis of supervised MLP-learning for algorithmic comparisons, Proc. IEEE International Joint Conference on Neural Networks, Washington, USA, Vol .1, pp. 347–352, 2001.

-         Brusilovsky P., Adaptive Educational Hypermedia. Proceedings of 10th International PEG Conference: Intelligent Computer and Communication Technology-Learning in online communities, Tampere, Finland, June 23-26, 2001, pp. 8-12.

-         Eberhart, R.C., Shi, Y., Particle Swarm Optimization: Developments, Applications and Resources, Proceedings of the IEEE Congress on Evolutionary Computation, (CEC 2001), Seoul, Korea, May 27-30, 2001, pp.81-86.

-         Tar, J.K., Rudas, I.J., Bito, J.F., Andersson, P.H., Torvinen, S.J., Structurally and procedurally simplified soft computing for real time control, Proc. IEEE International Conference on Robotics and Automation (ICRA), vol.2, pp. 2002-2007, 2001.

-         Kawaji S., AraoM. and ChenY., Thrust force control of drilling system using neural network, Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2001), Vol. 1, pp.476-481, 2001.

-         Kontoni P.N. and Petropoulos P.N. Οι υπηρεσίες του διαδικτύου ως εκπαιδευτικά εργαλεία για την από απόσταση συμπληρωματική εκπαίδευση αποφοίτων Α.Ε.Ι. και Τ.Ε.Ι. Proceedings of the 1st Hellenic Conference on Open and Distance Learning (CD-ROM Proceedings), May, Patras, Greece 2001.

-         Prenztas D. Hatziligeroudis I., Koutsogiannis K., Rigou M., H Αρχιτεκτονική ενός Ευφυούς Συστήματος Βασισμένο στο Διαδίκτυο για τη Διδασκαλία Νέων Τεχνολογιών Πληροφορικής. Proceedings of the 1st Hellenic Conference on Open and Distance Learning (CD-ROM Proceedings), May, Patras, Greece 2001.

-         Prenztas D. Hatziligeroudis I., Προσαρμοστικά Εκπαιδευτικά Υπερμέσα: Αρχές και Υπηρεσίες. Proceedings of the 1st Hellenic Conference on Open and Distance Learning (CD-ROM Proceedings), May, Patras, Greece 2001.

-         Lin X .-B .,Zhang Z .-L .,Ruan X .-Y .,Prediction of material flow stress in warm forging with BP neural network, Shanghai Jiaotong Daxue Xuebao /Journal of Shanghai Jiaotong University, 36(4), 459 –462, 2002.

-         Meletiou G.C., Tasoulis D.K, and Vrahatis M.N., A first study of the neural network approach to the RSA cryptosystem, In Proceedings of the IASTED 2002 Conference on Artificial Inteligence, pages 483-488, 2002.

-         Bull, S. and Nghiem, T.: Helping Learners to Understand Themselves with a Learner Model Open to Students, Peers and Instructors. In: P. Brna & V. Dimitrova (eds): Proceedings of Workshop on Individual and Group Modeling Methods that Help Learners Understand Themselves, International Conference on ITS2002, pp. 5-13.

-         Brits, R., Engelbrecht, A.P., Van den Bergh, F., A Niching Particle Swarm Optimizer, 4th Asia-Pacific Conference on Simulated Evolution and Learning, 2002.

-         El-Gallad, A., El-Hawary, M., Sallam, A., Kalas, A., Enhancing the Particle Swarm Optimizer via Proper Parameters Selection, Canadian Conference on Electrical and Computer Engineering, Vol. 2, pp. 792-797, 2002

-         Annunziato M., Lucchetti M. and Pizzuti S., Adaptive Systems and Evolutionary Neural Networks: a Survey, Proc. of European Symposium on Intelligent Technologies, Hybrid Systems and their Implementation on Smart Adaptive Systems (EUNITE 2002), 19-21 September 2002, Albufeira, Portugal, pp. 606-610.

-         Tar, J.K., Rudas, I.J., Bito, J.F., Kozlowski K., A new approach in computational cybernetics based on the modified renormalization algorithm guaranteeing complete stability in the control of a wide class of physical systems, Proc. 6th IEEE International Conference on Intelligent Engineering Systems (INES2002), May 26-28, Opatija, Croatia, pp. 19-24, 2002 [ISBN 953-6071-17-7].

-         Patkai B., Tar, J.K., Rudas, I.J., Bito, J.F., Convergence properties of the modified renormalization algorithm based adaptive control supported by ancillary methods, Proc. of the 2002 IEEE International Symposium on Industrial Electronics (ISIE 2002), vol .2, pp .441 –446,2002.

-         Parsopoulos, K.E., Vrahatis, M.N., Particle swarm optimization method in multiobjective problems, Proceedings of the ACM Symposium on Applied Computing, pp.603-607, 2002.

-         King, H., Garibaldi, J. and Rogerson, S., Intelligent medical systems: partner or tool? Proc of the 6th International Conference: The transformation of organizations in the information age: social and ethical implications-ETHICOMP 02, 13-15 November, Lisbon, Portugal, Alvarez, I. et al. (Eds.), pp. 181-190, 2002.

-         Manouselis, N. and Sampson, D. Dynamic knowledge route selection for personalised learning environments using multiple criteria. In Proceedings of the 20th IASTED International Multi-Conference Applied Informatics (AI 2002). Innsbruck, Austria, February 18-21, 2002.

-         Abdel Razek M., Frasson C. and Kaltenbach M. Towards More Cooperative Intelligent Distance Learning Environments. SACHA 2002 (Software Agents - Cooperation – Human Activity) Workshop at ITS2002, June 2002, San Sebastian Spain, 2002.

-         Abdel Razek M., Frasson C. and Kaltenbach M. Using Machine Learning approach To Support Intelligent Collaborative Multi-Agent System. International Conference on Technology of Information and Communication in Education for engineering and industry (TICE 2002), 13-15 November 2002, Lyon, France, 2002.

-         Abdel Razek M., Frasson C. and Kaltenbach M.  A Confidence Agent: Toward More Effective Intelligent Distance Learning Environments. In Proceedings Of International Conference on Machine Learning and Applications (ICMLA), Las Vegas, USA, June 24-27, 2002.

-         Cerqueira J .J .F .,Palhares A .G .B .and Madrid M .K ., A simple adaptive back-propagation algorithm for multi-layered feedforward perceptrons, Proc. of the IEEE International Conference on Systems ,Man and Cybernetics, vol .3, pp. 590 –595, 2002.

-         Chen Z .,Li J .,Zhao H .,Gao Q .,Yue Y .and Xu Z .,Online training of neural network control for electric motor drives In :Proceedings of the IEEE International Conference on Systems ,Man and Cybernetics Vol.2, pp 661-666, 2002.

-         Yu Ch .and Manry M .T .,A modified hidden weight optimization algorithm for feed -forward neural networks, Proc. of the IEEE 36th Asilomar Conference on Signals, Systems, and Computers 2002, vol. .2, pp. 1034 –1038, 2002.

-         Iakovidis D.K., Maroulis D.E., Karkanis S.A. and Flaounas I.N., Color texture recognition in video sequences using wavelet covariance features and support vector machines, Proc. 29th Euromicro Conference, 1-6 Sept. 2003, pp. 199-204.

-         Tsou D. and MacNish C., Adaptive particle swarm optimisation for high-dimensional highly convex search spaces, Proc. of the Congress on Evolutionary Computation (CEC 2003), vol. 2, pp. 783 –789, December 8–12, 2003.

-         Birge, B., PSOt-A Particle Swarm Optimization Toolbox for Use With Matlab, Proceedings of the IEEE 2003 Swarm Intelligence Symposium (SIS 2003), April 24-26, 2003, Indianapolis, Indiana, U.S.A., IEEE press 2003, pp. 182-186 [ISBN 0780379144].

-         Yudelson, M.V., Yen, I.-L., Panteleev, E., Khan, L., A framework for an intelligent on-line education system, ASEE Annual Conference Proceedings, pp. 4891-4906, 2003.

-         Zheng, Y.-L., Ma, L.-H., Zhang, L.-Y., Qian, J.-X., Empirical Study of Particle Swarm Optimizer with an Increasing Inertia Weight, Proceedings of the IEEE 2003 Congress on Evolutionary Computation, Canberra, Australia, pp. 221-226, 2003.

-         Zheng, Y.-L., Ma, L.-H., Zhang, L.-Y., Qian, J.-X., On the Convergence Analysis and Parameter Selection in Particle Swarm Optimization, Proceedings of 2003 International Conference on Machine Learning and Cybernetics, Xi-an, China, Vol. 3, pp. 1802-1807, 2003.

-         Zheng Y.-L., Ma L.-H., Zhang L.-Y. and Qian J.-X ., Robust PID controller design using particle swarm optimizer, Proc. of the IEEE International Symposium on Intelligent Control pp .974 –979, 2003.

-         Mendes, R., Kennedy, J., Neves, J., Avoiding the Pitfalls of Local Optima: How Topologies Can Save the Day, Proceedings of the 12th Conference Intelligent Systems Application to Power Systems (ISAP2003), Lemnos, Greece, 2003, IEEE Computer Society.

-         Li, T., Wei, C., Pei, W., PSO With Sharing for Multimodal Function Optimization, Proc. 2003 International Conference on Neural Networks and Signal Processing, 14-17 Dec. 2003, Nanjing, China, vol. 1, pp. 450-453, 2003

-         Brusilovsky, P., Santic, T. and De Bra, P. A Flexible Layout Model for a Web-Based Adaptive Hypermedia Architecture, Workshop on Adaptive Hypermedia and Adaptive Web-Based Systems at the International World Wide Web Conference, Budapest, Hungary, May 20, 2003.

-         Bajraktarevic N, Hall W. and Fullick P., Incorporating learning styles in hypermedia environment: Empirical evaluation. Workshop on Adaptive Hypermedia and Adaptive Web-Based Systems at the International World Wide Web Conference, Budapest, Hungary, May 20, 2003.

-         Chen Z., Lou R. and Zhao Y., Neural network control of electric machines for transportation systems, Proc. of the IEEE International Conference on Systems ,Man and Cybernetics, vol. 2, pp. 1904–1909, 2003.

-         Chen Z., Zhao H. and Wei K., Compound gradient vector based neural networks for real-time control, Proc. of the IEEE Industry Applications Society 38th Annual Meeting, October 12–16, 2003, Salt Lake City Utah USA, vol .2, 755–760, 2003.

-         Chermakani D .P ., A novel approach for training small-sized multi-layer perceptrons, Proc. of the International Joint Conference on Neural Networks (IJCNN 2003), vol .3, pp.1999–2004, 2003.

-         Daqi G., Hua L. and Changwu L., On variable sizes and sigmoid activation functions of multilayer perceptrons, Proc. of the International Joint Conference on Neural Networks (IJCNN 2003), vol. 3, pp. 2017–2022, 2003.

-         Lee J., Global optimization for fast multilayer perceptron training, Proc. of the International Joint Conference on Neural Networks (IJCNN 2003), vol. 1, pp. 410–414, 2003.

-         Papanikolaou K.A. and Grigoriadou M., An instructional framework supporting personalized learning on the Web, Proc. the 3rd IEEE International Conference on Advanced Learning Technologies, 9-11 July 2003, pp. 120–124.

-         Parsopoulos K.E. and Vrahatis M.N., Investigating the existence of function roots using particle swarm optimization, Proc. of the 2003 Congress on Evolutionary Computation (CEC '03), 8-12 Dec. 2003, vol. 2, pp. 1448-1455.

-         Parsopoulos K.E. and Vrahatis M.N., Computing periodic orbits of nondifferentiable/discontinuous mappings through particle swarm optimization, Proc. of the 2003 IEEE Swarm Intelligence Symposium (SIS '03), 24-26 April 2003, pp. 34-41.

-         Pires P.A.B.R., Evaluation of neural networks algorithms in marketing problems :an experimental approach, XIII Jornadas Hispano-Lusas de Gestion Cientifica Lugo Spain, pp .263–272, 2003. Available on-line at: http://www.ti.usc.es/lugo-xiii-hispano-lusas/04_programa.htm [last accessed 17/11/06].

-         Barcelos M., Bavestrello H. and Maute K., Efficient solution strategies for steady-state aeroelastic analysis and design sensitivity analysis, Collection of Technical Papers-10th AIAA /ISSMO Multidisciplinary Analysis and Optimization Conference, vol .3, pp. 1954–1967, 2004.

-         Bedor, H.S., Mohamed, H.K., Shedeed, H.A., A general architecture of student modelto assess the learning performance in intelligent tutoring systems, Proceedings of the International Conference on Electrical, Electronic and Computer Engineering (ICEEC'04), pp. 173-178, 2004.

-         Bunt, A., Conati, C., McGrenere, J., What role can adaptive support play in an adaptable system? Proceedings of the International Conference on Intelligent User Interfaces (IUI), pp. 117-124, 2004.

-         Goedtel, A., Da Silva, I.N., Serni, P.J.A., An alternative approach to solve convergence problems in the backpropagation algorithm, Proceedings of the IEEE International Conference on Neural Networks, 2, pp. 1021-1026, 2004.

-         Hammouda I., Guldogan O., Koskimies K. and Systa T., Tool-supported customization of UML class diagrams for learning complex system models, Proc. 12th IEEE International Workshop on Program Comprehension, 24-26 June 2004, pp. 24-33.

-         Hatzilygeroudis I., Giannoulis C. and Koutsojannis C., A Web-based education system for predicate logic, Proc. IEEE International Conference on Advanced Learning Technologies, 30 Aug.-1 Sept. 2004, pp. 106-110.

-         Jordanov I.N. and Rafik T.A., Local minima free neural network learning, Proc. of the 2nd IEEE International Conference on Intelligent Systems, vol. 1, pp. 34 –39, 2004.

-         Pereira, A., Fernandes, E., Reduction Method with Simulated Annealing for Semi-Infinite Programming, 12th French-German-Spanish Conference on Optimization, Avignon, France, page 98, 2004.

-         Karkanis, S.A., Iakovidis, D.K., Maroulis, D.E., Color textural features under varying illumination, Proceedings of the International Conference on Image Processing (ICIP), 3, pp. 1505-1508, 2004.

-         Li J., Manry M.T., Liu L.-M., Yu C. and Wei J., Iterative improvement of neural classifiers, Proc. of the 7th International Florida Artificial Intelligence Research Society Conference (FLAIRS 2004), vol. 2, pp .700–705, 2004.

-         Liu Y., Qin Z. and He X.-S., Supervisor-student model in particle swarm optimization, Proc. IEEE Congress on Evolutionary Computation 2004 (CEC 2004), Portland USA, vol.1, ,pp. 542–547, IEEE, 2004.

-         Liu Y., Qin Z., Xu Z.-L .and He X.-S., Using relaxation velocity update strategy to improve particle swarm optimization, Proc. of the 2004 International Conference on Machine Learning and Cybernetics, Shangai, China, vol .4, pp. 2469–2472, 2004.

-         Petalas Y.G., Tasoulis D.K., and Vrahatis M.N., Trajectory methods for neural network training, In M.H. Hamza, editor, Proceedings of the IASTED International Conference on Artificial Intelligence and Applications (AIA 2004), pp. 400-403, Innsbruck, Austria, 2004. IASTED/ACTA Press.

-         Yu C., and Manry M.T., A Hessian matrix approach for training nonlinear networks, Proc. International Conference on Signal Processing (ICSP), vol. 2, pp.1514-1517, 2004.

-         Yu C., Manry M.T. and Li J., Hidden layer training via Hessian matrix information, Proc. of the 7th International Florida Artificial Intelligence Research Society Conference (FLAIRS 2004), vol. 2, pp. 688–693, 2004.

-         Wu Y., A novel link structure and learning algorithm of feedforward neural network, Porc. International Conference on Signal Processing (ICSP), vol. 2, pp.1534-1537, 2004.

-         Wu Y. and Wang S., A new algorithm to improve the generalization capability of feedforward neural network through network inversion, Proc. of the World Congress on Intelligent Control and Automation (WCICA ), vol. 3, pp. 1985–1988, 2004.

-         Liu, Y., Qin, Z., He, X., Supervisor-Student Model in Particle Swarm Optimization, Proceeding of the 2004 Congress on Evolutionary Computation, USA, pp. 542-547, 2004.

-         Parrott, D., Li, X., A Particle Swarm Model for Tracking Multiple Peaks in a Dynamic Environment Using Speciation, Proc. of the 2004 Congress on Evolutionary Computation, USA, pp. 98-103, 2004.

-         Petalas, Y.G., Vrahatis, M.N., Parallel tangent methods with variable stepsize, Proc. IEEE International Conference on Neural Networks, 2, pp. 1063-1066, 2004.

-         Zhang, Y., Ji, C., Yuan, P., Li, M., Wang, C., Wang, G., Particle Swarm Optimization for Base Station Placement in Mobile Communication, Proceedings of 2004 IEEE International Conference on Networking, Sensing and Control, 21-23 March, 2004, Taipei, Taiwan, vol. 1, pp. 428-432, 2004.

-         Liu, Y., Qin, Z., Xu, Z.-L., He, X.-S., Using Relaxation Velocity Update Strategy to Improve Particle Swarm Optimization, Proceedings of 2004 International Conference on Machine Learning and Cybernetics, Shangai, China, Vol. 4, pp. 2469-2472, 2004.

-         Schoeman, I.L., Engelbrecht, A.P., Using Vector Operations to Identify Niches for Particle Swarm Optimization, IEEE 2004 Conference on Cybernetics and Intelligent Systems, pp. 361-366, 2004.

-         Tar J.K., Rudas I.J. , Bitó J.F., Comparison of the Operation of the Centralized and the Decentralized Variants of a Soft Computing Based Adaptive Control, Budapest Tech Jubilee Conference: Science in Engineering, Economics and Education, Budapest, Hungary, September 4, 2004.

-         Tar J.K., Rudas U., Szeghegyi A. and Kozlowski K., Adaptive control of a dynamic system having unmodeled and unconstrained internal degree of freedom, Proc. of the 4th International Workshop on Robot Motion and Control (RoMoCo ’04), pp. 41–46, 2004.

-         Orion F. Reyes-Galaviz and Carlos Alberto Reyes-Garcia, A System for the Processing of Infant Cry to Recognize Pathologies in Recently Born Babies with Neural Networks, Proceedings of the 9th Conference Speech and Computer (SPECOM 2004), September 20-22, 2004, St. Petersburg, Russia, International Speech Communication Association, ISCA Archive, 2004.

-         Ho L.S. and Rajapakse J.C., High sensitivity technique for translation initiation site detection, Proc. of the IEEE 2004 Symposium on Computational Intelligence on Bioinformatics and Compuutational Biology (CIBCB ’04), pp. 153–159, IEEE Press, 2004.

-         Jiang M., Pang H., Deng B. and Zong C., A fast learning algorithm of neural network for the training and recognition of the phonemes, Proc. of the International Symposium on Intelligent Multimedia ,Video and Speech Processing (ISIMP 2004), pp. 318–321, 2004.

-         Valaboju S., Pulluri S., Davari A. and Shadle L., Real time modeling and control of Circulating Fluidized Bed, Proc. of the 36th Southeastern Symposium on System Theory, vol. 36, pp. 49–53, 2004.

-         Bednarik, R., Moreno, A., Myller, N., Sutinen, E., Smart program visualization technologies: Planning a next step, Proceedings of the 5th IEEE International Conference on Advanced Learning Technologies (ICALT 2005), pp. 717-721, 2005.

-         Bruni C., Ferrone C., Lucchetti M., A population set-based global optimization procedure characterized by a births control strategy, Proc. of the IASTED International Conference on Computational Intelligence, July 4-6, 2005 Calgary, Alberta, Canada, pp. 298-303.

-         Cheung R., An adaptive middleware infrastructure incorporating fuzzy logic for mobile computing, Proc. International Conference on Next Generation Web Services Practices (NWeSP 2005), 22-26 Aug. 2005, 3 pp. 449-451, 2005.

-         Delashmit W.H. and Manry M.T., Recent developments in multilayer perceptron neural networks, Proc. of the 7th Annual Memphis Area Engineering and Science Conference (MAESC 2005), May 2005, Memphis Tennessee USA, 2005.

-         Dukkipati A., Murty M.N. and Bhatnagar S., Information theoretic justification of Boltzmann selection and its generalization to Tsallis case, Proc. of the 2005 IEEE Congress on Evolutionary Computation, 2-5 Sept. 2005. vol. 2, pp. 1667-1674.

-         Enquist, H.; Magnusson, J.; Nilsson, A., Change management implications for network organizations, Proceedings of the 37th Hawaii Annual International Conference on System Sciences, 5-8 Jan. 2004, pp.10.

-         Gouli E., Gogoulou A., Papanikolaou K. and Grigoriadou M., Evaluating learner's knowledge level on concept mapping tasks, Proc. 5th IEEE International Conference on Advanced Learning Technologies (ICALT 2005), 5-8 July 2005, pp. 424-428.

-         Jansen, B., Nakayama, K., Neural Networks Following a Binary Approach Applied to the Integer Prime-Factorization Problem, Proc. IEEE International Joint Conference on Neural Networks, Montreal, Canada, vol. 4, 31 July-4 Aug, 2005, pp. 2577-2582.

-         Kodogiannis V.S. and Boulougoura M., Neural network-based approach for the classification of wireless–capsule endoscopic images, Proc. of the International Joint Conference on Neural Networks (IJCNN 2005), July 31–August 4, 2005, Montreal, Quebec, Canada, vol. 4, pp. 2423–2428, 2005.

-         Kodogiannis V.S., Boulougoura M. and Wadge E., Intelligent systems for the diagnosis of wireless–capsule endoscopic images, Proc. of the 5th WSEAS Int. Conf. on SIGNAL, SPEECH and IMAGE PROCESSING, Corfu, Greece, August, 17-19, pp259-264, 2005.

-         Li J. and Duckett T., Three practical aspects on incremental training of RBF network for robot behavior learning, Proc. of the SAIS–SSLS 2005, 3rd Joint Workshop of the Swedish AI and Learning Systems Societies, Malardalen Sweden April 12–14, 2005.

-         Pereira, A., Fernandes, E.M., A New Algorithm for Identifying All Global Maxima Based on Simulated Annealing, 6th World Congress on Structural and Multidisciplinary Optimization, No .4991 May 30–June 3, 2005, Rio de Janeiro, Brazil, 2005.

-         Jin, Y.-X., Cheng, H.-Z., Yan, J.-Y., Zhang, L., Local Optimum Embranchment Based Convergence Guarantee Particle Swarm Optimization and its Application in Transmission Network Planning, Proc. 2005 IEEE/PES Transmission and Distribution Conference and Exhibition: Asia and Pacific, 15-18 Aug. 2005, Dalian, China, pp. 1-6.

-         Engelbrecht, A.P., Masiye, B.S., Pampara, G., Niching Ability of Basic Particle Swarm Optimization Algorithms, Proc. IEEE 2005 Swarm Intelligence Symposium (SIS 2005), Pasadena, California, U.S.A., pp. 397-400, 2005

-         Encheva S., Tumin S., Cooperative learning objects in an intelligent Web-based tutoring system, Proc. of Advanced Industrial Conference on Telecommunications/Service Assurance with Partial and Intermittent Resources Conference (Telecommunications 2005), E-Learning on Telecommunications Workshop (AICT/SAPIR/ELETE 2005), 17-20 July 2005, pp. 504-508, IEEE Press.

-         Liberal F., Ferro A. and Fajardo J.O., Application of a PQoS Based Quality Management Model to Identify Relative Importance of the Agents, the 5th International Conference on Information, Communications and Signal Processing, 06-09 Dec. 2005, pp. 239-243.

-         Liberal F., Ferro A., Jodra J.L., and Fajardo J.O, Application of General Perception-Based QoS Model to Find Providers’ Responsibilities. Case Study: User Perceived Web Service Performance, Proc of the Joint International Conference on Autonomic and Autonomous Systems and International Conference on Networking and Services (ICAS-ICNS 2005), 23-28 Oct. 2005, pp. 62-62.

-         Liu, H., Chen, X., Chen, Y., Wavelet transform analyzing and real-time learning method for myoelectric signal in motion discrimination, Proc. First International Conference on Neural Interface and Control, pp. 127-130, 2005.

-         Schoeman, L., Engelbrecht, A.P., Containing Particles Inside Niches when Optimizing Multimodal Functions, Proc. 2005 Annual Research Conference of the South African Institute of Computer Scientists and Information Technologists on IT Research in Developing Countries (SAICSIT 2005), White River, South Africa, ACM International Conference Proceeding Series; Vol. 150, 78-85, 2005.

-         Plagianakos V .P .,Tasoulis D .K .and Vrahatis M .N .,Computational intelligence techniques for acute leukemia gene expression data classification, Proc. of the International Joint Conference on “Neural Networks ”,(IJCNN 2005)July 31 –August 4,2005,Montreal Quebec Canada, vol. 4, pp .2469–2474 [IEEE Catalog Number :05 CH 37662 C ] [ISBN :0-7803-9049-0 ].

-         Rumetshofer H. and Woss W., Semantic maps and meta-data enhancing e-accessibility in tourism information systems, Proc. 16th International Workshop on Database and Expert Systems Applications, 22-26 Aug. 2005, pp. 881-885

-         Jun, L. and Duckett, T. Three practical aspects on incremental training of RBF network for robot behaviour learning, Proc. SAIS-SSLS 2005, 3rd Joint Workshop of the Swedish AI and Learning Systems Societies, 12–14 April, Malardalen, Sweden, 2005.

-         Pavlidis N.G., Tasoulis D.K., Plagianakos V.P., Nikiforidis G. and Vrahatis M.N., Spiking neural network training using evolutionary algorithms, Proc of the International Joint Conference on Neural Networks (IJCNN2005), July 31–August 4, 2005, Montreal, Quebec, Canada, vol. 4, pp.2190–2194 [IEEE CatalogNumber: 05CH37662C] [ISBN: 0-7803-9049-0].

-         Pavlidis, N.G., Tasoulis, D.K., Vrahatis, M.N., Time series forecasting methodology for multiple-step-ahead prediction, Proceedings of the IASTED International Conference on Computational Intelligence, pp. 456-461, 2005.

-         Sonntag M. and Putzinger A., Interest derivation through keywords, Proc. of the 31st EUROMICRO Conference on Software Engineering and Advanced Applications, 30 Aug.-3 Sept. 2005, pp. 475-482.

-         Tar, J.K., Bencsik, A.L., Fractional order adaptive control for hydraulic differential cylinders, Proceedings 3rd IEEE International Conference on Computational Cybernetics (ICCC 2005), pp. 225-229, 2005.

-         Tasoulis D.K., Plagianakos V.P. and Vrahatis M.N., Clustering in Evolutionary Algorithms to Efficiently Compute Simultaneously Local and Global Minima, Congress on Evolutionary Computation (CEC 2005), vol. 2, pp. 847-1854, 2005.

-         Wang Z.Y., Guo C.X. and Cao Y.J., A new method for short-term load forecasting integrating fuzzy-rough sets with artificial neural network, Proc. of the 7th International Power Engineering Conference (IPEC 2005), 29 Nov.-2 Dec. 2005, pp. 173-178.

-         Yu, C., Manry, M.T., Narasimha, P.L., Sensitivity of nonlinear network training to affine transformed inputs, Proceedings of the Eighteenth International Florida Artificial Intelligence Research Society Conference, FLAIRS 2005 - Recent Advances in Artifical Intelligence, pp. 591-596, 2005.

-         Zarraonandia T., Fernandez C., Diaz P. and Torres J., On the way of an ideal learning system adaptive to the learner and her context, Proc. 5th IEEE International Conference on Advanced Learning Technologies (ICALT 2005), 5-8 July 2005, pp. 641-643.

-         Assis A., Danchak M. and Polhemus L., Optimizing Instruction Using Adaptive Hypermedia, Proc. 6th International Conference on Advanced Learning Technologies, 05-07 July 2006, pp. 779-783.

-         Iivari J., Iivari N., Varieties of User-Centeredness, Proc. of the 39th Annual Hawaii International Conference on System Sciences (HICSS '06), 04-07 Jan. 2006, vol. 8, 176a-176a.

-         Iwamatsu, M., Locating all the global minima using multi-species particle swarm optimizer: The inertia weight and the constriction factor variants, Proc. IEEE Congress on Evolutionary Computation (CEC 2006), pp. 816-822, 2006.

-         Kwok, N.M., Liu, D.K., Tan, K.C., Ha, Q.P., An Empirical Study on the Settings of Control Coefficients in Particle Swarm Optimization, Proc. IEEE 2006 Congress on Evolutionary Computation (CEC 2006), 16-21 July 2006, pp. 823-830, 2006.

-         Menser, S., Hereford, J., A New Optimization Technique, Proc. IEEE SoutheastCon, March 31- April 2, Memphis (TN), U.S.A., pp. 250-255, 2006.

-         Ben Niu, Yunlong Zhu, Xiaoxian He, Xiangping Zeng, An Improved Particle Swarm Optimization Based on Bacterial Chemotaxis, Proc. of the 6th World Congress on Intelligent Control and Automation (WCICA 2006), 21-23 June 2006, vol. 1, pp. 3193-3197.

-         Brkovic M., Milosevic D., and Krneta R., SCos for adaptive E-learning, Proc. 28th International Conference on Information Technology Interfaces, June 19-22, 2006, pp. 29-34.

-         Gongora M. and Ashfaq W. Analysis of Passenger Movement at Birmingham International Airport using Evolutionary Techniques, Proc. IEEE Congress on Evolutionary Computation (CEC 2006), 16-21 July 2006, pp. 1339-1345.

-         Grigoriadou M., Gouli E., Gogoulou A. and Samarakou M., Serving Learning and Assessment in SCALE, Proc. 6th International Conference on Advanced Learning Technologies, 05-07 July 2006, pp. 886-890.

-         O'Hora B., Perera J. and Brabazon A., Designing Radial Basis Function Networks for Classification Using Differential Evolution, Proc. International Joint Conference on Neural Networks (IJCNN '06), 16-21 July 2006, pp. 2932-2937.

-         He, Y.-C., Liu, K.-Q., A modified particle swarm optimization for solving global optimization problems, Proceedings of the Fifth International Conference on Machine Learning and Cybernetics, (ICMLC 2006), August 13-16, 2006, Dalian, China,  art. no. 4028423, pp. 2173-2177, IEEE 2006.

-         Masun H., Rania L. and Ghias B., Adaptive Web-Based Educational System using Neural Networks in EFL Course, Proc. of the 2nd Conference Information and Communication Technologies (ICTTA '06), 24-28 April 2006, vol. 1, pp. 622-625.

-         Zielinski K., Laur R., Constrained Single-Objective Optimization Using Particle Swarm Optimization, Proc. IEEE 2006 Congress on Evolutionary Computation (CEC 2006), 16-21 July 2006, pp. 443-450, 2006.

-         Vilarino F., Spyridonous P., Vitria J., Azpiroz F. and Radeva P., Cascade analysis for intestinal contraction detection, Proc. of the Computer Assisted Radiology and Surgery (CARS 2006), June 28-July 1, 2006, Osaka, Japan, pp.9-12, 2006.

-         Sans V., Sequence mining over ARM Hypermedia presentations, Proc. 2nd Conference Information and Communication Technologies (ICTTA '06), 24-28 April 2006, vol. 1, pp. 552-557.

-         Vilarino F., Spyridonos P., Vitria J., Azpiroz F., Radeva P., Automatic Detection of Intestinal Juices in Wireless Capsule Video Endoscopy, 18th International Conference on Pattern Recognition, (ICPR 2006), August 20-24, 2006, Hong Kong, China, vol. 4, pp. 719-722.

-         Kranzusch K., Abort determination with non-adaptive neural networks for the mars precision landers, Proc. 44th AIAA Aerospace Sciences Meeting and Exhibit; Reno, NV; USA; 9-12 Jan. 2006. pp. 1-11. 2006.

-         Papaioannou, I.V.; Roussaki, I.G.; Anagnostou, M.E., Towards successful automated negotiations based on Neural Networks, Proc. of the 5th IEEE/ACIS International Conference on Computer and Information Science and 1st IEEE/ACIS International Workshop on Component-Based Software Engineering, Software Architecture and Reuse (ICIS-COMSAR 2006) July 10-12, 2006, Honolulu, Hawaii, USA, pp.464-472, 2006.

-         Passaro A. and Starita A., Clustering particles for multimodal function optimization, In: Proceedings of the

-         ECAI Workshop on Evolutionary Computation, August 28, 2006, Riva del Garda, Italy, pp.51-55, 2006.

-         Ruan, X., Liu, L., Yu, N., Ding, M., A model of feedback error learning based on Kalman estimator, Proceedings of the World Congress on Intelligent Control and Automation (WCICA), 1, pp. 4190-4194, 2006.

-         Sevarac Z., Neuro Fuzzy Reasoner for Student Modeling, Proc. 6th International Conference on Advanced Learning Technologies, 05-07 July 2006, pp. 740-744.

-         Vert, G.; Yakkali, R., Towards A Collaborative Model Of An Automated Adaptive Content Delivery Training Utilizing Fuzzy Logic Proc. International Symposium on Collaborative Technologies and Systems (CTS 2006), 14-17 May 2006, pp. 165-171.

-         Wissner-Gross A.D., Preparation of Topical Reading Lists from the Link Structure of Wikipedia, Proc. 6th International Conference on Advanced Learning Technologies, 05-07 July 2006, pp. 825-829.

-         Yecan E. and Calgiltay K., Cognitive Styles and Students’ Interaction with an Instructional Web-site: Tracing Users through Eye-gaze, Proc. 6th International Conference on Advanced Learning Technologies, 5-7 July 2006, pp. 340-342.

-         Yu Cao, Danyu Liu, Wallapak Tavanapong, Johnny Wong, JungHwan Oh, and Piet C. de Groen, Automatic Classification of Images with Appendiceal Orifice in Colonoscopy Videos, In: 28th IEEE 2006 International Conference of the Engineering in Medicine and Biology Society (EMBS 2006), Engineering Revolution in BioMedicine, Aug 30-Sept. 3, 2006, New York City, New York, USA, 2006.

-         Guiling Zhang and Jizhou Sun, Grid intrusion detection based on soft computing by modeling real-user's normal behaviors, Proc. IEEE International Conference on Granular Computing, 10-12 May 2006, pp. 558-561.

-         Roussaki, I., Papaioannou, I., Anagnostou, M., Employing neural networks to assist negotiating intelligent agents, Proceedings of the 2nd Institution of Engineering and Technology International Conference on Intelligent Environments, IET Conference Publications, Issue 518, Athens, Greece, 5-6 July 2006 , ISBN: 0 86341 663 2, vol. 1, 101-110, 2006.

-         Wang Zhiyong and Cao Yijia, Mutual Information and Non-fixed ANNs for Daily Peak Load Forecasting, Power System Conference and Exposition (PSCE 2006), pp. 1523-1527, 2006.

-         Bommanna Raja K., Madheswaran M.and Thyagarajah K., Analysis of Ultrasound kidney Images using Content Descriptive Multiple Features for Disorder Identification and ANN based Classification, Proceedings of the International Conference on Computing: Theory and Applications (ICCTA'07).

-         Castellano, M.; Mastronardi, G.; Di Giuseppe, G.; Dicensi, V., Neural Techniques to Improve the Formative Evaluation Procedure in Intelligent Tutoring Systems, IEEE International Conference on Computational Intelligence for Measurement Systems and Applications (CIMSA 2007), 27-29 June 2007, pp. 63-67.

-         Garcia-Valdez, M.; Castillo, O.; Licea, G.; Alanis, A., Simple Sequencing and Selection of Learning Objects using Fuzzy Inference, Proceedings of the Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS '07), 24-27 June 2007, pp. 628-632.

-         Yi-Chao He; Kun-Qi Liu; A Modified Particle Swarm Optimization for Solving Global Optimization Problems, Proceedings of the International Conference on Machine Learning and Cybernetics, Aug. 2006, pp. 2173-2177.

-         Kahraman, Hamdi Tolga; Colak, Ilhami; Sagiroglu, Seref, A Web Based Adaptive Educational System, Proceedigns of the 6th International Conference on Machine Learning and Applications (ICMLA 2007), 13-15 Dec. 2007, pp.286-291.

-         Takeshi Korenaga, Toshiharu Hatanaka and Katsuji Uosaki, Performance Improvement of Particle Swarm Optimization for High-Dimensional Function Optimization, 2007 IEEE Congress on Evolutionary Computation (CEC 2007), 3288-3293.

-         Liu, Z., Elhanany, I., A scalable model-free recurrent neural network framework for solving POMDPs, Proceedings of the 2007 IEEE Symposium on Approximate Dynamic Programming and Reinforcement Learning (ADPRL 2007), pp. 119-126, 2007.

-         Nicolau Jr., D.V., Nicolau, D.V., Maini, P.K., A biomimetic algorithm for the improved detection of microarray features, Progress in Biomedical Optics and Imaging - Proceedings of SPIE, 6441, art. no. 64411C, 2007.

-         Popescu, E.; Trigano, P.; Badica, C., Adaptive Educational Hypermedia Systems: A Focus on Learning Styles, Proceedings of EUROCON 2007: The International Conference on "Computer as a Tool", 9-12 Sept. 2007 pp.2473-2478.

-         Wang, H., Li, C., Liu, Y., Zeng, S., A hybrid particle swarm algorithm with cauchy mutation, Proceedings of the 2007 IEEE Swarm Intelligence Symposium (SIS 2007), pp. 356-360, 2007.

-         Yu-Xuan Wang, Zhen-Dong Zhao and Ran Ren, Hybrid Particle Swarm Optimizer with Tabu Strategy for Global Numerical Optimization, 2007 IEEE Congress on Evolutionary Computation (CEC 2007), 2310-2316.

-         Zhenzhen Liu,Itamar Elhanany, Fast and Scalable Recurrent Neural Network Learning based on Stochastic Meta-Descent, Proceedings of the 2007 American Control Conference, Marriott Marquis Hotel at Times Square, New York City, USA, July 11-13, 2007, pp 5694-5699.

 

  

Home - Teaching - Publications - Bio - Blog - Department

 

 

 

In electronic resources and technical reports

 

-         Grossenbacher F .and Ludwig Ch .A .,Magazine review “Medicine Computer Science” of the Swiss Society for Medical Informatics, “SGMI /SSIM -Zeitschriftenreview ‘Medizinische Informatik ’”, 2000.

-         Iplikci S ., An Improved Algorithm for Convergence in Training Feedforward Neural Networks,  IEEE NNC SRG 2000 -Final Report .Available on -line at: ewh.ieee.org/tc/nnc/edu/research/reports-2000/iplikci2000.pdf

-         Karkkainnen T .,MLP-Network in a Layer -Wise Form :Derivations Consequences and Applications to weight Decay, Reports of the Department of Mathematical Information Technology Series C Software Engineering and Computational Intelligence No .C 1/2000,University of Jyvaskyla Finland.

-         Kestler H .A .,Schwenker F .and Palm G .,RBF network classification of ECGs as a potential marker for sudden cardiac death Ulmer Informatik -Berichte 2001-03, University of Ulm Germany 2001 [ISSN 0939-5091 ]. Available on-line at: http://vts.uni-ulm.de/docs/2005/5352/vts_5352.pdf

-         Lampinen J., A bibliography of differential evolution algorithm, Technical Report, Lappeenranta University of Technology Department of Information Technology Laboratory of Information Processing Finland. Available on-line at: http://www2.lut.fi/~jlampine/debiblio.htm Updated 12/01/2002.

-         Binos T .,Evolving neural network architecture and weights using an evolutionary algorithm, Master Thesis of Applied Science in Information Technology, Department of Computer Science, RMIT University, Melbourne Australia, April 10, 2003.

-         Al-Tayeche R .and Khalil A .,CBIR :Content based image retrieval Final Report Department of Systems and Computer Engineering Faculty of Engineering Carleton University Ottawa Ontario Canada April 4,2003. Available Available on-line at: http://www.sce.carleton.ca/faculty/cuhadar/CBIR/files/finalreport.doc

-         Niemann H., Klassifikation von Mustern. überarbeitete Auflage in the  Internet, 2003. [Updated version of the book “Pattern Analysis and Understanding”, second edition. Springer Series in Information Sciences 4. Springer, Berlin Heidelberg 1990].

-         van der Vlerk M.H., Stochastic Programming Bibliography. Available online at: http://mally.eco.rug.nl/spbib.html, 1996-2003.

-         Satya N.V.A., Protein secondary structure prediction from amino acid sequences using a neural network classifier based on the Dempster -Shafer theory, Thesis for the degree of Master of Science (Computer Science ), Faculty of Computer Science and Information Systems Universiti Teknologi Malaysia, 2003.  [http://web.sfc.keio.ac.jp/satya/2003.DBNNthesis.pdf]

-         Brautigam N., Training Neuronaler Netze mit Methoden der mathematischen Optimierung, Diplomarbeit zur Erlangung des akademischen Grades Diplom-Mathematiker, Friedrich-Schiller-Universitat Jena, Institut fur Angewandte Mathematik, Fakultat fur Mathematik und Informatik Jena, Germany, January 12, 2004.

-         Neumaier A., Online papers in global optimization, 2004. Available on-line at : http:// http://www.mat.univie.ac.at/~neum/glopt/mss/gloptpapers.html

-         Tino P., Introduction to neural computation:Course material and useful links, MSc in Advanced Computer Science/Natural Computation, School of Computer Science, The University of Birmingham, Edgbaston UK, October 4,2004. Available on-line at: http://www.cs.bham.ac.uk/~pxt/inc.html

-         Wickstrom A. and Svensson O., Neural modelling of the offset printing process, Computer Systems Engineering and Electrical Engineering (IDE 0416), School of Information Science, Computer and Electrical Engineering, Halmstad University, Sweden, March 30, 2004. Available on-line at: www.t2f.nu/t2frapp_f_109.pdf

-         Bex P., Implementing a process scheduler using neural network technology, Nijmeegs Instituut voor Cognitie en Informatie, Radboud University, Nijmegen Nijmegen, The Netherlands 2005.

-         Campana, E.F., Fasano, G., Pinto, A., Particle Swarm Optimization: Dynamic System Analysis for Parameter Selection in Global Optimization Frameworks, Technical Report INSEAN 2005-023, Instituto Nazionale per Studi ed Esperienze di Architettura Navale INSEAN, Italy.

-         Sammer L., Merkmalbasierte Zeichenerkennung mittels neuronaler Netze (Character recognition by means of neural nets), University of Bayreuth, Mathematisches Institut, 2005. [http://www.uni-bayreuth.de/departments/math/~lgruene/diplom/lisa_sammer_diplom .pdf]

-         Schutte J.F., The particle swarm optimization algorithm, Structural Optimization Graduate course in the area of Structures and Optimization, Department of Aerospace Engineering Mechanics and Engineering Science, University of Florida USA , 2005. Available on-line at: http://www.mae.ufl.edu/haftka/stropt/Lectures/PSO_introduction.pdf

-         Vaz, A.I.F., Vicente, L.N., A Particle Swarm Pattern Search Method for Bound Constrained Nonlinear Optimization, Technical Report 06-08, Department of Mathematics, University of Coimbra, Portugal, 2006.

-         Redi J., Tecniche di computational intelligence per la fattorizzazione di numeri grandi, Tesi di laurea magistrale, Corso di Laurea in Ingegneria Elettronica, Dipartimento di Ingegneria Biofisica ed Elettronica, Facolta di Ingegneria, Universita degli Studi di Genova, Genova, Italia, 24 Luglio 2006.

-         Hu X., A bibliography of Particle Swarm Optimization, available online at http://www.swarmintelligence.org/bibliography.php (last accessed 17/11/2006).

 

 

 Home - Teaching - Publications - Bio - Blog - Department