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Abstract The efficient supervised training of artificial neural networks is com-
monly viewed as the minimization of an error function that depends on
the weights of the network. This perspective gives some advantage to
the development of effective training algorithms, because the problem
of minimizing a function is well known in the field of numerical analysis.
Typically, deterministic minimization methods are employed, however,
in several cases, significant training speed and alleviation of the local
minima problem can be achieved when stochastic minimization meth-
ods are used. In this paper a method for adapting the learning rate
in stochastic gradient descent is presented. The main feature of the
proposed learning rate adaptation scheme is that it exploits gradient–
related information from the current as well as the two previous pattern
presentations. This seems to provide some kind of stabilization in the
value of the learning rate and helps the stochastic gradient descent to
exhibit fast convergence and a high rate of success. Tests in various
problems validate the above mentioned characteristics of the new algo-
rithm.

Keywords: Backpropagation neural networks, batch training, on–line training, learn-
ing rate adaptation, stochastic gradient descent.
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Introduction
In the neural network research field, BackPropagation Neural Net-

works (BPNNs) are the most popular models. The efficient supervised
training of BPNNs is a subject of considerable ongoing research and nu-
merous algorithms have been proposed to this end. A common training
approach is to minimize the network learning error, which is a measure
of its performance, and is usually based on the difference between the
actual output vector of the network and the desired output vector (su-
pervised learning). The rapid computation of a set of weights that mini-
mizes this error is a rather difficult task since, in general, the number of
network weights is high and the error function generates a complicated
surface in the weight space, possessing multitudes of local minima and
having broad flat regions adjoined to narrow steep ones that need to be
searched to locate an “optimal” weight set.
Applications of supervised learning can be divided in two categories:

stochastic (also called on–line) and batch (also called off–line) learning.
Batch supervised learning is the classical approach in machine learning:
a set of examples is obtained and used in order to learn a good approx-
imating function (i.e. train the network), before the network is used
in the application. On the other hand, in on–line learning, data gath-
ered during the normal operation of the system are used to continuously
adapt the learned function.
Batch training is consistent with the theory of unconstrained opti-

mization, since the information from all the training set is used. It can
be viewed as the minimization of the error function E; that is to find a
minimizer w∗ = (w∗

1, w
∗
2, . . . , w

∗
n) ∈ R

n, such that:

w∗ = min
w∈Rn

E(w),

where E is the batch error measure defined as the sum–of–squared–
differences error function over the entire training set:

E(w) =
1
2

P∑
p=1

NL∑
j=1

(
yL

j,p − tj,p
)2

=
P∑

p=1

Ep. (2.1)

Note that p is an index over input–output patterns; P denotes the total
number of patterns in the training set; yL

j,p is the output of the j-th neu-
ron that belongs to the L-th (output) layer; NL is the number of neurons
of the output layer; tj,p is the desired response at the j-th neuron of the
output layer at the input pattern p, and Ep is the pattern–based error
of the network. This minimization corresponds to updating the weights
by epoch and to be successful it requires a sequence of weight iterates
{wk}∞k=0, where k indicates epochs, which converges to a minimizer w∗.
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In on–line training, the network weights are updated after the presen-
tation of each training pattern, which may be sampled with or without
repetition. This corresponds to the minimization of the instantaneous
error of the network Ep (see relation (2.1)).
On–line training may be chosen for a learning task either because of

the very large (or even redundant) training set or because we want to
model a slowly time–varying system. Although batch training seems
faster for small training sets and networks, on–line training is probably
faster for large training sets and BPNNs, it helps escaping local min-
ima and provides a more natural approach for learning non–stationary
tasks. Given the inherent efficiency of stochastic gradient descent, var-
ious schemes have been proposed recently [1, 19, 20, 21, 23]. Unfortu-
nately, on–line training suffers from several drawbacks such as sensitivity
to learning parameters [19]. Another disadvantage is that most advanced
optimization methods, such as conjugate gradient, variable metric, sim-
ulated annealing etc., rely on a fixed error surface, and thus there are
difficult to use in on–line training [19].
However, on–line learning has several advantages over batch learning.

On–line methods seem more robust as errors, omissions or redundant
data in the training set can be corrected or ejected during the training
phase. Additionally, training data can often be generated easily and in
great quantities when the system is in operation, whereas it is usually
scarce and precious before. Finally, on–line training is necessary in order
to learn and track time varying functions and to continuously adapt in a
changing environment. In a broad sense, on–line learning is essential if
we want to obtain learning systems as opposed to merely learned ones,
as pointed out in [24].
The paper is focused on learning rate adaptation schemes for stochas-

tic gradient methods. The next section of the paper briefly reviews the
deterministic learning rate adaptation strategies. A new on–line training
algorithm with adaptive learning rate is presented in Section 2. Experi-
mental results are reported in Section 3 to evaluate the performance of
the proposed algorithm and compare it with several on–line and batch
training algorithms. Finally, in Section 4, conclusions are presented.

1. DETERMINISTIC LEARNING RATE
ADAPTATION

BPNN training research usually focuses on deterministic gradient–
based algorithms with adaptive learning rate that aim to accelerate the
learning process. The following strategies are usually suggested: (i)
start with a small learning rate and increase it exponentially, if suc-
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cessive epochs reduce the error, or rapidly decrease it, if a significant
error increase occurs [3, 25], (ii) start with a small learning rate and
increase it, if successive epochs keep gradient direction fairly constant,
or rapidly decrease it, if the direction of the gradient varies greatly at
each epoch [6], (iii) for each weight, an individual learning rate is given,
which increases if the successive changes in the weights are in the same
direction and decreases otherwise [10, 15, 17, 22], and (iv) use a closed
formula to calculate a common learning rate for all the weights at each
iteration [9, 12, 16] or a different learning rate for each weight [7, 13].
Note that all the above–mentioned strategies employ heuristic parame-
ters in an attempt to enforce the decrease of the learning error at each
iteration and to secure the converge of the training algorithm.
A different approach is based on Goldstein’s and Armijo’s work on

steepest–descent and gradient methods. The method of Goldstein [8]
requires the assumption that E is twice continuously differentiable on
S(w0), where S(w0) = {w : E(w) ≤ E(w0)} is bounded, for some ini-
tial vector w0. It also requires that η is chosen to satisfy the rela-
tion sup ‖H(w)‖ ≤ η−1 < ∞, where H(w) denotes the Hessian of E at
w, in some bounded region, where the relation E(w) ≤ E(w0) holds.
The kth iteration of an algorithm model that follows this approach

consists of the following steps:

1. Choose η0 to satisfy sup ‖H(w)‖ ≤ η−1
0 < ∞ and δ to satisfy

0 < δ ≤ η0 .
2. Set ηk = η, where η is such that

δ ≤ η ≤ 2η0 − δ and go to the next step.
3. Update the weights wk+1 = wk − ηk∇E(wk).

However, the manipulation of the full Hessian is too expensive in
computation and storage for BPNNs with several hundred weights [5].
In [11], a technique based on appropriate perturbations of the weights
has been proposed for the on–line estimation of the extreme eigenvalues
and eigenvectors of the Hessian without calculating the full matrix H.
According to experiments reported in [11], the largest eigenvalue of the
Hessian is mainly determined by the BPNN’s architecture, the initial
weights and by short–term low–order statistics of the training data. This
technique can be used to determine η requiring additional presentations
of the training set in the early training.
Armijo’s method, [2], suggests that the value of the learning rate η is

related to the value of the Lipschitz constant L, which depends on the
morphology of the error surface. In this case, the weights are updated
using the formula:

wk+1 = wk − 1
2L

∇E(wk), (2.2)
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and convergence to the point w∗ which minimizes E is obtained (see [2]
for conditions under which convergence occurs and a convergence proof).
In [12] a local estimation of the Lipschitz constant has been proposed
in a learning rate adaptation strategy, which provides increased rate of
convergence, and guarantees the stability of the learning process.

2. STOCHASTIC LEARNING RATE
ADAPTATION

Despite the abundance of methods for learning from examples, there
are only few that can be used effectively for on–line learning. For ex-
ample, the classic batch training algorithms cannot straightforwardly
handle nonstationary data. Even when some of them are used in on–
line training there exists the problem of “catastrophic interference”, in
which training on new examples interferes excessively with previously
learned examples, leading to saturation and slow convergence [24].
Methods suited to on–line learning are those that can handle nonsta-

tionary (time–varying) data, while at the same time, require relatively
little additional memory and computation, in order to process one ad-
ditional example. Examples of such methods are the variants of the
stochastic gradient descent proposed in [1]. The first method, named
ALAP1, uses at each iteration a common learning rate for all the weights:

ηk
i = ηk−1

i + γ
〈
∇Ep−1(wk−1),∇Ep(wk)

〉
, (2.3)

where η0
i = c for all network weights (c is a small positive constant), and

〈·, ·〉 stands for the usual inner product in R
n.

The other two methods introduced in [1] (named ALAP2 and ALAP3),
use a different learning rate for each weight. This feature makes these
on–line training algorithms able to realize variants of the gradient pro-
cedure, which move along a direction that does not necessarily coincide
with the gradient direction, to accelerate the minimization process. The
ALAP2 uses the learning rate update formula:

ηk
i = ηk−1

i

[
1 + γ ∂iEp−1(wk−1) ∂iEp(wk)

]
. (2.4)

The ALAP3 is a normalized version of ALAP2 update rule, given by:

ηk
i = ηk−1

i

[
1 + γ

∂iEp−1(wk−1) ∂iEp(wk)
uk

i

]
, (2.5)

where uk
i is an exponential average of the square of ∂iEp(wk), obtained

through:

uk
i = µuk−1

i + (1− µ)
[
∂iEp(wk)

]2
,
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where µ and γ are positive constants (µ = 0.9 and γ = 0.01 seem
appropriate for most cases [1]).
We propose a new relation for adapting a common learning rate for

all weights in the context of stochastic gradient descent:

ηk+1 = ηk+γ1

〈
∇Ep−1(wk−1),∇Ep(wk)

〉
+γ2

〈
∇Ep−2(wk−2),∇Ep−1(wk−1)

〉
. (2.6)

The main feature of the proposed learning rate adaptation scheme is
that it exploits gradient–related information from the current as well as
the two previous pattern presentations. This seems to provide some kind
of stabilization in the values of the learning rate and helps the stochastic
gradient descent to exhibit fast convergence and a high rate of success.
A high level description of the proposed algorithm is given in Algo-

rithm 1. In this algorithm model, η is the learning rate, γ1 and γ2 are

Stochastic Descent with Adaptive Learning Rate

0: Initialize the weights w0, η0, γ1, and γ2.
1: Repeat
2: Set k = k + 1
3: Randomly choose a pattern p from the training set.
4: Using this pattern, calculate Ep(wk) and then ∇Ep(wk).
5: Calculate the new weights using:

wk+1 = wk − ηk∇Ep(wk)
6: Calculate the new learning rate using:

ηk+1 = ηk + γ1〈∇Ep−1(wk−1),∇Ep(wk)〉
+γ2〈∇Ep−2(wk−2),∇Ep−1(wk−1)〉

7: Until the termination condition is met.
8: Return the final weights wk+1.

Algorithm 1: The Proposed Algorithm in Pseudocode.

the meta–learning rates. As the termination condition the classification
error or an upper limit to the error function evaluations can be used.

3. EXPERIMENTAL TESTS
Simulations have been conducted to study the performance of the

proposed training method. To this end, Algorithm–1 has been evalu-
ated and compared with stochastic as well as batch training methods.
More specifically, in the simulations reported below, we have compared
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Algorithm–1 with three stochastic learning rate adaptation methods pro-
posed by Almeida et al. in [1] (ALAP1, ALAP2 and ALAP3). Moreover,
for the comparisons we have also tested the on–line Back Propagation
(On–line BP) [18], the batch Back Propagation (Batch BP) [18], and
the batch adaptive BP with adaptive momentum (Batch ABP) [25].
The algorithms were tested using the same initial weights, initialized

by the Nguyen–Widrow method [14], and received the same sequence
of input patterns. For each test problem described below, we present
a table summarizing the performance of the algorithms for simulations
that reached solution. The training phase was considered successful
when the network exhibited zero misclassifications on the training set.
The reported parameters are: Min the minimum number of pattern
presentations, Mean the mean value of pattern presentations, Max the
maximum number of pattern presentations, and Succ. the number of
simulations succeeded out of 100 runs. If an algorithm fails to converge
within a predetermined error function evaluation limit, it is considered
that it fails to train the BPNN, and its pattern presentations are not
included in the statistical analysis of its results.
The values of the meta–learning parameters γ1 and γ2 were chosen

as γ1 � γ2 = 1. It seems that the choice of γ1 and γ2 is not critical
for successful training. However, one may achieve faster convergence,
if the meta–learning rates are fine–tuned, which is not the case in our
experiments. On the other hand, much effort has been made to properly
tune the heuristic learning parameters of the Batch BP and Batch ABP,
but there is no guarantee that our final choice is optimal. However, our
experience with simulations indicates that the behavior of the algorithms
described in the examples to follow is characteristic.

3.1 THE XOR PROBLEM
The first test case is the eXclusive–OR (XOR) Boolean function prob-

lem, which has historically been considered as a good test of a neural
network model and training algorithm. The XOR function maps two
binary inputs to a single binary output. This simple Boolean function
is not linearly separable (i.e. it cannot be solved by a simple mapping
directly from the inputs to the output), and, thus, the neural network
requires the use of extra hidden units to learn the task. Moreover, XOR
learning is sensitive to initial weights as well as to learning rate variations
and presents a multitude of local minima with certain weight vectors.
A 2–2–1 BPNN (six weights, three biases) has been used to learn

the XOR mapping. The network is based on neurons with logistic ac-
tivations. The error function evaluation limit was 4000, i.e. only 4000
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pattern presentations were allowed. Comparative results are shown in
Table 2.1. From those results it is evident that the proposed algorithm
clearly outperforms the ALAP1, ALAP2 and ALAP3 algorithms, the on–
line and the batch versions of the BP algorithm, but the ABP method
exhibits a slightly higher rate of success. This was expected since, in
general, the batch algorithms are very good with problems that have
small training sets and/or small network topologies, but are slower than
on–line methods.

Algorithm Min Mean Max Succ.

Batch BP 176 1693.9 3840 17%
Batch ABP 144 1430.4 3708 49%
On–line BP 72 724.2 2972 43%
ALAP1 56 736.1 3900 38%
ALAP2 40 816.9 3960 37%
ALAP3 52 1000.5 3636 43%
Algorithm–1 44 680.2 3388 48%

Table 2.1 Results for the XOR problem

3.2 THE NUMERIC FONT LEARNING
PROBLEM

In the second experiment, a network with 64 input, 6 hidden and
10 output nodes (444 weights, 16 biases) is trained to recognize 8 × 8
pixel machine printed numerals from 0 to 9 in helvetica italic [12]. The
network is based on neurons of the logistic activation model. The ter-
mination condition for all algorithms tested is to exhibit zero misclas-
sifications on the training set, within 1000 error function evaluations.
Detailed results regarding the training performance of the algorithms
are presented in Table 2.2.
The on–line BP method exhibited very high success rate, but the

ALAP1, ALAP2 and ALAP3 methods were faster. On the other hand,
the proposed method and the On–line BP algorithms had almost perfect
success rate (99%). Moreover, Algorithm–1 exhibited fast convergence
since it needed on average only 436 pattern presentations in order to
train the network.
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Algorithm Min Mean Max Succ.

Batch BP 210 500.8 980 90%
Batch ABP 420 789.2 990 51%
On-line BP 230 507.7 950 99%
ALAP1 130 475.5 990 90%
ALAP2 190 433.6 860 90%
ALAP3 210 486.3 990 96%
Algorithm–1 170 436.3 870 99%

Table 2.2 Results for the numeric font learning problem

3.3 THE ALPHABETIC FONT LEARNING
PROBLEM

For this problem, 26 matrices with the capital letters of the English
alphabet are presented to a 35–30–26 BPNN (1830 weights, 56 biases).
Each letter has been defined in terms of binary values on a grid of size
5 × 7. The BPNN was based on neurons with logistic activations. The
results are exhibited in Table 2.3. Once again, the proposed method ex-
hibited a very high success rate (96%) and was faster than all the other
methods considered. On average it needed only 749 pattern presenta-
tions in order to complete the task.

Algorithm Min Mean Max Succ.

Batch BP 4498 21375.9 41860 79%
Batch ABP 3588 3815.7 4212 98%
On–line BP 1404 1861.1 2418 87%
ALAP1 494 1519.4 2548 72%
ALAP2 338 756.6 1846 94%
ALAP3 338 754.5 2418 79%
Algorithm–1 364 749.6 1872 96%

Table 2.3 Results for the alphabetic font learning problem
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4. CONCLUSIONS
In this paper, a new on–line learning algorithm for neural network

training has been proposed. The algorithm is a variant of the stochas-
tic gradient descent that uses a common adaptive learning rate for all
weights. Such algorithms are able to train large networks capable to
adapt to data unknown at the time of the first training, and are better
suited for tasks with large, redundant or slowly time varying training
sets.
The simulation results suggest that the proposed algorithm provides

fast and stable learning, when compared with other on–line as well as
batch training methods, and, therefore, a greater possibility of good
performance. Further work must be done to optimize the algorithm’s
performance and extensive testing on bigger and more complex real–life
learning tasks is necessary to fully evaluate its performance.
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