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Abstract

This paper constitutes an effort towards the generalization of the most common classical iterative methods
used for the solution of linear systems (like Gauss–Seidel, SOR, Jacobi, and others) to the solution of
systems of nonlinear algebraic and/or transcendental equations, as well as to unconstrained optimization of
nonlinear functions. Convergence and experimental results are presented. The proposed algorithms have also been
implemented and tested on classical test problems and on real-life artificial neural network applications and the
results to date appear to be very promising.
 2002 IMACS. Published by Elsevier Science B.V. All rights reserved.

1. Introduction

An iterative method to solve the linear systemAx = b starts with an initial approximationx0 to the
solutionx and generates a sequence of vectors{xk}∞

k=0 that converges tox. Iterative methods involve a
process that converts the systemAx = b into an equivalent system of the formx = Mx + v, for some
fixed matrixM and vectorv. After the initial vector,x0, is selected, the sequence of approximate solutions
is generated by computingxk+1 = Mxk + v, for eachk = 0,1,2, . . . . For large systems containing
thousands of equations, iterative methods often have decisive advantages over direct methods in terms
of speed and demands on computer memory. Sometimes, if the accuracy requirements are not stringent,
a modest number of iterations will suffice to produce an acceptable solution. Also, iterative methods
are often very efficient for sparse systems problems. In sparse problems, the nonzero elements ofA

are sometimes stored in a sparse-storage format. In other case, it is not necessary to storeA at all; for
example, in problems involving the numerical solution of partial differential equations as, in this case,
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each row ofA might be generated as needed but not retained after use. Another important advantage of
iterative methods is that they are usually stable, and they will actually dampen errors, due to roundoff or
minor blunders, as the process continues.

The best well-known iterative method for solving a linear system of equationsAx = b is theGauss–
Seidel method, which can be extended to nonlinear system of equations.

Thus, if

F = (f1, f2, . . . , fn) :D ⊂ R
n → R

n,

then the basic step of thenonlinear Gauss–Seidel iteration is to solve theith equation:

fi

(
xk+1

1 , . . . , xk+1
i−1 , xi, x

k
i+1, . . . , x

k
n

)= 0, (1)

for xi , and to setxk+1
i = xi . To obtainxk+1 from xk , we solve successively then one-dimensional

nonlinear equations (1) fori = 1,2, . . . , n. If relaxation parametersωk are introduced, we may set
xk+1
i = xk

i + ωk(xi − xk
i ) and the corresponding method is called thenonlinear SOR or nonlinear

successive overrelaxation method; in the literature this nomenclature is sometimes reserved for the case
ω > 1.

In an analogous way, thekth step of thenonlinear Jacobi iterative scheme consists of solving the
equations:

fi

(
xk

1, . . . , x
k
i−1, xi, x

k
i+1, . . . , x

k
n

)= 0, i = 1,2, . . . , n, (2)

for xi and settingxk+1
i = xi , for i = 1,2, . . . , n.

In contrast to the linear case, in general, the analytic solutions of Eqs. (1) and (2) are not available and
an one-dimensional rootfinding method must be applied that terminates after a suitable number of steps.
Any type of one-dimensional methods may be used leading to a large variety of combined methods [16].
On the other hand if many steps of these one-dimensional methods are applied the whole procedure
becomes cumbersome and thus in practice, in many cases, one step of these methods is applied. In this
case, for example, if we apply Newton’s method to Eqs. (1) and (2) we obtain respectively theone-step
SOR-Newton and theone-step Jacobi Newton methods [12]. The convergence properties of all the above
methods are well studied and analyzed (see, for example, [12]) and to this end there are many theorems
available in the literature.

Furthermore, the above iterative linear schemes can be also extended to unconstrained optimization of
a nonlinear function [27,28]. Although the nonlinear iterative rootfinding methods have been extensively
studied, the unconstrained optimization case has not been thoroughly studied and analyzed. In this paper,
we give some recent convergence and experimental results of ours related to the generalization of the
iterative linear methods to unconstrained optimization of nonlinear functions.

The paper is organized as follows. In Section 2 we present the theoretical results as well as the
proposed algorithms for computing a local minimizer of a function by generalizing various iterative
linear methods. A strategy for developing globally convergent algorithms is presented in Section 3. In
Section 4, we exhibit numerical results obtained by the proposed method applied to well-known and
widely used test function, as well as on real-life artificial neural network applications. The paper ends in
Section 5 with some concluding remarks.
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2. Unconstrained optimization of nonlinear functions

It is well-known that a minimizerx∗ of a continuous differentiable functionf should satisfy the nec-
essary conditions:

∇f
(
x∗)= Θn = (0,0, . . . ,0). (3)

Eq. (3) represents a set ofn nonlinear equations which must be solved to obtainx∗. Therefore, one
approach to the minimization of the functionf is to seek the solutions of the set of Eq. (3) by including
a provision to ensure that the solution found does, indeed, correspond to a local minimizer. This is
equivalent to solving the following system of equations:

∂1f (x1, x2, . . . , xn) = 0,
∂2f (x1, x2, . . . , xn) = 0,

...

∂nf (x1, x2, . . . , xn) = 0,

(4)

where∂if (x1, . . . , xi, . . . , xn) denotes the partial derivative off with respect to theith parameter.
Next, we consider the classes ofnonlinear Jacobi andnonlinear SOR methods applied to system (4).

2.1. The composite nonlinear Jacobi method and its convergence

The class ofnonlinear Jacobi methods is widely used for the numerical solution of system (4). The
main feature of the nonlinear Jacobi process is that it is a parallel algorithm [12], i.e., it applies a parallel
update of the variables. Starting from an arbitrary initial vectorx0 ∈ D, one can subminimize at thekth
iteration the function:

f
(
xk

1, . . . , x
k
i−1, xi, x

k
i+1, . . . , x

k
n

)
, (5)

along theith direction and obtain the corresponding subminimizerx̂i . Obviously for the subminimizer̂xi

∂if
(
xk

1, . . . , x
k
i−1, x̂i , x

k
i+1, . . . , x

k
n

)= 0. (6)

This is a one-dimensional subminimization because all the components of the vectorxk , except from the
ith component, are kept constant. Then theith component is updated according to the equation:

xk+1
i = xk

i + τk
(
x̂i − xk

i

)
, (7)

for some relaxation factorτk . The objective function in (5) is subminimized in parallel for alli.
Various composite nonlinear Jacobi training algorithms can be obtained depending on the one-

dimensional minimization method applied. It is worth noticing that the number of the iterations
of the subminimization method is related to the requested accuracy in obtaining the subminimizer
approximations. Thus, significant computational effort is needed in order to find very accurate
approximations of the subminimizer along each variable direction at each iteration. Moreover, this
computational effort is increased for problems with a high number of variables, as, for example, when
training neural networks with several hundred network parameters (also called weights). On the other
hand, it is not certain that this large computational effort speeds up the minimization process for
nonconvex functions when far from a minimizerx∗. Thus, we propose to obtain̂xi by minimizing the
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function (5) with one iteration of a subminimization method. Note that this practice is also suggested for
the iterative solution of nonlinear equations [8,12,17,33].

By properly tuning the relaxation factorτk , we can obtain better parameter iterates because this factor
defines the length of the minimization step along the resultant search direction. Thus, we are able to avoid
temporary oscillations and/or to enhance the rate of convergence when the current parameter vector is far
from a minimizer.

Next, the convergence of the composite nonlinear Jacobi method is discussed. The convergence
analysis is developed under appropriate assumptions and provides useful insight into this class of
methods. The objective is to show that there is a neighborhood of a minimizer of the objective function
for which convergence to the minimizer can be guaranteed.

Theorem 1. Let f :D ⊂ R
n → R be twice continuously differentiable in an open neighborhood S0 ⊂ D

of a point x∗ ∈ D for which ∇f (x∗) = Θn and the Hessian, H(x∗) is positive definite with the property
Aπ . Then there exists an open ball S = S(x∗, r) in S0 (where S(x∗, r) denotes the open ball centered at
x∗ with radius r), such that any sequence {xk}∞

k=0 generated by the nonlinear Jacobi process converges
to x∗ which minimizes f .

Proof. Consider the decomposition ofH(x∗) into its diagonal, strictly lower-triangular and strictly
upper-triangular parts:

H
(
x∗)= D

(
x∗)− L

(
x∗)−L
(x∗). (8)

SinceH(x∗) has the propertyAπ , the eigenvalues of

Φ
(
x∗)= D

(
x∗)−1[

L
(
x∗)+ L
(x∗)],

are real andρ(Φ(x∗)) < 1 [1] (whereρ(A) indicates the spectral radius of the matrixA); then there
exists an open ballS = S(x∗, r) in S0, such that, for any initial vectorx0 ∈ S , there is a sequence
{xk}∞

k=0 ⊂ S which satisfies the nonlinear Jacobi process such that limk→∞ xk = x∗ [12]. Thus the
theorem is proved. ✷
Remark 1. The Property Aπ . Young [34] has discovered a class of matrices described as having
property A that can be partitioned into block-tridiagonal form, possibly after a suitable permutation [1].
An algorithmic procedure for transforming a symmetric matrix to a tridiagonal form is presented in [21,
p. 335].

Below we synthesize three algorithms of this class. These algorithms employ a different stepsize for
each parameter based on traditional one-dimensional minimization methods. The first one requires only
the sign of the gradient values, while the other two exploit both the function and gradient values.

2.1.1. The multi-step Jacobi-modified bisection method
In order to compute a minimizer approximationx̂i in the interval[ai, bi] we use our modification of

the bisection method which is briefly described below.
A solution of the equationϕ(x) = 0, where the functionϕ : [a, b] ⊂ R → R is continuous, is

guaranteed to exist in the interval(a, b) if the following criterion is fulfilled:

ϕ(a)ϕ(b) < 0, or sgnϕ(a)sgnϕ(b) = −1,
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where sgn is the well-known three valued sign function. This criterion is known as Bolzano’s existence
criterion (for a generalization of this criterion to higher dimensions see [26]). Based on this criterion
various rootfinding methods, as, for example, the bisection method, were created. Here we shall use
the bisection method which has been modified to the following simplified version described in [24,25].
There is reported that, in order to compute a root ofϕ(x) = 0 whereϕ : [a, b] ⊂ R → R is continuous, a
simplified version of the bisection method leads to the following iterative formula:

rp+1 = rp + c · sgnϕ
(
rp
)
2p+1, p = 0,1, . . . ,

⌈
log2(b − a)ε−1

⌉
, (9)

with c = sgnϕ(r0)(b − a), r0 = a, where ε is the required accuracy, and�·� defines the ceiling
function. Of course the iterations (9) converge to a rootr∗ ∈ (a, b) such that|rp+1 − r∗| � ε if for
somerp, p = 1,2, . . . , the following holds:

sgnϕ
(
r0
)
sgnϕ

(
rp
)= −1.

Furthermore, the number of iterationsν, which are required in obtaining an approximate rootr such that
|r − r∗| � ε for someε ∈ (0,1) is given by [24,30]:

ν = ⌈
log2(b − a) ε−1⌉. (10)

Instead of the iterative formula (9) we can also use the following one:

rp+1 = rp − c · sgnϕ
(
rp
)
2p+1, p = 0,1, . . . ,

⌈
log2(b − a)ε−1⌉, (11)

wherer0 = b.

The reason for using the bisection method is that it is a globally convergent method, it can be easily
implemented in parallel and it always converges within the given interval. Moreover it has a great
advantage since it is optimal, i.e., it possesses asymptotically the best possible rate of convergence [19].
Also, using the relation (10) it is easy to have beforehand the number of iterations that are required for
the attainment of an approximate root to a predetermined accuracy. Finally, it requires only the algebraic
signs of the function values to be computed, as it is evident from (9) or (11), thus it can be applied
to problems with imprecise function values. As a consequence for problems where the function value
follows as a result of an infinite series (e.g., Bessel or Airy functions) it can be shown [29,31] that the
sign stabilizes after a relatively small number of terms of the series and the calculations can be speed up
considerably.

To compute along theith direction, a minimizer approximation̂xi within the interval[ai, bi], according
to a predefined accuracyδ ∈ (0,1), the above modified bisection method (9) assumes the form:

x
p+1
i = x

p

i + c · sgn∂if
(
xp
)
/2p+1, p = 0,1, . . . ,

⌈
log2

(
hi δ

−1)⌉, (12)

wherec = sgn∂if (x0)hi , x0
i = ai andhi = bi − ai . Of course, the iterations (12) converge tox̂i ∈ (ai, bi)

if for somexp

i , p = 1,2, . . . , the following condition holds:

sgn∂if
(
x0
)
sgn∂if

(
xp
)= −1.

To ensure that̂xi is a subminimizer along theith variable’s direction, we choose the endpointsai andbi
in such a way that theith component of the gradient vector at the left endpointai has a negative value,
or, theith component of the gradient vector at the right endpointbi has a positive value. In order this
condition to be fulfilled we choose the endpoints by means of the following relation:

ai = xk
i − 1

2

{
1+ sgn∂if

(
xk
)}
hi − sgn∂if

(
xk
)
β, bi = ai + hi, (13)
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where β is a small positive real number which depends on the relative machine precision (e.g.,
β = xi

√
epsmch whereepsmch denotes the relative machine precision).

It is evident from the sequence (12) that the only computable information required by this method is
the algebraic signs of the gradient of the functionf . The method does not require the gradient values to be
evaluated analytically. It allows to minimize storage requirements regarding gradient and approximate the
derivatives using the method of forward-differences, as the sign can be obtained accurately by comparing
the relative size of the function value. Hence, the convergence of the method is not affected by rounding
and quantization errors that usually cause imprecise function values in simulations, as long as the signs
are preserved.

Thus, the valuêxi in the iterative scheme (7) is the approximation of the subminimizer obtained by
(12). For the implementation and the good performance characteristics of (12) in neural networks training
with imprecision see [9].

2.1.2. The one-step Jacobi–Newton method and a heuristic scheme
A straightforward implementation of the one-step Jacobi–Newton iteration leads to the following

iterative scheme:

xk+1
i = xk

i − τk
∂if (xk)

∂2
iif (xk)

. (14)

To avoid the calculation of the second derivative we propose the following scheme which utilizes the
notion of the local Lipschitz constant [10]:

&k
i = ∣∣∂if (xk

)− ∂if
(
xk−1

)∣∣/∣∣xk
i − xk−1

i

∣∣, (15)

wherexk andxk−1 is a pair of consecutive iterates. Thus, the parameters are updated according to the
relation:

xk+1
i = xk

i − τk

{ |∂if (xk)− ∂if (xk−1)|
|xk

i − xk−1
i |

}−1

∂if
(
xk
)
. (16)

In the steep regions of the objective function’s landscape Eq. (16) uses a small value for the stepsize in
order to guarantee convergence. On the other hand, when the landscape of the objective function has flat
regions, a large stepsize is used to accelerate the convergence. Note that in Eq. (16) the partial derivative
with respect to theith component∂if (xk−1) is used. Thus, proper initialization is needed to start the
iterative procedure.

2.1.3. The one-step Jacobi with Newton-update method
The problem of minimizing the functionf along theith direction at thekth iteration:

η∗
i = min

ηi�0
f
(
xk + ηi ei

)
, (17)

whereei indicates theith column of the identity matrix, is equivalent to seeking the value ofη∗
i that

minimizes the one-dimensional function:

φi(ηi) = f
(
xk + ηi ei

)
. (18)
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In situations wheref (x) � 0, for all x ∈ R
n, as in the neural network training problem, then the point

x∗ with f (x∗) = 0 minimizesf (x). Therefore the subminimization problem (17) can be handled by
applying properly a root finding procedure to the equation:

φi(ηi) = 0, (19)

to obtain an approximation̂ηi of η∗
i . To this end, using one step of the Newton’s method we obtain:

η1
i = η0

i − φi(η
0
i )

φ
′
i (η

0
i )
. (20)

Sinceη0
i = 0 we get:

η̂i = −φi(η
0
i )

φ
′
i (η

0
i )
. (21)

From Eq. (18) we have:

φi

(
η0
i

)= f
(
xk + η0

i ei
)= f

(
xk
)
, (22)

and

φ′
i

(
η0
i

)= ∇f
(
xk
)


ei = ∂if
(
xk
)
. (23)

Thus, Eq. (21) is reformulated as:

η̂i = − f (xk)

∂if (xk)
. (24)

The value ofη̂i corresponds to the difference(x̂i − xk
i ) of Eq. (7) and is calculated in parallel for all the

components (i = 1, . . . , n) at each iteration. Consequently, Eq. (7) takes the form:

xk+1
i = xk

i − τk
f (xk)

∂if (xk)
. (25)

The iterative scheme (25) takes into consideration information from both the objective function and the
magnitude of the gradient components. When the gradient magnitude is small, the local shape off in
this direction is flat, otherwise it is steep. The value of the objective function indicates how close to the
minimizer this local shape is. The above pieces of information help the iterative scheme (25) to escape
from flat regions with high function values, which are located far from a desired minimizer. Another
advantage of this scheme is that there is no need to store information from the previous iterations, e.g.,
previous values of the objective function and/or of the gradient.

2.2. The composite nonlinear SOR scheme and its convergence

Starting from an arbitrary initial iteratex0 ∈ D, the nonlinear SOR scheme subminimizes at thekth
iteration the function:

f
(
xk+1

1 , . . . , xk+1
i−1 , xi, x

k
i+1, . . . , x

k
n

)
, (26)

along theith direction and obtain the corresponding subminimizerx̂i . Again in this case, theith
component is updated according to Eq. (7). The main difference from the Jacobi scheme is that the
adaptation of thexi at thekth iteration takes into consideration all the previously updated variables of the
same iteration. The convergence result for the nonlinear SOR scheme is as follows:
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Theorem 2. Let f :D ⊂ R
n → R be twice continuously differentiable on an open neighborhood S0 ⊂ D

of a local minimizer x∗ ∈ D. Then there exists an open ball S = S(x∗, r) in S0 such that the sequence
{xk} generated by the nonlinear SOR scheme converges to the point x∗.

Proof. Suppose that:

Φτ

(
x∗)= [

D
(
x∗)− τL

(
x∗)]−1[

(1− τ)D
(
w∗)+ τL
(x∗)],

for τ ∈ (0,2) whereD andL are defined as in Eq. (8). Now, by virtue of Ostrowski Theorem [22],
ρ(Φτ (x

∗)) < 1 for anyτ ∈ (0,2) and therefore, by the nonlinear SOR theorem [12], there exists an open
ball S = S(x∗, r) in S0, such that, for anyx0 ∈ S , limk→∞ xk = x∗. Thus the theorem is proved.✷
2.2.1. The multi-step SOR-modified bisection method

Them-step SOR bisection method is similar tom-step Jacobi bisection method. However, to avoid
calculating the signs of the gradient values in (12), we propose an alternative scheme:

x̂
p+1
i = x̂

p

i + c · sgn
(
f
(
z
p

i

)− f (zi)
)
/2p+1, p = 0,1,2, . . . (27)

wherezpi , zi are computed by means of

z
p

i = (
xk+1

1 , . . . , xk+1
i−1 , x̂

p

i , x
k
i+1, . . . , x

k
n

)
, (28)

zi = (
xk+1

1 , . . . , xk+1
i−1 , x

k
i , x

k
i+1, . . . , x

k
n

)
, (29)

with c = sgn(f (z0
i )− f (zi)) hi; hi = bi − ai , x̂0

i = ai .
Suppose that the sequence (27) converges to ax̂α

i then the final approximation tôxi is given by:

x̂i = x̂0
i + τk

(
x̂α
i − x̂0

i

)
, (30)

for some relaxation factorτk .
Also, the sign of the gradient in relation (13) can be computed as

sgn∂if
(
xk
)= sgn

(
f
(
xk + βei

)− f
(
xk
))
,

whereβ is a small positive real number which depends on the relative machine precision (e.g.,β =
xk
i

√
epsmch ).

The signs of the objective function values or its gradient values in the iterative scheme (27) can be
achieved by solely comparing the relative sizes of the objective function values. Thus, this method seems
able to cope with imprecisions or noisy function values.

2.2.2. Another approach based on Powell’s method
Here, we briefly describe Powell’s method for solving unconstrained minimization problems, without

calculating derivatives. We also propose a derivative free minimization method, which is based on
Powell’s method, and study its termination properties. Powell’s method [15] is based on the use of
conjugate directions and the main idea of his approach is that the minimum of a positive-definite quadratic
form can be found by performing at mostn successive exact line searches along mutually conjugate
directions, wheren is the number of variables. Also, this procedure can be applied to non-quadratic
functions by adding a new composite direction at the end of each cycle ofn exact line searches. In this
case finite termination is no longer expected. One iteration of Powell’s method consists of the following
steps, wherex0 is the initial point, andui , i = 1,2, . . . , n determine the initial set of directions which are
equal to the basis vectorsei , i = 1,2, . . . , n:
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1. For i = 1,2, . . . , n Compute λi to minimizef (xi−1 + λiui), and
Define xi = xi−1 + λiui .

2. For i = 1,2, . . . , n− 1, Replace ui by ui+1.
3. Replace un by (xn − x0).
4. Compute λ to minimizef (xn + λun), andSet x0 = xn + λun.

For the subminimization process along theui direction, Powell’s method uses a subprocedure that
calculates the minimum of a quadratic form and it is primarily based on the quadratic defined by
three function values. Letp be a point along the search directionui and q a steplength. Initially,
f (p) and f (p + qui) are calculated, and then eitherf (p − qui) or f (p + 2qui) is worked out,
depending on whetherf (p) is less than or greater thanf (p + qui). These three function values are
now used in the general formula which predicts the turning value of the quadratic defined by the points
a,f (p + aui), b, f (p + bui), c andf (p + cui) to be at(p + dui), where:

d = 1

2
× (b2 − c2)fa + (c2 − a2)fb + (a2 − b2)fc

(b − c)fa + (c − a)fb + (a − b)fc

. (31)

For some technical details needed to find the minimum as well as techniques that reduce the number of
function evaluations, see the detailed description of the algorithm in [15].

For a general (non-quadratic) function, the iteration is repeated until some stopping criterion is
satisfied. Iff is quadratic we minimize alongn conjugate directionsu1, u2, . . . , un, and the minimum is
reached if theui are all nonzero. This is true ifλ1 �= 0 at each iteration, since the directionsu1, u2, . . . , un

cannot become linearly dependent. The problem is that Powell’s method has a tendency to choose the
search directions that are linearly dependent on each other, especially in ill-conditioned problems. There
are various procedures to cope with the linear dependence in Powell’s algorithm. The simplest way to
avoid linear dependence of the search directions is to reset the set of directionsui , to the basis vectorsei
aftern or (n + 1) iterations of the basic procedure. This is the procedure we will follow in our approach
and it retains the quadratic termination property, ifλ1 �= 0. Below, we propose a modification of Powell’s
method for the numerical computation of a minimizer off utilizing only the relative size of the function
values. To this end,f (x + λu) is minimized by comparing the relative size of function values.

In our case we have to minimizef (x0 + λu) along the lineu. One way to do this, by applying one-
dimensional rootfinding methods, is to compute the value ofλ �= 0 such that:

f
(
x0 + λu

)− f
(
x0)= 0. (32)

Now, if λ̂ is the solution of the above equation, then, of course, the pointx̂0 = x0 + λ̂u possesses the
same function value as the pointx0, so it belongs to the contour line ofx0. Then, we can choose a point
which belongs to the line segment with endpointsx0 and x̂0 possessing a smaller function value than
these endpoints. With this fact in mind we can now choose such a point, say for example:

x1 = x0 + γ
(
x̂0 − x0), γ ∈ (0,1).

To solve the one-dimensional Eq. (32), we use our modification of the bisection method. Thus, in our
case to solve Eq. (32) forλ, along the directionu, the modified bisection method (9) assumes the form:

λp+1 = λp + c · sgn
[
f
(
a + λpu

)− f
(
x0)]/2p+1, p = 0,1, . . . , ν, (33)

with ν = �log2(b − a)ε−1�, c = sgn[f (a) − f (x0)](b − a), λ0 = 0, h = b − a and whereh indicates the
stepsize. Of course, utilizing our process we are able to obtain also local maxima along the lineu. But if
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we choose the endpointsa andb in a proper way, then this method deals with a minimum. This can be
easily handled by applying the iterative scheme (33) and taking the endpointsa andb from the following
relations:

a = x0 − sβ − 1

2
(1+ s)h and b = a + h, (34)

wheres = sgn[f (x0 +βu)− f (x0)] andβ is a small positive real number which depends on the relative
machine precision (e.g.,β = |a|√epsmch ).

To study the termination properties of our approach we give the following result that states that any
search method involving minimization along a set of linearly independent conjugate directions has a
quadratically termination property.

Theorem 3 [15,37]. If a quadratic function f (x) of dimension n is minimized sequentially, once along
each direction of a set of n linearly independent, conjugate directions, the global minimum of f will be
located in n or less cycles independent of the starting point as well as the order in which the minimization
directions are used.

Remark 2. A method that minimizesf according to the requirements of the above theorem has the
property known asquadratic termination. Also, the order in which the directions are used is immaterial.

Theorem 4 [15,37].The directions generated in Powell’s method are conjugate.

Theorem 5. The proposed method locates the minimum of an n-dimensional quadratic function f (x), in
n or less iterations, utilizing only the relative size of the function values of f , independent of the starting
point as well as the order in which the minimization directions are used.

Proof. Since the proposed method uses the direction setui of Powell’s method, by Theorem 4 these
directions are conjugate. Also, the starting search directions are coordinate directions and hence they
are linearly independent. Furthermore, the proposed method avoids linear dependence of the search
directions by resetting the set of directionsui , to the coordinate directions aftern or (n+ 1) iterations of
the basic procedure. Thus the assumptions of Theorem 3 are fulfilled and the result follows.✷

As it is well-known the quadratic termination property is very powerful, because most of the general
(non-quadratic) functions can be approximated very closely (near their minima) by a quadratic one.
Thus, this property is expected to speed up the convergence even for general functions. On the other
hand Powell’s method, as well as the proposed one, require generally more than, the theoretically
estimated number ofn cycles for quadratic functions. The proof of the quadratic termination property has
been established with the assumption that the exact minimum is found in each of the one-dimensional
subminimizations. In practice the actual subminimizer is approximated and hence the subsequent
directions will not be conjugate. Thus, the methods require more iterations for achieving the overall
convergence. For a proof of convergence, when the directions of the basis vectors are used and inexact
one-dimensional subminimization procedures are applied, see [27, p. 377].
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3. A strategy for developing globally convergent algorithms

In this section we present a strategy for developing globally convergent algorithms, i.e., algorithms
with the property that starting from almost any starting point the sequence of the iterates will converge to
a local minimizer of the objective function. This strategy is similar to the nonlinear Jacobi approach, since
it utilizes approximations of the subminimizers in each coordinate direction, and is a parallel algorithm.
The theoretical result presented below, allows us to equip the algorithms with a strategy for adapting the
direction of search to a descent one. In this way, a decrease of the function values at each iteration is
ensured, and convergence to a local minimizer of the objective function is obtained from remote initial
points.

Theorem 6. Suppose that: (a) f :Rn → R is bounded below in R
n, (b) the gradient is Lipschitz

continuous, i.e., there exists a constant L> 0 such that∥∥∇f (x) − ∇f (y)
∥∥� L‖x − y‖, ∀x, y ∈ N ,

and (c) that f is continuously differentiable in a neighborhood N of the level set L = {x: f (x) � f (x0)},
where x0 is the starting point of the iterative scheme:

xk+1 = xk + αk dk, (35)

where dk = −diag{τ k
1 , . . . , τ

k
i , . . . , τ

k
n }∇f (xk) denotes the search direction, and τ k

m, m = 1,2, . . . , i − 1,
i + 1, . . . , n are arbitrarily chosen small positive stepsizes,

τ k
i = − ζ

∂if (xk)
− 1

∂if (xk)

n∑
j=1
j �=i

τ k
j ∂jf

(
xk
)
, 0< ζ � ∞, ∂if

(
xk
) �= 0, (36)

and αk > 0 satisfies the Wolfe’s conditions:

f
(
xk + αkdk

)− f
(
xk
)
� σ1α

k∇f
(
xk
)


dk, (37)

∇f
(
xk + αkdk

)

dk � σ2∇f

(
xk
)


dk, (38)

where 0 < σ1 < σ2 < 1. Then the sequence {xk}∞
k=0, generated by the iterative scheme (35) is globally

convergent to a local minimizer of the objective function f .

Proof. The sequence{xk}∞
k=0 follows the direction

dk = −diag
{
τ k

1 , . . . , τ
k
i , . . . , τ

k
n

}∇f
(
xk
)
,

which is a descent direction ifτ k
m, m = 1,2, . . . , i − 1, i + 1, . . . , n are arbitrarily chosen real positive

step lengths andτ k
i is given by relation (36), since

∇f
(
xk
)


dk < 0.

Moreover, the Zoutendijk condition [38]∑
k�1

cos2 θk
∥∥∇f

(
xk
)∥∥2

< ∞, (39)
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where

cosθk = −∇f (xk)
dk

‖∇f (xk)‖‖dk‖ , (40)

is fulfilled [35,36,38]. In our case relation (40) becomes

cosθk = −∇f (xk)
dk

‖∇f (xk)‖‖dk‖ > 0, (41)

thus limk→∞ ‖∇f (xk)‖ = 0, which means that the sequence of gradients converges to zero. From the
previous it is evident that the sequence{xk}∞

k=0 is globally convergent to a local minimizer. Thus, the
theorem is proved. ✷
Remark 3. Theorem 6 guarantees convergence to a local minimizer for any minimization algorithm that
adopt the following strategy: (a) define(n − 1), say {1,2, . . . , i − 1, i + 1, . . . , n}, out of then step
lengths, of the set{1,2, . . . , n}, as computed directly by the algorithm, and (b) analytically calculate the
remaining one (theith step length) using the values of the others,{1,2, . . . , i −1, i +1, . . . , n}. Note that
no additional objective function or gradient evaluations are required; the proposed strategy uses pieces
of information that are already computed.

Note that in many applications such as neural network training and nonlinear least square problems,
the objective functionf is always bounded below, thus condition (a) of Theorem 6 is always fulfilled.

4. Numerical results

The proposed algorithms have been tested on various problems of different dimensions and their
performance has been compared with several well-known and widely used unconstrained minimization
methods. The numerical applications studied here include classical test cases as well as real-life
applications such as artificial neural network training.

4.1. Classical test problems

The procedures described in Section 2.2.2, have been implemented and tested in two test functions.
Our modified version of Powell’s method (SIGNOPT) has been compared with two other well-known
minimization methods, namely Powell’s and Rosenbrock’s methods. To study the influence of imprecise
information (regarding the values of the objective function), we simulate imprecisions with the following
approach: information aboutf (x) is obtained in the form off σ (x), wheref σ (x) is an approximation to
the true function valuef (x), contaminated by a small amount of noise. For the test problems, the reported
parameters are:n, the dimension of the objective function;σ , the value of the standard deviation of the
simulated noise; andx0 = (x1, x2, . . . , xn), the classical starting point for each function.

4.1.1. Broyden banded function [11]
In this examplef is given by:

f (x) =
n∑

i=1

fi
2(x), with fi(x) = xi

(
2+ 5x2

1

)+ 1−
∑
j∈Ji

xj (1+ xj ),
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Table 1
Function evaluations (Broyden banded function)

n σ Powell Rosenbrock SIGNOPT

2 0 246 599 536
0.01 1549 12437 964
0.10 9369 20524 1289
0.20 – 15819 1180
0.30 – 30756 1824

3 0 2182 1426 1002
0.01 – 43654 3429
0.10 – 42231 2574
0.20 – 90159 4000
0.30 – – 9289

whereJi = {j : j �= i, max(1, i − ml) � j � min(n, i + mu)} and ml = 5, mu = 1. For n = 2, we
have used the starting valuesx0 = (1,1), while for n = 3 we have started the methods from the point
x0 = (1,1,1). In Table 1 we exhibit the obtained results. SIGNOPT converged in all cases and had
predictable performance, while Powell’s method diverged as we increasedσ and Rosenbrock’s method
exhibited slow convergence.

4.1.2. Hilbert function [2]
In this examplef is given by:

f (x) = x
Ax, aij = 1

i + j − 1
, for 1� i, j � n,

whereA is an n by n Hilbert matrix. This is a positive definite quadratic function, but its condition
number increases rapidly withn. In our tests, the starting point wasx0 = (1,1) for n = 2, x0 = (1,1,1)
for n = 3 andx0 = (1,1,1,1) for n = 4. In Table 2 we exhibit the corresponding results obtained by the
methods. Powell’s method forn = 4 has shown a quite random behavior and Rosenbrock’s method had
a slow convergence. Once again, SIGNOPT outperformed the other two methods; was faster and more
predictable.

4.2. Neural networks training

In order to train the network we have to find parameter values that minimize the following objective
function:

f (x) =
P∑

p=1

J∑
j=1

[{
1+ exp

(
I∑

i=1

wijyi,p + τj

)}−1

− tj,p

]2

, (42)

where

yi,p =
{

1+ exp

(
K∑

k=1

vkiuk,p + bi

)}−1

, and

x = (v11, . . . , vki , . . . , vK I , b1, . . . , bi, . . . , bI ,w11, . . . ,wij , . . . ,wI J , τ1, . . . , τj , . . . , τJ ).

(43)
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Table 2
Function evaluations (Hilbert function)

n σ Powell Rosenbrock SIGNOPT

2 0 106 205 322
0.01 1151 1213 432
0.10 – 2411 538
0.20 – 38882 324
0.30 – 65861 1825

3 0 439 507 428
0.01 2523 3553 716
0.02 3370 3814 716
0.03 11370 3514 716
0.04 15221 3623 858
0.05 15598 4343 858
0.10 24533 5040 4225

4 0 882 717 533
0.01 6160 3810 359
0.02 7174 4426 359
0.03 4297 7136 359
0.04 9757 6659 359
0.05 1624 9373 538
0.10 4505 11332 4824

The parametersvki , bi , wij and τj can be arbitrary real numbers. Eq. (43) provides an oversimplified
description of a biological neuron and it is widely used to construct artificial neural networks [18,
6]. Examples used for training the network are presented in a finite sequenceC = (c1, c2, . . . , cp) of
input–output pairscp = (up, tp) whereup can either be real or binary valued input vectors inR

K and
tp are real or binary output vectors inRJ , for p = 1, . . . , P , determining the corresponding training
pattern.

Next, we give quantitative results applying various methods in four neural network applications:

(i) a variant of the Steepest Descent with constant stepsize (SD) [18];
(ii) the Steepest Descent with Line Search (SDLS) [14, p. 30];
(iii) a modification of the Steepest Descent with constant stepsize and Momentum (SDM) [18];
(iv) an Adaptive Steepest Descent with heuristics for tuning the stepsize (ASD) [32];
(v) the Fletcher–Reeves (FR) method [4];
(vi) the Polak–Ribiere (PR) method [4];
(vii) the Polak–Ribiere (PR) method constrained by the FR method (PR–FR) [4];

(viii) the Heuristic Jacobi–Newton method (HJN) of Eq. (16);
(ix) the one-step Jacobi with Netwon–Update method (JNU) of Eq. (25); and
(x) the Multi-step SOR-modified bisection method (m-SOR) of Eq. (30).

Note that in the implementation of FR, PR, PR–FR, the line search of [14] has been used. Methods testing
has been conducted using a set of 1000 randomly chosen initial points.
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Table 3
Results for the XOR problem(n = 9)

Algorithm µGRD µFE µASE Success

SD 549 549 n/a 810/1000
SDLS 64 371 n/a 810/1000
SDM 803 803 n/a 810/1000
ASD 157 157 n/a 810/1000
FR 84 198 n/a 130/1000
PR 21 148 n/a 380/1000
PR–FR 22 149 n/a 410/1000
HJN 52 182 n/a 810/1000
m-SOR n/a n/a 193 440/1000

4.2.1. The XOR problem [18]
The classification of the four XOR patterns in two classes is an interesting problem because it is

sensitive to initial conditions as well as to stepsize variations, and presents a multitude of local minima.
The binary patterns are presented to the network in a finite sequenceC = (c1, c2, . . . , cp) of input–output
pairscp = (up, tp) whereup are the binary input vectors inR2 determining the binary input pattern and
tp are binary output vectors inR1, for p = 1, . . . ,4, determining the corresponding number of patterns.
A neural network with 9 variables is used for this classification task.

The termination condition for all algorithms tested is to find a local minimizer with function
value f � 0.04. The results are summarized in Table 3, whereµGRD denotes the mean number of
gradient evaluations,µFE denotes the mean number of objective function evaluations required to obtain
convergence,Success shows the number of successful simulations out of 1000 runs, i.e., in the successful
runs the iterates converge to a minimizer with function value less than or equal to 0.04, andµASE is the
mean number of algebraic sing evaluations required by the m-SOR.

In this case the number of successful runs is related to the local minima problem. Thus FR, PR and
PR–FR usually converge to an undesired local minimum, i.e., a minimizer with function valuef > 0.04
which means that some of the patterns are not correctly classified. HJN exhibits better performance than
FR, PR and PR–FR with regards to the number of successful runs. HJN also outperforms SD, SDLS,
SDM and FR in training speed, measured by the mean number of function and gradient evaluations
needed to successfully classify the patterns. Note that PR and PR–FR require less function evaluations
than HJN but they reveal a smaller number of successful runs. It is worth noticing that the m-SOR
compares favorably to the conjugate gradient methods in terms of successes. In addition, m-SOR does
not require gradient evaluations.

4.2.2. Function approximation problem [23]
This experiment concerns the approximation of the functionf (x) = sin(x)cos(2x) with domain

0 � x � 2π using 20 input–output points, i.e.,up are real-valued input vectors inR1 determining the
input point andtp are real-valued output points inR1, for p = 1, . . . ,20, determining the corresponding
number of points. A neural network with 31 variables that is based on hidden neurons of hyperbolic
tangent activations and on a linear output neuron is used [23]. Training is considered successful when
E � 0.0125. Comparative results are shown in Table 4, where the abbreviations are as in Table 3.
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Table 4
Comparative results for the function approximation problem(n = 31)

Algorithm µGRD µFE µASE Success

SD 1588720 1588720 n/a 1000/1000
SDM 578848 578848 n/a 1000/1000
ASD 388457 388457 n/a 1000/1000
SDLS 886364 1522890 n/a 1000/1000
HJN 198172 311773 n/a 1000/1000
m-SOR n/a n/a 46995 1000/1000

Table 5
Results for the numeric font learning problem(n = 460)

Algorithm µGRD µFE µASE Success

SD 14489 14489 n/a 660/1000
SDLS 12225 12229 n/a 990/1000
SDM 10142 10142 n/a 540/1000
ASD 1975 1975 n/a 910/1000
FR 620 2501 n/a 420/1000
PR 649 1475 n/a 960/1000
PR–FR 750 2723 n/a 1000/1000
HJN 159 581 n/a 1000/1000
JNU 1361 3708 n/a 1000/1000
m-SOR n/a n/a 3696 1000/1000

4.2.3. The numeric font learning problem [20]
This experiment refers to the training of a multilayer neural network with 460 variables for recognizing

8 × 8 pixel machine printed numerals from 0 to 9. The network has 64 input neurons and 10 output
neurons representing 0 through 9. Numerals are given in a finite sequenceC = (c1, c2, . . . , cp) of input–
output pairscp = (up, tp) whereup are the binary input vectors inR64 determining the 8×8 binary pixel
and tp are binary output vectors inR10, for p = 1, . . . ,10, determining the corresponding numerals.
The termination condition is to locate a minimizer with function value less than or equal to 0.001. The
results are summarized in Table 5 using the same notation as in Table 3. Evidently, HJN exhibits the best
performance. It has 100% success and the smallest average of function evaluations. HJN achieves faster
training than all other methods.

4.2.4. Texture classification problem
In this experiment a set of 12 Brodatz texture images [3]: 3, 5, 9, 12, 15, 20, 51, 68, 77, 78, 79, 93 of

size 512× 512 is acquired by a scanner at 150dpi. From each texture image 10 subimages of size 128×
128 are randomly selected, and the co-occurrence method, introduced by Haralick et al. [5] is applied.
In the co-occurrence method, the relative frequencies of gray-level pairs of pixels at certain relative
displacements are computed and stored in a matrix. The combination of the nearest neighbor pairs at
orientations 0◦, 45◦, 90◦ and 135◦ are used in the experiment. 10 sixteenth-dimensional training patterns
are created from each image and the network is trained to classify the patterns to 12 texture types. Patterns
are given in a finite sequenceC = (c1, c2, . . . , cp) of input–output pairscp = (up, tp) whereup are real-
valued input vectors inR16 andtp are binary output vectors inR12, for p = 1, . . . ,120, determining the
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Table 6
Comparative results for the texture classification problem(n = 244)

Algorithm µGRD µFE Success µCS

SD 15893 15893 960/1000 90%
SDLS 13256 13261 965/1000 90%
SDM 12422 12422 940/1000 90%
ASD 560 560 1000/1000 93%
FR 1624 11050 250/1000 92%
PR 140 670 990/1000 92%
PR–FR 145 860 996/1000 93%
HJN 382 591 1000/1000 94%
JNU 791 2185 1000/1000 93%

number of patterns in the training set. The termination condition is a classification errorCE < 3%. The
successfully trained networks are tested for their classification ability using patterns from 20 subimages
of the same size randomly selected from each image, i.e., the test set consists of 240 patterns. To evaluate
the classification performance of a network the max rule is used, i.e., a test pattern is considered to be
correctly classified if the corresponding output neuron has the greatest value among the output neurons.

Detailed results regarding the training performance of the algorithms are presented in Table 6, where
µGRD denotes the mean number of gradient evaluations,µFE denotes the mean number of objective
function evaluations required to obtain convergence,Success shows the number of successful simulations
out of 1000 runs, i.e., in the successful runs the iterates converge to a minimizer that provides a suitable
classification error,CE < 3%, andµCS is the percentage of classification success in testing. The results of
Tables 6 suggest that HJN significantly outperforms other methods in terms of overall performance, i.e.,
number of gradient and error function evaluations as well as in the percentage of successful simulations.
Almost similar performance is exhibited by ASD, however ASD requires fine tuning five heuristic
parameters as well as the stepsize. Both ASD and JNU provide good classification success, which is
considered as a very critical factor when choosing training algorithms.

5. Conclusions and further research

In this paper, an investigation on the generalization of the most common classical iterative methods
used for the solution of linear systems (like Gauss–Seidel, SOR, Jacobi, and others) to the unconstrained
optimization of nonlinear functions has been conducted. Although the nonlinear iterative rootfinding
methods have been extensively studied, the unconstrained optimization case has not been thoroughly
analyzed. Thus, in this work unconstrained optimization algorithms for nonlinear functions based on
generalizations of iterative linear methods were introduced. Theoretical convergence results for the
proposed algorithms have been derived for computing a local minimizer of a function. A strategy for
developing globally convergent modifications of these algorithms has also been proposed. The new
algorithms have been implemented and tested on classical test problems and on real-life artificial neural
network applications and the results to date appear to be very promising. In a subsequent communication
we intend to implement in parallel the methods of the Jacobi class, using the Parallel Virtual Machine
(PVM) [7]. Preliminary results indicate that utilizing PVM, the speed up achieved is analogous to the
number of the processors used [13], thus considerably shorten the minimization process time.
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