
A Fast Approximate Algorithm for Large-Scale Latent Semantic Indexing

Dell Zhang
SCSIS

Birkbeck, University of London
London WC1E 7HX, UK

dell.z@ieee.org

Zheng Zhu
SCSIS

Birkbeck, University of London
London WC1E 7HX, UK

zheng@dcs.bbk.ac.uk

Abstract

Latent Semantic Indexing (LSI) is an effective method to
discover the underlying semantic structure of data. It has
numerous applications in information retrieval and data
mining. However, the computational complexity of LSI may
be prohibitively high when applied to very large datasets.
In this paper, we present a fast approximate algorithm for
large-scale LSI that is conceptually simple and theoretically
justified. Our main contribution is to show that the pro-
posed algorithm has provable error bound and linear com-
putational complexity.

1 Introduction

In many problem domains, the data can be naturally
modelled as a matrix A such that each column corresponds
to a feature and each row describes an instances as a point
or vector in the feature space. For example, a collection of
m documents that contain n distinctive terms can be repre-
sented as an m× n document-term matrix [17].

The technique of Latent Semantic Indexing (LSI) [6, 3,
20, 14] employs truncated Singular Value Decomposition
(SVD) [13, 11] (see Section 2) to find the best low-rank de-
scription of A ∈ Rm×n, i.e., the matrix D ∈ Rm×n of rank
k (k � m,n) with minimum error ‖A−D‖F where ‖ · ‖F
denotes the Frobenius norm. Since the intrinsic dimension-
ality of data is usually much smaller than n, the low-rank
matrix D actually reveals the underlying semantic structure
of the original data matrix A. For example, it has been
shown that using D instead of A for information retrieval
can effectively deal with the tough problem of synonymy
and polysemy [6].

There are numerous applications of LSI in information
retrieval and data mining, including ad hoc text retrieval
[6, 3, 20, 14], cross-language retrieval [10], distributed re-
trieval [23], text categorisation [5], Web search [15, 26],

face or object recognition [25, 19], and DNA microarray
data analysis [2, 21, 24].

However, the computational complexity of LSI is super-
linear (inm and n) [13, 11], which may be prohibitive when
A is very large.

In this paper, we present a fast approximate algorithm
for large-scale LSI that is conceptually simple and theoreti-
cally justified. The central idea is to perform truncated SVD
computation not directly on A but on its sketch sub-matrix
S that consists of the s (k ≤ s � m,n) columns of A
with largest lengths (l2 norms) | · |. We prove that the rank
k description D∗ of A obtained in this way is close to the
optimal rank k description of A:

‖A−D∗‖2F ≤ min
D∈Rm×n

rank(D)≤k

‖A−D‖2F +2
√
k(1−p)‖A‖2F ,

(1)
where p = ‖S‖2F /‖A‖2F . Furthermore, we show that the
proposed algorithm only requiresO(m+n) additional time
and space.

The rest of this paper is organised as follows. In Section
2, we review the background knowledge of linear algebra.
In Section 3, we describe our fast approximate algorithm
for large-scale LSI. In Section 4, we give an analysis on the
algorithm’s error bound and computational complexity. In
Section 5, we present the preliminary experimental results.
In Section 6, we discuss related work. In Section 7, we
make conclusions.

2 Preliminary

This section contains a brief review of linear algebra [13,
11] that is relevant to our work.

For a vector x ∈ Rn, let xj , j = 1, . . . , n denote the j-th
element of x. The length or l2 norm of x is

|x| =

√√√√ n∑
j=1

x2
j . (2)

Figure 1. Truncated Singular Valude Decomposition (SVD) [3].

For a matrix A ∈ Rm×n, let Aij denote the (i, j)-th
element of A, and also let A(i), i = 1, . . . ,m denote the i-
th row of A as a row vector and A(j), j = 1, . . . , n denote
the j-th column of A as a column vector. The Frobenius
norm of A that provides a measure of A’s size is defined by

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

A2
ij . (3)

If Tr(A) represents the matrix trace, i.e., the sum of the
diagonal elements, of A, then

‖A‖2F = Tr
(
AAT

)
= Tr

(
ATA

)
. (4)

Furthermore, if {x1, . . . ,xn} constitute a basis of Rn, then

‖A‖2F =
n∑
j=1

|Axj |2 . (5)

The rank of A, rank(A), is the number of linearly inde-
pendent columns (or rows) of A.

Given a matrix A ∈ Rm×n, there exist orthogonal matri-
ces U = [u1, . . . ,um] ∈ Rm×m with {ut}mt=1 ∈ Rm and
V = [v1, . . . ,vn] ∈ Rn×n with {vt}nt=1 ∈ Rn such that

A = UΣVT , (6)

where Σ = diag(σ1, . . . , σρ) ∈ Rm×n, ρ = min{m,n}
and σ1 ≥ . . . σρ ≥ 0. The three matrices U, V, and Σ con-
stitute the Singular Value Decomposition (SVD) of A. The
σt are the singular values of A, and the vectors ut, vt are
the t-th left and and right singular vectors of A respectively.

The singular values of A are the non-negative square
roots of the eigenvalues of AAT or ATA. The left sin-
gular vectors of A are the eigenvectors of AAT and the
right singular vectors of A are the eigenvectors of ATA.

The number of positive singular values r = rank(A), so
σ1 ≥ σ2 ≥ . . . ≥ σr > σr+1 = . . . = σρ = 0. If Ur ∈

Rm×r denotes the matrix consist of the first r columns of
U, Vr ∈ Rr×n denotes the matrix consist of the first r
columns of V, and Σr ∈ Rr×r denotes the principal r × r
sub-matrix of Σ, then

A = UrΣrVT
r =

r∑
t=1

σtutvTt . (7)

For 1 ≤ k < r, the truncated SVD of A (see Figure 1) is
given by

Ak = UkΣkVT
k =

k∑
t=1

σtutvTt . (8)

The matrix Ak ∈ Rm×n is the projection of A on to the
space spanned by the top k singular vectors of A, i.e.,

Ak = UkUT
kA =

(
k∑
t=1

utuTt

)
A , (9)

and

Ak = AVkVT
k = A

(
k∑
t=1

vtvTt

)
. (10)

Furthermore, the distance (as measured by ‖ · ‖F) between
A and any rank k approximation to A is minimised by Ak,
i.e.,

min
D∈Rm×n

rank(D)≤k

‖A−D‖2F = ‖A−Ak‖2F

=
r∑

t=k+1

σ2
t (A) . (11)

In other words, the matrix Ak constructed from the k largest
singular triplets of A is the optimal rank k approximation
to A with respect to ‖ · ‖F . It can be shown that

‖A‖2F =
r∑
t=1

σ2
t (A) . (12)

According to the matrix perturbation theory [22], the size
of the difference between two matrices can be used to bound
the difference between the singular value spectrum of the
two matrices. In particular, the Hoffman-Wielandt inequal-
ity states that if A,E ∈ Rm×n, m ≥ n, then

n∑
t=1

(σt(A + E)− σt(A))2 ≤ ‖E‖2F . (13)

3 Algorithm

Consider a very large data matrix A ∈ Rm×n, and with-
out loss of generality assume that m ≥ n. The LSI of A
can be considered as an optimization process that finds Ak,
i.e., the optimal rank k approximation to A in terms of the
Frobenius norm ‖ · ‖F of their difference. Since the compu-
tational complexity of this process depends on the dimen-
sion of A, our idea for accelerating the process is to divide
it into two stages:

1. reduce the high dimensional matrix A to a low dimen-
sional matrix S ∈ Rm×s that is close to A;

2. perform the truncated SVD of S that provides approx-
imations to the singular values and singular vectors of
the original matrix A.

A simple method to construct the low dimensional matrix S
is to pick s� n columns from A. Since

‖A‖2F =
m∑
i=1

n∑
j=1

A2
ij

=
n∑
j=1

(
m∑
i=1

A2
ij

)

=
n∑
j=1

|A(j)|2 , (14)

the best strategy for minimizing the Frobenius norm loss is
obviously to select the s columns with largest lengths | · |.
Furthermore, we can get the truncated SVD of S through
performing eigen-decomposition of the symmetric matrix
STS ∈ Rs×s which can be computed efficiently if s is
small.

Our fast approximate algorithm for large-scale LSI is
presented in Figure 2. Given a matrix A ∈ Rm×n, the
algorithm returns the approximations to A’s left singular
vectors Ûk = [û1, . . . , ûk] as well as the approximations
to A’s singular values Σ̂k = diag (σ̂1, . . . , σ̂k). Then a
rank k approximation to A can be given by

D∗ = ÛkÛT
kA , (15)

which (as we will show later in Section 4) is close to Ak the
optimal rank k approximation to A.

4 Analysis

4.1 Error Bound

The matrix D∗ = ÛkÛT
kA is a good (though not opti-

mal) approximation to the original matrix A, in the sense
that the incurred error ‖A−D∗‖2F is bounded by the small-
est possible error minD∈Rm×n:rank(D)≤k ‖A − D‖2F plus
an additional error term depending on a portion of ‖A‖2F .

Theorem 1. If using the fast approximate algorithm for
large-scale LSI (as described in Figure 2) on A ∈ Rm×n
we get the result Ûk, then D∗ = ÛkÛT

kA satisfies

‖A−D∗‖2F ≤ min
D∈Rm×n

rank(D)≤k

‖A−D‖2F +2
√
k(1−p)‖A‖2F ,

(16)
where p = ‖S‖2F /‖A‖2F .

Proof. Using the rules that ‖X‖2F = Tr
(
XTX

)
and

ÛT
k Ûk = I ∈ Rk×k, we get

‖A−D∗‖2F
= ‖A− ÛkÛT

kA‖2F

= Tr
((

A− ÛkÛT
kA
)T (

A− ÛkÛT
kA
))

= Tr
(
ATA− 2AT ÛkÛT

kA + AT ÛkÛT
k ÛkÛT

kA
)

= Tr
(
ATA−AT ÛkÛT

kA
)

= Tr
(
ATA

)
− Tr

(
AT ÛkÛT

kA
)

= ‖A‖2F − ‖AT Ûk‖2F . (17)

Applying the Cauchy-Schwartz inequality and noting that
û1, . . . , ûk provides a basis of Rk, we get∣∣∣∣∣‖AT Ûk‖2F −

k∑
t=1

σ̂2
t

∣∣∣∣∣
=

∣∣∣∣∣
k∑
t=1

|AT ût|2 −
k∑
t=1

σ̂2
t

∣∣∣∣∣
=

∣∣∣∣∣
k∑
t=1

1 ·
(
|AT ût|2 − σ̂2

t

)∣∣∣∣∣
≤
√
k

√√√√ k∑
t=1

(|AT ût|2 − σ̂2
t)

2

=
√
k

√√√√ k∑
t=1

(|AT ût|2 − |ST ût|2)2

=
√
k

√√√√ k∑
t=1

(
ûTt (AAT − SST)ût

)2

Input: A ∈ Rm×n and k, s ∈ Z+ s.t. 1 ≤ k ≤ s ≤ n.

Output: Ûk and Σ̂k.

• Calculate |A(j)| =
√∑m

i=1A
2
ij for j = 1, . . . , n.

• Construct S =
[
A(j1), . . . ,A(js)

]
where A(jt), t = 1, . . . , s are the s columns of A with largest lengths |A(jt)|.

• Compute STS.

• Perform the eigen-decomposition of STS, i.e., STS = QΛQT where Q = [q1, . . . ,qs] and Λ = diag(λ1, . . . , λs)
with λ1 ≥ . . . λs ≥ 0.

• Compute σ̂t =
√
λt for t = 1, . . . , k.

• Compute ût = Sqt/σ̂t for t = 1, . . . , k.

• Return Ûk = [û1, . . . , ûk] and Σ̂k = diag(σ̂1, . . . , σ̂k).

Figure 2. Our fast approximate algorithm for large-scale LSI.

≤
√
k‖AAT − SST ‖F . (18)

Applying the Cauchy-Schwartz inequality again and in ad-
dition the Hoffman-Wielandt inequality, we get∣∣∣∣∣

k∑
t=1

σ2
t −

k∑
t=1

σ̂2
t

∣∣∣∣∣
=

∣∣∣∣∣
k∑
t=1

1 ·
(
σ2
t − σ̂2

t

)∣∣∣∣∣
≤
√
k

√√√√ k∑
t=1

(σ2
t − σ̂2

t)
2

≤
√
k

√√√√ m∑
t=1

(σ2
t − σ̂2

t)
2

=
√
k

√√√√ m∑
t=1

(σt(AAT)− σt(SST))2

≤
√
k‖AAT − SST ‖F . (19)

Applying the triangle inequality to combine the above two
inequalities, we get∣∣∣∣∣

k∑
t=1

σ2
t − ‖AT Ûk‖2F

∣∣∣∣∣
=

∣∣∣∣∣
(

k∑
t=1

σ2
t −

k∑
t=1

σ̂2
t

)
+

(
k∑
t=1

σ̂2
t − ‖AT Ûk‖2F

)∣∣∣∣∣

≤

∣∣∣∣∣
k∑
t=1

σ2
t −

k∑
t=1

σ̂2
t

∣∣∣∣∣+
∣∣∣∣∣
k∑
t=1

σ̂2
t − ‖AT Ûk‖2F

∣∣∣∣∣
=

∣∣∣∣∣
k∑
t=1

σ2
t −

k∑
t=1

σ̂2
t

∣∣∣∣∣+
∣∣∣∣∣‖AT Ûk‖2F −

k∑
t=1

σ̂2
t

∣∣∣∣∣
≤ 2

√
k‖AAT − SST ‖F . (20)

Without loss of generality, we can assume that A(j),
j = 1, . . . , s are the largest columns of A, i.e., S =[
A(1), . . . ,A(s)

]
. Then applying the triangle inequality

again, we get

‖AAT − SST ‖F

=

∥∥∥∥∥
n∑
t=1

A(j)AT
(j) −

s∑
t=1

A(j)AT
(j)

∥∥∥∥∥
F

=

∥∥∥∥∥
n∑

t=s+1

A(j)AT
(j)

∥∥∥∥∥
F

≤
n∑

t=s+1

∥∥∥A(j)AT
(j)

∥∥∥
F

=
n∑

t=s+1

√√√√ m∑
i=1

m∑
j=1

(AitAjt)
2

=
n∑

t=s+1

√√√√√(m∑
i=1

A2
it

) m∑
j=1

A2
jt



=
n∑

t=s+1

m∑
i=1

A2
it

=
m∑
i=1

n∑
j=s+1

A2
ij

=
m∑
i=1

n∑
j=1

A2
ij −

m∑
i=1

s∑
j=1

A2
ij

= ‖A‖2F − ‖S‖2F
= (1− p)‖A‖2F , (21)

Finally, assembling all the above inequalities yields the the-
orem,

‖A−D∗‖2F
= ‖A‖2F − ‖AT Ûk‖2F

=

(
‖A‖2F −

k∑
t=1

σ2
t

)
+

(
k∑
t=1

σ2
t − ‖AT Ûk‖2F

)

=

(
r∑
t=1

σ2
t −

k∑
t=1

σ2
t

)
+

(
k∑
t=1

σ2
t − ‖AT Ûk‖2F

)

=

(
r∑

t=k+1

σ2
t

)
+

(
k∑
t=1

σ2
t − ‖AT Ûk‖2F

)

= ‖A−Ak‖2F +

(
k∑
t=1

σ2
t − ‖AT Ûk‖2F

)

≤ ‖A−Ak‖2F +

∣∣∣∣∣
k∑
t=1

σ2
t − ‖AT Ûk‖2F

∣∣∣∣∣
≤ ‖A−Ak‖2F + 2

√
k‖AAT − SST ‖F

≤ ‖A−Ak‖2F + 2
√
k(1− p)‖A‖2F

= min
D∈Rm×n

rank(D)≤k

‖A−D‖2F + 2
√
k(1− p)‖A‖2F . (22)

The above theorem also justifies our intuition that the
best strategy to construct the sketch matrix S is to se-
lect the largest columns from A thus the proportion p =
‖S‖2F /‖A‖2F is large and consequently the error bound is
small.

In practice, it could be more convenient to determine the
value of parameter s based on a pre-fixed threshold of p
rather than the other way around.

4.2 Computational Complexity

Let’s examine our fast approximate algorithm for large-
scale LSI (as shown in Figure 2) step by step.

Calculating the lengths of the columns of A, i.e.,
|A(j)| =

√∑m
i=1A

2
ij for j = 1, . . . , n, can be done in

one pass over A and requires onlyO(n) additional time and
space. Picking the s largest columns from the n columns of
A can be done using selection algorithms [4] which typi-
cally have O(n+ s log s) computational complexity, but as
we do not need those largest s columns A(j1), . . . ,A(js)

to be themselves ordered, the complexity can be further re-
duced to O(n).

Then the construction of S takes O(ms) additional time
and space, and to get STS we needO(ms2) additional time
and space. Furthermore, the eigen-decomposition of the
s × s matrix STS takes O(s3) additional time and space
[13, 11]. Moreover, computing σ̂t =

√
λt for t = 1, . . . , k

requires O(k) additional time and space; computing ût =
Sqt/σ̂t for t = 1, . . . , k requires O(msk) additional time
and space.

In summary, since s and k are constants, the overall com-
putational complexity of our algorithm is only O(m+ n).

5 Experiments

We have implemented our algorithm in Matlab, and per-
formed preliminary experiments on a real-world text dataset
20-newsgroups1 [16]. There are totally 19928 documents
and 62061 terms, therefore the document-term matrix A
has m = 19928 rows and n = 62061 columns. Assum-
ing the number of latent semantic concepts in this corpus
to be 20, we use truncated SVD with k = 20 of A for LSI.
The experimental observation is that selecting the s = n/10
columns with largest lengths, our fast approximate algo-
rithm is an order of magnitude faster than the original LSI
algorithm, while keeping the approximation error small as
1 − p = 0.1002. In practice, we note that the fast approx-
imate algorithm often performs much better than the theo-
retical error bound suggests.

6 Related Work

The exact solutions of truncated SVD are typically com-
puted using iterative algorithms like the Lanczos method
[18], but the computational complexity of such algorithms
is too high to be practical on very large datasets.

Gorrell proposed an incremental algorithm for approxi-
mate truncated SVD which works in a neural-network-like
fashion and requires much less resources [12]. Tang et al.
proposed to reduce the cost of truncated SVD through docu-
ment clustering and term selection [23]. However, those ap-
proximate algorithms do not come with a theoretical guar-
antee of error bounds.

Drineas et al. proposed a randomised algorithms for ap-
proximate truncated SVD which also reduces the computa-
tion on the given large matrix A to that on a small sketch

1http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/multiclass.html
#news20

matrix consisting of randomly sampled columns from A ac-
cording to a certain probability distribution [7, 8, 9], but
their used sketch matrix, unlike ours, contains many dupli-
cate columns and consequently impairs the algorithm’s time
and space efficiencies. Achlioptas and McSherry proposed
an alternative entry-wise randomised algorithm for approxi-
mate truncated SVD based on the theory of random matrices
[1].

7 Conclusions

We have presented a fast approximate algorithm for
large-scale LSI that is conceptually simple and theoretically
justified. Our main contribution is to show that the pro-
posed algorithm has provable error bound and linear com-
putational complexity.

We plan to conduct more experiments on real-world
datasets in the future so as to empirically evaluate the ef-
fectiveness and efficiency of our proposed algorithm.

8 Acknowledgements

We thank the anonymous reviewers for their helpful
comments.

References

[1] D. Achlioptas and F. McSherry. Fast computation of low-
rank matrix approximations. Journal of the ACM, 54(2):Ar-
ticle 9, 2007.

[2] O. Alter, P. O. Brown, and D. Botstein. Singular value
decomposition for genome-wide expression data processing
and modeling. Proceedings of the National Academy of Sci-
ences (PNAS), 97(18):10101–10106, 2000.

[3] M. W. Berry, S. T. Dumais, and G. W. O’Brien. Using linear
algebra for intelligent information retrieval. SIAM Review,
37(4):573–595, 1995.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms. MIT Press and McGraw-Hill,
2nd edition, 2001.

[5] N. Cristianini, J. Shawe-Taylor, and H. Lodhi. Latent se-
mantic kernels. In Proceedings of the 18th International
Conference on Machine Learning (ICML), pages 66–73,
Williamstown, MA, 2001.

[6] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer,
and R. Harshman. Indexing by latent semantic analysis.
Journal of the American Society of Information Science (JA-
SIS), 41(6):391–407, 1990.

[7] P. Drineas, R. Kannan, and M. W. Mahoney. Fast monte
carlo algorithms for matrices i: Approximating matrix mul-
tiplication. SIAM Journal on Computing, 36(1):132–157,
2006.

[8] P. Drineas, R. Kannan, and M. W. Mahoney. Fast monte
carlo algorithms for matrices ii: Computing a low-rank ap-
proximation to a matrix. SIAM Journal on Computing,
36(1):158–183, 2006.

[9] P. Drineas, R. Kannan, and M. W. Mahoney. Fast monte
carlo algorithms for matrices iii: Computing a compressed
approximate matrix decomposition. SIAM Journal on Com-
puting, 36(1):184–206, 2006.

[10] S. T. Dumais, T. A. Letsche, M. L. Littman, and T. K. Lan-
dauer. Automatic cross-linguistic information retrieval using
latent semantic indexing. In AAAI Symposium on CrossLan-
guage Text and Speech Retrieval. American Association for
Artificial Intelligence, pages 15–21, Palo Alto, CA, 1997.

[11] G. H. Golub and C. F. V. Loan. Matrix Computations. The
Johns Hopkins University Press, 3rd edition, 1996.

[12] G. Gorrell. Generalized hebbian algorithm for incremental
singular value decomposition in natural language process-
ing. In Proceedings of the 11st Conference of the European
Chapter of the Association for Computational Linguistics
(EACL), pages 97–104, Trento, Italy, 2006.

[13] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge
University Press, 1990.

[14] P. Husbands, H. Simon, and C. H. Q. Ding. On the use
of the singular value decomposition for text retrieval. In
Computational Information Retrieval, pages 145–156, 2001.

[15] J. M. Kleinberg. Authoritative sources in a hyperlinked en-
vironment. Journal of the ACM, 46(5):604–632, 1999.

[16] K. Lang. Newsweeder: Learning to filter netnews. In Pro-
ceedings of the 12th International Conference on Machine
Learning (ICML), pages 331–339, Tahoe City, CA, 1995.

[17] C. D. Manning, P. Raghavan, and H. Schütze. Introduction
to Information Retrieval. Cambridge University Press, 2008.

[18] C. D. Meyer. Matrix Analysis and Applied Linear Algebra.
Society for Industrial and Applied Mathematics, Philadel-
phia, 2000.

[19] H. Murase and S. K. Nayar. Visual learning and recognition
of 3-d objects from appearance. International Journal of
Computer Vision (IJCV), 14(1):5–24, 1995.

[20] C. H. Papadimitriou, P. Raghavan, H. Tamaki, and S. Vem-
pala. Latent semantic indexing: A probabilistic analy-
sis. Journal of Computer and System Sciences (JCSS),
61(2):217–235, 2000.

[21] S. Raychaudhuri, J. M. Stuart, and R. B. Altman. Principal
components analysis to summarize microarray experiments:
Application to sporulation time series. In Proceedings of the
5th Pacific Symposium on Biocomputing (PSB), pages 452–
463, Hawaii, 2000.

[22] G. W. Stewart and J.-G. Sun. Matrix Perturbation Theory.
Academic Press, 1990.

[23] C. Tang, S. Dwarkadas, and Z. Xu. On scaling latent se-
mantic indexing for large peer-to-peer systems. In Proceed-
ings of the 27th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval
(SIGIR), pages 112–121, Sheffield, UK, 2004.

[24] O. G. Troyanskaya, M. Cantor, G. Sherlock, P. O. Brown,
T. Hastie, R. Tibshirani, D. Botstein, and R. B. Altman.
Missing value estimation methods for dna microarrays.
Bioinformatics, 17(6):520–525, 2001.

[25] M. Turk and A. Pentland. Eigenfaces for recognition. Jour-
nal of Cognitive Neuroscience, 3(1):71–86, 1991.

[26] D. Zhang and Y. Dong. Semantic, hierarchical, online clus-
tering of web search results. In Proceedings of the 6th Asia-
Pacific Web Conference (APWeb), pages 69–78, Hangzhou,
China, 2004.

